Skip to main content

Omics Technologies and Molecular Farming: Applications and Challenges

  • Chapter
  • First Online:
Omics Technologies for Sustainable Agriculture and Global Food Security (Vol II)

Abstract

“Omics” is a broad area mainly deals with the analysis of biological information obtained from the genome, transcriptome, proteome, and metabolome profiling, together with other relevant –omes. Various omic technologies are focused to unravel the putative markers, overall gene, protein, and metabolite expression in a very functionally relevant context, and provide insights into the molecular basis of different fundamental processes involved in growth and development of plants. New gene(s) discovery and their expression profiling provide ample opportunity for breeders to introgress economically important traits from new sources. The omic technologies have been found useful in decoding the complexity of abiotic and biotic stresses through genome sequences, cell and tissue specific transcripts, protein and metabolite profiles and their dynamic changes, and interactions. Plant molecular farming (PMF) is an emerging branch of plant biotechnology, wherein large quantities of industrial proteins and recombinant pharmaceuticals produced by engineered plants. Many biopharmaceuticals like monoclonal antibodies, recombinant vaccine antigens, and other commercially viable proteins are produced in plants, a number of which are in the clinical and pre-clinical stages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Armitage EG, Barbas C (2014) Metabolomics in cancer biomarker discovery: current trends and future perspectives. J Pharm Biomed Anal 87:1–11

    Article  CAS  PubMed  Google Scholar 

  • Beyene B, Haile G, Matiwos T, Deribe H (2016) Review on proteomics technologies and its application for crop improvement. Innov Syst Des Eng 7(6):31044

    Google Scholar 

  • Biemelt S, Sonnewald U (2005) Molecular farming in plants. Nature encyclopedia of life sciences. Nature Publishing Group, London. https://doi.org/10.1038/npg.els.0003365

    Book  Google Scholar 

  • Bolger ME, Weisshaar B, Scholz U, Stein N, Usadel B et al (2014) Plant genome sequencing-applications for crop improvement. Curr Opin Biotechnol 26:31–37

    Article  CAS  PubMed  Google Scholar 

  • Borrelli GM, Fragasso M, Nigro F, Platani C, Papa R et al (2018) Analysis of metabolic and mineral changes in response to salt stress in durum wheat (Triticum turgidum ssp. durum) genotypes, which differ in salinity tolerance. Plant Physiol. Biochemist 133:57–70

    CAS  Google Scholar 

  • Brenner S, Johnson M, Bridgham J, Golda G, Lloyd DH et al (2000) Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nat Biotechnol 18(6):630–634

    Article  CAS  PubMed  Google Scholar 

  • Brodzik R, Spitsin S, Pogrebnyak N, Bandurska K, Portocarrero C et al (2009) Generation of plant-derived recombinant DTP subunit vaccine. Vaccine 27:3730–3734

    Article  CAS  PubMed  Google Scholar 

  • Chang J, Cheong BE, Natera S, Roessner U (2019) Morphological and metabolic responses to salt stress of rice (Oryza sativa L.) cultivars which differ in salinity tolerance. Plant Physiol Biochem 144:427–435

    Article  CAS  PubMed  Google Scholar 

  • Chebrolu KK, Fritschi FB, Ye S, Krishnan HB, Smith JR et al (2016) Impact of heat stress during seed development on soybean seed metabolome. Metabolomics 12:28

    Article  CAS  Google Scholar 

  • Chen M, Liu X, Wang Z, Song J, Qi Q, Wang PG (2005) Modification of plant N-glycans processing: the future of producing therapeutic protein by transgenic plants. Med Res Rev 25:343–360

    Article  CAS  PubMed  Google Scholar 

  • Che-Othman MH, Jacoby RP, Millar AH, Taylor NL (2019) Wheat mitochondrial respiration shifts from the tricarboxylic acid cycle to the GABA shunt under salt stress. New Phytol. https://doi.org/10.1111/nph.15713

  • Collard BC, Jahufer MZZ, Brouwer JB, Pang ECK (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142(1–2):169–196

    Article  CAS  Google Scholar 

  • Coutinho ID, Henning LMM, Dopp SA, Nepomuceno A, Moraes LAC et al (2018) Flooded soybean metabolomic analysis reveals important primary and secondary metabolites involved in the hypoxia stress response and tolerance. Environ Exp Bot 153:176–187

