Skip to main content

Learning from Main Low Carbon Strategies

  • Chapter
  • First Online:
China's Sustainability Transitions
  • 692 Accesses

Abstract

In this chapter, we highlight some of the key low carbon strategies. To start with, we emphasise the role of carbon reduction measures in achieving low carbon development. We urge relevant stakeholders to consider energy policy and regulations that suggest carbon reduction practices, such as buildings, communities, cities, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams, M., Wheeler, D., & Woolston, G. (2011). A participatory approach to sustainable energy strategy development in a carbon-intensive jurisdiction: The case of Nova Scotia. Energy Policy, 39(5), 2550–2559.

    Article  Google Scholar 

  • Albino, V., Ardito, L., Dangelico, R. M., & Petruzzelli, A. M. (2014). Understanding the development trends of low-carbon energy technologies: A patent analysis. Applied Energy, 135, 836–854.

    Article  Google Scholar 

  • Ali, A., & Frew, A. J. (2014). Technology innovation and applications in sustainable destination development. Information Technology & Tourism, 14(4), 265–290.

    Article  Google Scholar 

  • Austin, G. (2013). Case study and sustainability assessment of Bo01, Malmö, Sweden. Journal of Green Building, 8(3), 34–50.

    Google Scholar 

  • Bakker, S., Dematera Contreras, K., Kappiantari, M., Tuan, N. A., Guillen, M. D., Gunthawong, G., Zuidgeest, M., Liefferink, D., & Van Maarseveen, M. (2017). Low-carbon transport policy in four ASEAN countries: Developments in Indonesia, the Philippines, Thailand and Vietnam. Sustainability, 9(7), 1217

    Google Scholar 

  • Baeumler, A., Ijjasz-Vasquez, E., & Mehndiratta, S. (Eds.). (2012). Sustainable low-carbon city development in China. World Bank Publications.

    Google Scholar 

  • Bagheri, M., Delbari, S. H., Pakzadmanesh, M., & Kennedy, C. A. (2019). City-integrated renewable energy design for low-carbon and climate-resilient communities. Applied Energy, 239, 1212–1225.

    Article  Google Scholar 

  • Baoanan, Z. G., Abansi, C. L., & Abalos, C. F. S. (2020). A review of biodiversity-related reports in the Cordillera Highlands, Northern Luzon, Philippines. Journal of Nature Studies, 19(2), 84–103.

    Google Scholar 

  • Beermann, J., & Tews, K. (2015). Preserving decentralised laboratories for experimentation under adverse framework conditions: Why local initiatives as a driving force for Germany’s renewable energy expansion must reinvent themselves.

    Google Scholar 

  • Beria, P. (2016). Effectiveness and monetary impact of Milan’s road charge, one year after implementation. International Journal of Sustainable Transportation, 10(7), 657–669.

    Article  Google Scholar 

  • Bibri, S. E., & Krogstie, J. (2020). Smart eco-city strategies and solutions for sustainability: The cases of Royal Seaport, Stockholm, and Western Harbor, Malmö, Sweden. Urban Science, 4(1), 11.

    Google Scholar 

  • Boggio, M., & Beria, P. (2019). The role of transport supply in the acceptability of pollution charge extension. The case of Milan. Transportation Research Part A: Policy and Practice, 129, 92–106.

    Google Scholar 

  • Bows, A., & Anderson, K. L. (2007). Policy clash: Can projected aviation growth be reconciled with the UK Government’s 60% carbon-reduction target? Transport Policy, 14(2), 103–110.

    Article  Google Scholar 

  • Bulkeley, H., & Stripple, J. (2020). Climate smart city: New cultural political economies in the making in Malmö, Sweden. New Political Economy, 1–14.

    Google Scholar 

  • Bustami, R. A., Brien, C., Ward, J., Beecham, S., & Rawlings, R. (2019). A statistically rigorous approach to experimental design of vertical living walls for green buildings. Urban Science, 3(3), 71.