    Article  CAS  Google Scholar 

  • De Muynck B, Navarre C, Nizet Y, Stadlmann J, Boutry M (2009) Different subcellular localization and glycosylation for a functional antibody expressed in Nicotiana tabacum plants and suspension cells. Transgenic Res 18:467–482

    Article  CAS  PubMed  Google Scholar 

  • Decker EL, Reski R (2008) Current achievements in the production of complex biopharmaceuticals with moss bioreactors. Bioprocess Biosyst Eng 31:3–9

    Article  CAS  PubMed  Google Scholar 

  • Descalsota GIL, Swamy BP, Zaw H, Inabangan-Asilo MA, Amparado A et al (2018) Genome-wide association mapping in a rice MAGIC plus population detects QTLs and genes useful for biofortification. Front Plant Sci 9:1347. https://doi.org/10.3389/fpls.2018.01347

    Article  PubMed  PubMed Central  Google Scholar 

  • Devi EL, Devi CP, Kumar S, Sharma SK, Beemrote A et al (2017) Marker assisted selection (MAS) towards generating stress tolerant crop plants. Plant Gene 11:205–218

    Article  CAS  Google Scholar 

  • Diamos AG, Hunter JGL, Pardhe MD, Rosenthal SH, Sun H et al (2019) High level production of monoclonal antibodies using an optimized plant expression system. Front Bioeng Biotechnol 7:472

    Google Scholar 

  • Drake PM, Barbi T, Sexton A, Mcgowan E, Stadlmann J et al (2009) Development of rhizosecretion as a production system for recombinant proteins from hydroponic cultivated tobacco. FASEB J 23:3581–3589

    Article  CAS  PubMed  Google Scholar 

  • Edwards D, Batley J (2010) Plant genome sequencing: applications for crop improvement. Plant Biotechnol J 8(1):2–9

    Article  CAS  PubMed  Google Scholar 

  • Ersoz ES, Yu J, Buckler ES (2007) Applications of linkage disequilibrium and association mapping in crop plants. In: Genomics-assisted crop improvement. Springer, Dordrecht, pp 97–119

    Chapter  Google Scholar 

  • Esteve C, Amato AD, Marina ML, Garcia MC, Righett PG et al (2013) In-depth proteomic analysis of banana (Musa spp.) fruit with combinatorial peptide ligand libraries. Electrophoresis 34:207–214

    Article  CAS  PubMed  Google Scholar 

  • Francia E, Tacconi G, Crosatti C, Barabaschi D, Bulgarelli D et al (2005) Marker assisted selection in crop plants. Plant Cell Tissue Organ Cult 82(3):317–342

    Article  CAS  Google Scholar 

  • Franken E, Teuschel U, Hain R (1997) Recombinant proteins from transgenic plants. Curr Opin Biotechnol 8:411–416

    Article  CAS  PubMed  Google Scholar 

  • Fryer RM, Randall J, Yoshida T, Hsiao LL, Blumenstock J et al (2002) Global analysis of gene expression: methods, interpretation, and pitfalls. Nephron Exp Nephrol 10(2):64–74

    Article  CAS  Google Scholar 

  • Garg R, Jain M (2013) RNA-Seq for transcriptome analysis in non-model plants. In: Legume genomics. Humana Press, Totowa, NJ, pp 43–58

    Chapter  Google Scholar 

  • Gayen D, Barua P, Lande NV, Varshney S, Sengupta S et al (2019) Dehydration-responsive alterations in the chloroplast proteome and cell metabolomic profile of rice reveals key stress adaptation responses. Environ Exp Bot 160:12–24

    Article  CAS  Google Scholar 

  • Ge P, Ma C, Wang S, Gao L, Li X et al (2011) Comparative proteomic analysis of grain development in two spring wheat varieties under drought stress. Anal Bioanal Chem 402:1297–1313

    Article  PubMed  CAS  Google Scholar 

  • Gidoni D, Srivastava V, Carmi N (2008) Site-specific excisional recombination strategies for elimination of undesirable transgenes from crop plants. InVitro Cell Dev Biol Plant 44:457–467