    Article  Google Scholar 

  • Butters, C., Cheshmehzangi, A., & Sassi, P. (2020). Cities, energy and climate: Seven reasons to question the dense high-rise city. Journal of Green Building, 15(3), 197–214.

    Article  Google Scholar 

  • Cai, W. G., Wu, Y., Zhong, Y., & Ren, H. (2009). China building energy consumption: Situation, challenges and corresponding measures. Energy Policy, 37(6), 2054–2059.

    Article  Google Scholar 

  • Campiglio, E., Godin, A., Kemp-Benedict, E., & Matikainen, S. (2017). The tightening links between financial systems and the low-carbon transition. In Economic policies since the global financial crisis (pp. 313–356). Palgrave Macmillan, Cham.

    Google Scholar 

  • Chen, Y. (2004). The study on establishing assessment indicator system about construction of the well-to-do society. Sociological Research, 1. (in Chinese).

    Google Scholar 

  • Chen, X., Luo, Z., & Wang, X. (2017). Impact of efficiency, investment, and competition on low carbon manufacturing. Journal of Cleaner Production, 143, 388–400.

    Article  Google Scholar 

  • Cheshmehzangi, A. (2014). The urban and urbanism: China’s new urbanization and approaches towards comprehensive development. The International Journal of Interdisciplinary Environmental Studies, 8(3–4), 1–12.

    Google Scholar 

  • Cheshmehzangi, A. (2016). Feasibility study of Songao’s low carbon town planning, China. Energy Procedia, 88, 313–320.

    Article  Google Scholar 

  • Cheshmehzangi, A. (2016). China’s New-Type Urbanisation Plan (NUP) and the foreseeing challenges for decarbonization of cities: A review. Energy Procedia, 104, 146–152.

    Article  Google Scholar 

  • Cheshmehzangi, A. (2020). Towards urban energy management: A brief review of China’s recent transition in urban energy demand. Low Carbon Economy, 11(1), 1–24.

    Article  Google Scholar 

  • Cheshmehzangi, A. (2020). Evaluating the Nexus between housing and energy sectors: The comparison of urban, Peri-urban and rural housing areas in Zhuhai, China. Energy and Power Engineering, 12(06), 314.

    Article  Google Scholar 

  • Cheshmehzangi, A. (2020c). Low carbon transition at the township level: Feasibility study of environmental pollutants and sustainable energy planning. International Journal of Sustainable Energy, 1–27. https://doi.org/10.1080/14786451.2020.1860042.

  • Cheshmehzangi, A., & Butters, C. (Eds.). (2017). Designing cooler cities: Energy, cooling and urban form: The Asian perspective. Palgrave Macmillan.

    Google Scholar 

  • Cheshmehzangi, A., & Dawodu, A. (2019a). The review of sustainable development goals (SDGs): People, perspective and planning. In Sustainable urban development in the age of climate change (pp. 133–156). Palgrave Macmillan, Singapore.

    Google Scholar 

  • Cheshmehzangi, A., & Dawodu, A. (2019b). Case study reviews: People, perspective and planning. In Sustainable urban development in the age of climate change (pp. 69–131). Palgrave Macmillan.

    Google Scholar 

  • Cheshmehzangi, A., Dawodu, A., & Sharifi, A. (2021). Sustainable urbanism in China. Routledge.

    Book  Google Scholar 

  • Cheshmehzangi, A., Xie, L., & Tan-Mullins, M. (2018). The role of international actors in low-carbon transitions of Shenzhen’s International Low Carbon City in China. Cities, 74, 64–74.

    Article  Google Scholar 

  • Cheshmehzangi, A., Li, H., & Yang, X. (2018, October). Low carbon and climate resilient urban development in China. ADB Report, developed for the National Development Reform Committee (NDRC), Beijing, China.

    Google Scholar 

  • Cheung, G., Davies, P. J., & Trück, S. (2019). Transforming urban energy systems: The role of local governments’ regional energy master plan. Journal of Cleaner Production, 220, 655–667.