    Article  CAS  Google Scholar 

  • Gul MZ, Yasin Bhat Y, Kumar A, Rao BS (2018) Molecular pharming (pharmaceuticals): primary and secondary metabolites in plants. In: Bharadwaj DN (ed) Advanced molecular plant breeding, meeting the challenges of food security. Apple Academic Press, Inc. (CRC Press), a Taylor & Francis Group, Palm Bay, FL, pp 397–432

    Google Scholar 

  • Gupta P, De B (2017) Metabolomics analysis of rice responses to salinity stress revealed elevation of serotonin, and gentisic acid levels in leaves of tolerant varieties. Plant Signal Behav 12:e1335845

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gupta PK, Langridge P, Mir RR (2010) Marker-assisted wheat breeding: present status and future possibilities. Mol Breed 26(2):145–161

    Article  Google Scholar 

  • Gupta PK, Kulwal PL, Jaiswal V (2014) Association mapping in crop plants: opportunities and challenges. In: Advances in genetics, vol 85. Academic Press, Cambridge, MA, pp 109–147

    Google Scholar 

  • Hecker M, Lambeck S, Toepfer S, van Someren E, Guthke R (2008) Gene regulatory network inference: data integration in dynamic models-a review. Biosystems 96(1):86–103

    Article  PubMed  CAS  Google Scholar 

  • Herzog M, Fukao T, Winkel A, Konnerup D, Lamichhane S et al (2018) Physiology, gene expression, and metabolome of two wheat cultivars with contrasting submergence tolerance. Plant Cell Environ 41:1632–1644

    Article  CAS  PubMed  Google Scholar 

  • Heyman HM, Dubery IA (2016) The potential of mass spectrometry imaging in plant metabolomics: a review. Phytochem Rev 15:97–316

    Article  CAS  Google Scholar 

  • Hiatt A, Cafferkey R, Bowdish K (1989) Production of antibodies in transgenic plants. Nature 342(6245):76–78

    Article  CAS  PubMed  Google Scholar 

  • Hong J, Yang L, Zhang D, Shi J (2016) Plant metabolomics: an indispensable system biology tool for plant science. Int J Mol Sci 17:E767. https://doi.org/10.3390/ijms17060767

    Article  CAS  PubMed  Google Scholar 

  • Hood EE, Kusnadi A, Nikolov Z, Howard JA (1999) Molecular farming of industrial proteins from transgenic maize. Adv Exp Med Biol 464:127–147

    Article  CAS  PubMed  Google Scholar 

  • Hurtado J, Acharya D, Lai H, Sun L, Kallolimath S et al (2020) In vitro and in vivo efficacy of anti‐chikungunya virus monoclonal antibodies produced in wild‐type and glycoengineered Nicotiana benthamiana plants. Plant Biotechnol J 18(1):266–273

    Google Scholar 

  • Iquira E, Humira S, François B (2015) Association mapping of QTLs for sclerotinia stem rot resistance in a collection of soybean plant introductions using a genotyping by sequencing (GBS) approach. BMC Plant Biol 15(1):5

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang L, Zhang L, Shi Y, Lu Z, Yu Z et al (2014) Proteomic analysis of peach fruit during ripening upon post-harvest heat combined with 1-MCP treatment. J Proteome 98:31–43

    Article  CAS  Google Scholar 

  • Kang Z, Babar MA, Khan N, Guo J, Khan J (2019) Comparative metabolomics profiling in the roots and leaves in contrasting genotypes reveals complex mechanisms involved in post-anthesis drought tolerance in wheat. PLoS One 14:e0213502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kersey PJ (2019) Plant genome sequences: past, present, future. Curr Opin Plant Biol 48:1–8

    Article  CAS  PubMed  Google Scholar 

  • Khan MA, Kiran U, Ali A, Abdin MZ, Zargar MY et al (2017) Molecular markers and marker-assisted selection in crop plants. In: Plant biotechnology: principles and applications. Springer, Singapore, pp 295–328

    Google Scholar 

  • Kostrzak A, Gonzalez MC, Guetard D, Nagaraju DB, Hobson SW et al (2009) Oral administration of low doses of plant based HBsAg induced antigen specifi c IgAs and IgGs in mice, without increasing levels of regulatory T cells. Vaccine 27:4798–4807

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Bohra A, Pandey AK, Pandey MK, Kumar A (2017) Metabolomics for plant improvement: status and prospects. Front Plant Sci 8:1302