    Article  Google Scholar 

  • Cheng, Y., & Yao, X. (2021). Carbon intensity reduction assessment of renewable energy technology innovation in China: A panel data model with cross-section dependence and slope heterogeneity. Renewable and Sustainable Energy Reviews, 135, 110157.

    Google Scholar 

  • Chua, T. E., & Scura, L. F. (1991). Managing ASEAN’s Coastal Resources for Sustainable Development: Roles of Policymakers, Scientists, Donors, Media and Communities: Proceedings of the ASEAN/US Policy Conference on Managing ASEAN's Coastal Resources for Sustainable Development, Manila and Baguio, Philippines, 4–7 March 1990 (Vol. 6). WorldFish.

    Google Scholar 

  • Cornes, C. (2016). Effectiveness of urban mobility management plans to improve air quality (Master’s thesis, Universitat Politècnica de Catalunya).

    Google Scholar 

  • Croci, E. (2016). Urban road pricing: A comparative study on the experiences of London, Stockholm and Milan. Transportation Research Procedia, 14, 253–262.

    Article  Google Scholar 

  • Dacawi, R. S. (1999). Media and good governance: a case study. Available from https://dr.ntu.edu.sg/bitstream/10220/2397/1/AMIC_1999_NOV10-12_12.pdf

  • Dameri, R. P. (2017). ICT intensity in smart mobility initiatives. In Smart city implementation (pp. 85–108). Springer.

    Google Scholar 

  • Dawodu, A., & Cheshmehzangi, A. (2017). Impact of floor area ratio (FAR) on energy consumption at meso scale in China: Case study of Ningbo. Energy Procedia, 105, 3449–3455.

    Article  Google Scholar 

  • Deng, W., & Cheshmehzangi, A. (2018). Eco-development in China: Cities, communities and buildings. Palgrave Macmillan.

    Book  Google Scholar 

  • Deng, W., Cheshmehzangi, A., Ma, Y., & Peng, Z. (2020). Promoting sustainability through governance of eco-city indicators: A multi-spatial perspective. International Journal of Low-carbon Technologies. 16(1), 61–72.

    Google Scholar 

  • Dhar, S., Patnaik, R. K., & Dash, P. K. (2017). Fault detection and location of photovoltaic based DC microgrid using differential protection strategy. IEEE Transactions on Smart Grid, 9(5), 4303–4312.

    Article  Google Scholar 

  • Ding, L. L., Lei, L., Zhao, X., & Cantemir Calin, A. (2020). Modelling energy and carbon emission performance: A constrained performance index measure, Energy, 197, 117274.

    Google Scholar 

  • Druckman, A., Bradley, P., Papathanasopoulou, E., & Jackson, T. (2008). Measuring progress towards carbon reduction in the UK. Ecological Economics, 66(4), 594–604.

    Article  Google Scholar 

  • EcoMobility. (2013). Suwon Congress Report, ICLEI—Local Governments for Sustainability, Report.

    Google Scholar 

  • Estoque, R. C., & Murayama, Y. (2011). Spatio-temporal urban land use/cover change analysis in a hill station: The case of Baguio City, Philippines. Procedia-Social and Behavioral Sciences, 21, 326–335.

    Article  Google Scholar 

  • Estoque, R. C., & Murayama, Y. (2012). Examining the potential impact of land use/cover changes on the ecosystem services of Baguio city, the Philippines: A scenario-based analysis. Applied Geography, 35(1–2), 316–326.

    Article  Google Scholar 

  • Estoque, R. C., & Murayama, Y. (2013). City profile: Baguio. Cities, 30, 240–251.

    Article  Google Scholar 

  • Fu, J. X., Tang, G. H., Zhao, R. J., & Hwang, W. S. (2014). Carbon reduction programs and key technologies in global steel industry. International Journal of Iron and Steel Research, 21(3), 275–281.

    Article  Google Scholar 

  • Gaffin, S. R., Rosenzweig, C., & Kong, A. Y. (2012). Adapting to climate change through urban green infrastructure. Nature Climate Change, 2(10), 704–704.

    Article  Google Scholar 

  • Geels, F. W., Schwanen, T., Sorrell, S., Jenkins, K., & Sovacool, B. K. (2018). Reducing energy demand through low carbon innovation: A sociotechnical transitions perspective and thirteen research debates. Energy Research & Social Science, 40, 23–35.

    Article  Google Scholar 

  • Giaccone, A., Lascari, G., Peri, G., & Rizzo, G. (2017). An ex post criticism, based on stakeholders’ preferences, of a residential sector’s energy master plan: the case study of the Sicilian region. Energy Efficiency, 10(1), 129–149.

    Article  Google Scholar 

  • Gil, L., & Bernado, J. (2020). An approach to energy and climate issues aiming at carbon neutrality. Renewable Energy Focus, 33, 37–42.

    Article  Google Scholar 

  • Goggi, G. (2011). Ecopass: quali risultati. Focus, 47(2).

    Google Scholar 

  • Gonzales, L. B. F. (2016). Urban sprawl: Extent and environmental impact in Baguio City, Philippines. Spatium, 7–14.

    Google Scholar 

  • Gössling, S. (2003). Market integration and ecosystem degradation: Is sustainable tourism development in rural communities a contradiction in terms? Environment, Development and Sustainability, 5(3), 383–400.

    Article  Google Scholar 

  • Gu, G., & Wang, Z. (2018). Research on global carbon abatement driven by R&D investment in the context of INDCs. Energy, 148, 662–675.

    Article  Google Scholar 

  • Haubold, H. (2015). Congestion charges and cycling. Available from https://repository.difu.de/jspui/bitstream/difu/242709/1/DS1679.pdf.

  • He, J., & Wang, D. (2021, January). On low-carbon and its realization in tourism. In IOP conference series: Earth and environmental Science (Vol. 632, No. 5, p. 052102). IOP Publishing.

    Google Scholar 

  • Hu, Z. W., & Liu, Y. (2010). Provincial competition study from the perspective of low-carbon economy. China Industrial Economics, 4. (in Chinese).

    Google Scholar 

  • Huang, Y. C., Lin, W. J., Cheng, C. H., & Su, K. H. (1999). Nutrient intakes and iron status of healthy young vegetarians and nonvegetarians. Nutrition Research, 19(5), 663–674.

    Article  CAS  Google Scholar 

  • Huxham, M., Anwar, M., & Nelson, D. (2019). Understanding the impact of a low carbon transition on South Africa. Climate Policy Initiative (CPI). https://climatepolicyinitiative.org/wpcontent/uploads/2019/03/CPI-Energy-Finance-Understanding-the-impact-of-a-low-carbon-transitionon-South-Africa-March-2019.pdf.

  • ICLEI (Local Government for Sustainability). (2013). EcoMobility world festival 2013, 12 pages document. Available from https://www.sustainabledevelopment.un.org.

  • Imai, H. (2017). Tokyo roji: the diversity and versatility of alleys in a city in transition. New York and London: Routledge.

    Google Scholar 

  • Ismailos, C., & Touchie, M. F. (2017). Achieving a low carbon housing stock: An analysis of low-rise residential carbon reduction measures for new construction in Ontario. Building and Environment, 126, 176–183.

    Article  Google Scholar 

  • Jagger, N., Foxon, T., & Gouldson, A. (2013). Skills constraints and the low carbon transition. Climate Policy, 13(1), 43–57.

    Article  Google Scholar 

  • Jarl, V. (2009). Congestion pricing in urban areas: Theory and case studies. Available from https://lup.lub.lu.se/luur/download?func=downloadFile&recordOId=8920835&fileOId=8920836.

  • Jia, P., Li, K., & Shao, S. (2018). Choice of technological change for China’s low-carbon development: Evidence from three urban agglomerations. Journal of Environmental Management, 206, 1308–1319.