    Google Scholar 

  • Kumar A, Bimolata W, Kannan M, Kirti PB, Qureshi IA, Ghazi IA (2014) Comparative proteomics reveals differential induction of both biotic and abiotic stress response associated proteins in rice during Xanthomonas oryzae pv. oryzae infection. Funct Integr Genomics 15(4):425–437

    Article  CAS  Google Scholar 

  • Kusano M, Saito K (2012) Role of metabolomics in crop improvement. J Plant Biochem Biotechnol 21:24–31

    Article  CAS  Google Scholar 

  • Locke AM, Barding GA Jr, Sathnur S, Larive CK, Bailey-Serres J (2018) Rice SUB1A constrains remodeling of the transcriptome and metabolome during submergence to facilitate post-submergence recovery. Plant Cell Environ 41:721–736

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Xia H, Liu Y, Wei H, Zheng X et al (2016) Transcriptomic andmetabolomic studies disclose keymetabolismpathways contributing towell-maintained photosynthesis under the drought and the consequent drought-tolerance in rice. Front Plant Sci 7:1886

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma NL, Lah WAC, Kadir NA, Mustaqim M, Rahmat Z et al (2018) Susceptibility and tolerance of rice crop to salt threat: physiological and metabolic inspections. PLoS One 13:e0192732

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marondedze C, Thomas LA (2012) Apple hypanthiumfirmness: new insights from comparative proteomics. Appl Biochem Biotechnol 168:306–326

    Article  CAS  PubMed  Google Scholar 

  • Menassa R, Nguyen V, Jevnikar A, Brandle J (2001) A self-contained system for the field production of plant recombinant interleukin-10. Mol Breed 8:177–185

    Article  CAS  Google Scholar 

  • Mor TS (2015) Molecular pharming’s foot in the FDA’s door: Protalix’s trailblazing story. Biotechnol Lett 37(11):2147–2150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nogueira SB, Labate CA, Gozzo FC, Pilau EJ, Lajolo FM et al (2012) Proteomic analysis of papaya fruit ripening using 2DE-DIGE. J Proteome 75(4):1428–1439

    Article  CAS  Google Scholar 

  • North H, Baud S, Debeaujon I, Dubos C, Dubreucq B et al (2010) Arabidopsis seed secrets unravelled after a decade of genetic and omics-driven research. Plant J 61(6):971–981

    Article  CAS  PubMed  Google Scholar 

  • Ogbaga CC, Stepien P, Dyson BC, Rattray NJ, Ellis DI et al (2016) Biochemical analyses of sorghum varieties reveal differential responses to drought. PLoS One 11:e0154423

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Paupiere MJ, Muller F, Li H, Rieu I, Tikunov YM et al (2017) Untargeted metabolomics analysis of tomato pollen development and heat stress response. Plant Reprod 30:81–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poole R, Barker G, Wilson ID, Coghill JA, Edwards KJ (2007) Measuring global gene expression in polyploidy; a cautionary note from allohexaploid wheat. Funct Integr Genom 3:207–219

    Article  CAS  Google Scholar 

  • Priyadarshi R, Patel HK, Kumar A (2018) Breeding for nutritional enhancement in crops: biofortification and molecular farming. In: Bharadwaj DN (ed) Advanced molecular plant breeding, meeting the challenges of food security. Apple Academic Press, Inc. (CRC Press), a Taylor & Francis Group, Palm Bay, FL, pp 475–501

    Chapter  Google Scholar 

  • Qi X, Xu W, Zhang J, Guo R, Zhao M et al (2017) Physiological characteristics and metabolomics of transgenic wheat containing the maize C 4 phosphoenolpyruvate carboxylase (PEPC) gene under high temperature stress. Protoplasma 254:1017–1030

    Article  CAS  PubMed  Google Scholar 

  • Riechmann JL, Heard J, Martin G, Reuber L, Jiang C, Keddie J (2000) Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290:2105–2110

    Article  CAS  PubMed  Google Scholar 

  • Rigano MM, Walmsley AM (2005) Expression systems and developments in plant-made vaccines. Immunol Cell Biol 83:271–277