    Article  Google Scholar 

  • Kairies-Alvarado, D., Muñoz-Sanguinetti, C., Martínez-Rocamora, A. (2021). Contribution of energy efficiency standards to life-cycle carbon footprint reduction in public buildings in Chile, Energy and Buildings, 236, 110797.

    Google Scholar 

  • Kellett, J. (2007). Community-based energy policy: A practical approach to carbon reduction. Journal of Environmental Planning and Management, 50(3), 381–396.

    Article  Google Scholar 

  • Kirchner, J. E., Parker, L. E., Bonner, L. M., Fickel, J. J., Yano, E. M., & Ritchie, M. J. (2012). Roles of managers, frontline staff and local champions, in implementing quality improvement: Stakeholders’ perspectives. Journal of Evaluation in Clinical Practice, 18(1), 63–69.

    Article  Google Scholar 

  • Koc, C. B., Osmond, P., & Peters, A. (2017). Towards a comprehensive green infrastructure typology: A systematic review of approaches, methods and typologies. Urban Ecosystems, 20(1), 15–35.

    Article  Google Scholar 

  • Köhler, J., Schade, W., Leduc, G., Wiesenthal, T., Schade, B., & Espinoza, L. T. (2013). Leaving fossil fuels behind? An innovation system analysis of low carbon cars. Journal of Cleaner Production, 48, 176–186.

    Article  Google Scholar 

  • Koko, S. P., Kusakana, K., & Vermaak, H. J. (2018). Optimal power dispatch of a grid-interactive micro-hydrokinetic-pumped hydro storage system. Journal of Energy Storage, 17, 63–72.

    Article  Google Scholar 

  • Laes, E., Mayeres, I., Renders, N., Valkering, P., & Verbeke, S. (2018). How do policies help to increase the uptake of carbon reduction measures in the EU residential sector? Evidence from recent studies. Renewable and Sustainable Energy Reviews, 94, 234–250.

    Google Scholar 

  • Lam, A. H., & Mullen, B. M. (2012). comparative analysis of best practices of sustainable communities: Adelaide, Australia case study. Cityscape, 235–242.

    Google Scholar 

  • Lenhart, J., Bouteligier, S., Mol, A. P., & Kern, K. (2014). Cities as learning organisations in climate policy: The case of Malmö. International Journal of Urban Sustainable Development, 6(1), 89–106.

    Article  Google Scholar 

  • Li, F., Sutton, P. C., Anderson, S. J., & Nouri, H. (2017). Planning green space in Adelaide city: Enlightenment from green space system planning of Fuzhou city (2015–2020). Australian Planner, 54(2), 126–133.

    Article  CAS  Google Scholar 

  • Li, X., & Yao, X. (2020). Can energy supply-side and demand-side policies for energy saving and emission reduction be synergistic? A simulated study on China’s coal capacity cut and carbon tax, Energy Policy, 138, 111232.

    Google Scholar 

  • Lin, T.-P., Lin, F.-Y., Wu, P., Hämmerle, M., Höfle, B., Bechtold, S., Hwang, R., & Chen, Y. (2017). Multiscale analysis and reduction measures of urban carbon dioxide budget based on building energy consumption. Energy and Buildings, 153, 356–367. https://doi.org/10.1016/j.enbuild.2017.07.084

    Article  Google Scholar 

  • Lomas, K. J. (2010). Carbon reduction in existing buildings: a transdisciplinary approach. Building Research & Information, 38(1: Carbon reduction in existing buildings), pp. 1–11.

    Google Scholar 

  • Lyu, X., Shi, A., & Wang, X. (2020). Research on the impact of carbon emission trading system on low-carbon technology innovation. Carbon Management, 11(2), 183–193.

    Article  CAS  Google Scholar 

  • Ma, H., Oxley, L., & Gibson, J. (2009). China’s energy situation in the new millennium. Renewable and Sustainable Energy Reviews, 13(8), 1781–1799.

    Article  Google Scholar 

  • Mabrouk, S. B., Mabrouk, A. B., Harzli, K., La Cascia, D., et al. (2015). Experimentation of sustainable energy microsystems: The DE. DU. ENER. T. research project. In 2015 International Conference on Renewable Energy Research and Applications (ICRERA) (pp. 1659–1664). IEEE, November 2015.

    Google Scholar 

  • Martino, A., & e Territorio, T. T. (2011). Milano: From pollution charge to congestion charge. Presentation to TML Leuven, 5.

    Google Scholar 

  • Mathur, S., Kaul, S., Gruteser, M., & Trappe, W. (2009, May). ParkNet: A mobile sensor network for harvesting real time vehicular parking information. In Proceedings of the 2009 MobiHoc S3 workshop on MobiHoc S3 (pp. 25–28).

    Google Scholar 

  • Matthäus, D. (2020). Designing effective auctions for renewable energy support. Energy Policy, 142, 111462.

    Article  Google Scholar 

  • Menendez-Carbo, S., Ruano, M. A., & Zambrano-Monserrate, M. A. (2020). Tourism Management Perspectives. Tourism Management, 36, 100727.

    Google Scholar 

  • Mercado, R. G. (1998). Environment and natural resources management: Lessons from city program innovations (No. 1998-32). PIDS Discussion Paper Series.

    Google Scholar 

  • Mercure, J. F., Knobloch, F., Pollitt, H., Paroussos, L., Scrieciu, S. S., & Lewney, R. (2019). Modelling innovation and the macroeconomics of low-carbon transitions: Theory, perspectives and practical use. Climate Policy, 19(8), 1019–1037.

    Article  Google Scholar 

  • Metz, D. (2018). Tackling urban traffic congestion: The experience of London, Stockholm and Singapore. Case Studies on Transport Policy, 6(4), 494–498.

    Article  Google Scholar 

  • Miller, G. (2020). Beyond 100% renewable: Policy and practical pathways to 24/7 renewable energy procurement. The Electricity Journal, 33(2), 106695.

    Article  Google Scholar 

  • Millward, H. (2006). Urban containment strategies: A case-study appraisal of plans and policies in Japanese, British, and Canadian cities. Land Use Policy, 23(4), 473–485.

    Article  Google Scholar 

  • Moon, S. Y., Jang, D., Kim, H. S., Lee, J. Y., & Kim, J. (2020). Importance of government roles for market expansion of eco-village development plan establishment research: Case study in the city of Suwon, South Korea. Sustainability, 12(24), 10293.

    Article  Google Scholar 

  • Mussone, L. (2017, June). Analysis of entering flows in the congestion pricing area C of Milan. In 2017 IEEE International Conference on Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe) (pp. 1–6). IEEE.

    Google Scholar 

  • Nelson, A., Prabakar, K., Nagarajan, A., Nepal, S., Hoke, A., Asano, M., Ueda, R., & Ifuku, E. (2017, April). Power hardware-in-the-loop evaluation of PV inverter grid support on Hawaiian electric feeders. In 2017 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT) (pp. 1–5). IEEE.

    Google Scholar 

  • Newton, P. W. (2010). Beyond greenfield and brownfield: The challenge of regenerating Australia’s greyfield suburbs. Built Environment, 36(1), 81–104.

    Article  Google Scholar 

  • Nouri, H., Chavoshi Borujeni, S., & Hoekstra, A. Y. (2019). The blue water footprint of urban green spaces: An example for Adelaide, Australia. Landscape and Urban Planning, 190, 103613.

    Article  Google Scholar 

  • Nouri, H., Chavoshi Borujeni, S., & Hoekstra, A. (2020). Evapotranspiration, water demand and water footprint of urban green spaces. In The 22nd EGU General Assembly Conference Abstracts (p. 5512), held online 4–8 May 2020. Available from https://ui.adsabs.harvard.edu/abs/2020EGUGA..22.5512N/abstract.