    Article  CAS  PubMed  Google Scholar 

  • Rouphael Y, Raimondi G, Lucini L, Carillo P, Kyriacou MC et al (2018) Physiological and metabolic responses triggered by omeprazole improve tomato plant tolerance to NaCl stress. Front Plant Sci 9:249

    Article  PubMed  PubMed Central  Google Scholar 

  • Sajjad M, Khan SH, Ahmad MQ, Rasheed A, Mujeeb-Kazi A et al (2014) Association mapping identifies QTLs on wheat chromosome 3A for yield related traits. Cereal Res Commun 42(2):177–188

    Article  CAS  Google Scholar 

  • Schillberg S, Raven N, Fischer R, Twyman RM, Schiermeyer A (2013) Molecular farming of pharmaceutical proteins using plant suspension cell and tissue cultures. Curr Pharm Des 19(31):5531–5542

    Article  CAS  PubMed  Google Scholar 

  • Schliesky S, Gowik U, Weber AP, Brautigam A (2012) RNA-seq assembly–are we there yet? Front Plant Sci 3:220

    Article  PubMed  PubMed Central  Google Scholar 

  • Schulze WX, Usadel B (2010) Quantitation in mass-spectrometry-based proteomics. Annu Rev Plant Biol 61:491–516

    Article  CAS  PubMed  Google Scholar 

  • Sharma K, Sarma S, Bohra A, Mitra A, Sharma NK, Kumar A (2018) Plant metabolomics: an emerging technology for crop improvement. In: Çelik O (ed) New visions in plant science, 1st edn. IntechOpen, London, pp 65–79

    Google Scholar 

  • Sharma V, Gupta P, Priscilla K, Hangargi B, Veershetty A, Ramrao DP et al (2021) Metabolomics intervention towards better understanding of plant traits. Cell 10(2):346. https://doi.org/10.3390/cells10020346

    Article  CAS  Google Scholar 

  • Sijmons PC, Dekker BM, Schrammeijer B, Verwoerd TC, van den Elzen PJM et al (1990) Production of correctly processed human serum albumin in transgenic plants. Biotechnol (NY) 8(3):217–221

    CAS  Google Scholar 

  • Singhabahu S, Hefferon K, Makhzoum A (2017) Transgenesis and plant molecular pharming. In: Jha S (ed) Transgenesis and secondary metabolism, reference series in phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-27490-4_21-3

    Chapter  Google Scholar 

  • Song J, Palmer LC, Tymchuk MV, Fillmore S, Forney C et al (2020) Proteomic changes in antioxidant system in strawberry during ripening. Front Plant Sci. https://doi.org/10.3389/fpls.2020.594156

    Google Scholar 

  • Sparrow PAC, Twyman RM (2009) Biosafety, risk assessment and regulation of plant-made pharmaceuticals. Methods Mol Biol 483:341–353

    Article  PubMed  Google Scholar 

  • Sun L, Wu Y, Zou H, Su S, Li S et al (2013) Comparative proteomic analysis of the H99 inbred maize (Zea mays L.) line in embryogenic and non-embryogenic callus during somatic embryogenesis. Plant Cell Tissue Organ Cult 113:103–119

    Article  CAS  Google Scholar 

  • Sun C, Dong Z, Zhao L, Ren Y, Zhang N et al (2020) The wheat 660K SNP array demonstrates great potential for marker-assisted selection in polyploid wheat. Plant Biotechnol J 18(6):1354–1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Svab Z, Maliga P (2007) Exceptional transmission of plastids and mitochondria from the transplastomic pollen parent and its impact on transgene containment. Proc Natl Acad Sci U S A 104:7003–7008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tacket CO, Mason HS, Losonsky G, Clements JD, Levine MM et al (1998) Immunogenicity in humans of a recombinant bacterial-antigen delivered in transgenic potato. Nat Med 4:607–609

    Article  CAS  PubMed  Google Scholar 

  • Tamisier L, Szadkowski M, Nemouchi G, Lefebvre V, Szadkowski E et al (2020) Genome-wide association mapping of QTLs implied in potato virus Y population sizes in pepper: evidence for widespread resistance QTL pyramiding. Mol Plant Pathol 21(1):3–16

    Article  CAS  PubMed  Google Scholar 

  • Tan L, Chen S, Wang T, Dai S (2013) Proteomic insights into seed germination in response to environmental factors. Proteomics 13:1850–1870

    Article  CAS  PubMed  Google Scholar 

  • Tan BC, Lim YS, Lau S-E (2017) Proteomics in commercial crops: an overview. J Proteome 169:176–188

    Article  CAS  Google Scholar 

  • Thomason K, Babar MA, Erickson JE, Mulvaney M, Beecher C et al (2018) Comparative physiological and metabolomics analysis of wheat (Triticum aestivum L.) following post-anthesis heat stress. PLoS One 13:e0197919

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Toledo TT, Nogueira SB, Cordenunsi BR, Gozzo FC, Pilau EJ et al (2012) Proteomic analysis of banana fruit reveals proteins that are differentially accumulated during ripening. Postharvest Biol Technol 70:51–58

    Article  CAS  Google Scholar 

  • Tremblay R, Wang D, Jevnikar AM, Ma S (2010) Tobacco, a highly efficient green bioreactor for production of therapeutic proteins. Biotechnol Adv 28:214–221

    Article  CAS  PubMed  Google Scholar 

  • Turner MF, Heuberger AL, Kirkwood JS, Collins CC, Wolfrum EJ et al (2016) Non-targeted metabolomics in diverse Sorghum breeding lines indicates primary and secondary metabolite profiles are associated with plant biomass accumulation and photosynthesis. Front Plant Sci 7:953

    Article  PubMed  PubMed Central  Google Scholar 

  • Tuteja R, Tuteja N (2004) Serial analysis of gene expression (SAGE): unraveling the bioinformatics tools. BioEssays 26(8):916–922

    Article  CAS  PubMed  Google Scholar 

  • Twyman RM, Schillberg S, Fischer R (2005) Transgenic plants in the biopharmaceutical market. Expert Opin Emerg Drugs 10:185–218

    Article  CAS  PubMed  Google Scholar 

  • Vadivel AK (2015) Gel-based proteomics in plants: time to move on from the tradition. Front Plant Sci 6:369

    Google Scholar 

  • Vanderschuren H, Lentz E, Zainuddin I, Gruissem W (2013) Proteomics of model and crop plant species: status, current limitations and strategic advances for crop improvement. J Proteom 93:5–19

    Article  CAS  Google Scholar 

  • Walsh G, Jefferis R (2006) Post-translational modifications in the context of therapeutic proteins. Nat Biotechnol 24:1241–1252

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Hou L, Lu Y, Wu B, Gong X et al (2018) Metabolic adaptation of wheat grain contributes to a stable filling rate under heat stress. J Exp Bot 69:5531–5545

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wen W, Li K, Alseekh S, Omranian N, Zhao L et al (2015) Genetic determinants of the network of primary metabolism and their relationships to plant performance in a maize recombinant inbred line population. Plant Cell 27:1839–1856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Witcher DR, Hood EE, Peterson D, Bailey M, Bond D et al (1998) Commercial production of beta-glucuronidase (GUS): a model system for the production of proteins in plants. Mol Breed 4(4):301–312

    Article  CAS  Google Scholar 

  • Xu H, Zhang W, Gao Y, Zhao Y, Guo L (2012) Proteomic analysis of embryo development in rice (Oryza sativa). Planta 235:687–701

    Article  CAS  PubMed  Google Scholar 

  • Yadav AK, Carroll AJ, Estavillo GM, Rebetzke GJ, Pogson BJ et al (2019) Wheat drought tolerance in the field is predicted by amino acid responses to glasshouse-imposed drought. J Exp Bot 70:4931–4948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang L, Fountain JC, Ji P, Ni X, Chen S et al (2018) Deciphering drought-induced metabolic responses and regulation in developing maize kernels. Plant Biotechnol J 16:1616–1628

    Article  CAS  PubMed Central  Google Scholar 

  • Zelenin AV, Badaeva ED, Muravenko OV (2001) Introduction into plant genomics. Mol Biol 35(3):285–293

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Krishnappa, G. et al. (2021). Omics Technologies and Molecular Farming: Applications and Challenges. In: Kumar, A., Kumar, R., Shukla, P., Patel, H.K. (eds) Omics Technologies for Sustainable Agriculture and Global Food Security (Vol II). Springer, Singapore. https://doi.org/10.1007/978-981-16-2956-3_3

Download citation

Publish with us

Policies and ethics