  • Okata, J., & Murayama, A. (2011). Tokyo’s Urban Growth, Urban Form and Sustainability. In: Sorensen, A., & Okata, J. (eds.). Megacities: Urban Form, Governance, and Sustainability. Library for Sustainable Urban Regeneration, vol 10. Springer, Tokyo. https://doi.org/10.1007/978-4-431-99267-7_2

  • Parks, D. (2020). Promises and techno-politics: Renewable energy and Malmö’s vision of a climate-smart city. Science as Culture, 29(3), 388–409.

    Article  Google Scholar 

  • Pastorello, C., Dilara, P., & Martini, G. (2011). Effect of a change towards compressed natural gas vehicles on the emissions of the Milan waste collection fleet. Transportation Research Part D: Transport and Environment, 16(2), 121–128.

    Article  Google Scholar 

  • Peng, W., Baghzouz, Y., & Haddad, S. (2013, June). Local load power factor correction by grid-interactive PV inverters. In 2013 IEEE Grenoble conference (pp. 1–6). IEEE.

    Google Scholar 

  • Percoco, M. (2013). Is road pricing effective in abating pollution? Evidence from Milan. Transportation Research Part D: Transport and Environment, 25, 112–118.

    Article  Google Scholar 

  • Percoco, M. (2014). The effect of road pricing on traffic composition: Evidence from a natural experiment in Milan, Italy. Transport Policy, 31, 55–60.

    Article  Google Scholar 

  • Perrotti, D., & Iuorio, O. (2019). Green infrastructure in the space of flows: An Urban metabolism approach to Bridge environmental performance and user’s wellbeing. In Planning cities with nature (pp. 265–277). Springer.

    Google Scholar 

  • Pierce, G., & Shoup, D. (2013). Getting the prices right: An evaluation of pricing parking by demand in San Francisco. Journal of the American Planning Association, 79(1), 67–81.

    Article  Google Scholar 

  • Poggi, F., Firmino, A., & Amado, M. (2017). Assessing energy performances: A step toward energy efficiency at the municipal level. Sustainable Cities and Society, 33, 57–69.

    Article  Google Scholar 

  • Polzin, F. (2017). Mobilizing private finance for low-carbon innovation—A systematic review of barriers and solutions. Renewable and Sustainable Energy Reviews, 77, 525–535.

    Article  Google Scholar 

  • Qu, Y., & Liu, Y. (2017). Evaluating the low-carbon development of urban China. Environment, Development and Sustainability, 19(3), 939–953.

    Article  Google Scholar 

  • Rahman, S. M. R., Kabir, E., & Mannan, M. R. (2015). A scoping review of congestion pricing: Past work and its implementation benefits. Port City International University Journal, 1851120791(01773225500), 74.

    Google Scholar 

  • Raven, R., Sengers, F., Spaeth, P., Xie, L., Cheshmehzangi, A., & de Jong, M. (2019). Urban experimentation and institutional arrangements. European Planning Studies, 27(2), 258–281.

    Article  Google Scholar 

  • Razzaghmanesh, M., Beecham, S., & Salemi, T. (2016). The role of green roofs in mitigating urban heat Island effects in the metropolitan area of Adelaide, South Australia. Urban Forestry & Urban Greening, 15, 89–102.

    Article  Google Scholar 

  • Rodier, C. J., & Shaheen, S. A. (2010). Transit-based smart parking: An evaluation of the San Francisco bay area field test. Transportation Research Part C: Emerging Technologies, 18(2), 225–233.

    Article  Google Scholar 

  • Roy, J., Ghosh, D., Ghosh, A., & Dasgupta, S. (2013). Fiscal instruments: Crucial role in financing low carbon transition in energy systems. Current Opinion in Environmental Sustainability, 5(2), 261–269.

    Article  Google Scholar 

  • Ruprecht, A. A., & Invernizzi, G. (2009). L’effetto del provvedimento di restrizione del traffico nel centro di Milano (Ecopass) sull’inquinamento urbano da polveri: i risultati di uno studio pilota. Epidemiologia & Prevenzione, 33(1–2), 21–26.

    Google Scholar 

  • San, S. (n.d.). Neighborhood of Korean City Suwon goes car-free. Available from https://newcities.org/haenggung-dong-suwon-korea-car-free-zone/.

  • Santos, G. (2005). Urban congestion charging: A comparison between London and Singapore. Transport Reviews, 25(5), 511–534.

    Article  Google Scholar 

  • Schmid, E., & Knopf, B. (2012). Ambitious mitigation scenarios for Germany: A participatory approach. Energy Policy, 51, 662–672.

    Article  Google Scholar 

  • Scott, D., Gössling, S., Hall, C. M., & Peeters, P. (2016). Can tourism be part of the decarbonized global economy? The costs and risks of alternate carbon reduction policy pathways. Journal of Sustainable Tourism, 24(1), 52–72.

    Google Scholar 

  • Sgobbo, A., & Basile, M. (2017). Sharing sustainability. UPLanD-Journal of Urban Planning, Landscape & Environmental Design, 2(2), 255–297.

    Google Scholar 

  • Shang, T., Yang, L., Liu, P., Shang, K., & Zhang, Y. (2020). Financing mode of energy performance contracting projects with carbon emissions reduction potential and carbon emissions ratings. Energy Policy, 144, 111632.

    Google Scholar 

  • Sharifi, E., Sivam, A., & Boland, J. (2016). Resilience to heat in public space: A case study of Adelaide, South Australia. Journal of Environmental Planning and Management, 59(10), 1833–1854.

    Article  Google Scholar 

  • Sharma, V., & Chandel, S. S. (2013). Performance analysis of a 190 kWp grid interactive solar photovoltaic power plant in India. Energy, 55, 476–485.

    Article  Google Scholar 

  • Shi, Q., & Lai, X. (2013). Identifying the underpin of green and low carbon technology innovation research: A literature review from 1994 to 2010. Technological Forecasting and Social Change, 80(5), 839–864.

    Article  Google Scholar 

  • Sorrentino, M., & Passerini, K. (2010). Evaluating public programs implementation: An exploratory case study. International Journal of Electronic Government Research (IJEGR), 6(3), 1–13.

    Article  Google Scholar 

  • Strachan, N., & Kannan, R. (2008). Hybrid modelling of long-term carbon reduction scenarios for the UK. Energy Economics, 30(6), 2947–2963.

    Article  Google Scholar 

  • Stripple, J., & Bulkeley, H. (2019). Towards a material politics of socio-technical transitions: Navigating decarbonisation pathways in Malmö. Political Geography, 72, 52–63.

    Article  Google Scholar 

  • Sukhwani, V., Shaw, R., Deshkar, S., Mitra, B. K., & Yan, W. (2020). Role of smart cities in optimizing water-energy-food Nexus: Opportunities in Nagpur, India. Smart Cities, 3(4), 1266–1292.

    Google Scholar 

  • Sun, J., Cheshmehzangi, A., & Wang, S. (2020). Green infrastructure practice and a sustainability key performance indicators framework for neighbourhood-level construction of sponge city programme. Journal of Environmental Protection, 11(2), 82–109.

    Article  Google Scholar 

  • Suwon. (2013). EcoMobility Impulse, ICLEI—Local Governments for Sustainability, ICLEI Report.

    Google Scholar 

  • Tian, X., Dai, H., Geng, Y., Huang, Z., Masui, T., & Fujita, T. (2017). The effects of carbon reduction on sectoral competitiveness in China: A case of Shanghai. Applied Energy, 197, 270–278.

    Article  Google Scholar 

  • Tiesdell, S. (2008). Brownfields redevelopment and the quest for sustainability. Emerald Group Publishing.

    Google Scholar 

  • Tiwari, A. K., & Kalamkar, V. R. (2016). Performance investigations of solar water pumping system using helical pump under the outdoor condition of Nagpur, India. Renewable Energy, 97, 737–745.

    Article  Google Scholar 

  • Trencher, G., & Van der Heijden, J. (2019). Instrument interactions and relationships in policy mixes: Achieving complementarity in building energy efficiency policies in New York, Sydney and Tokyo. Energy Research & Social Science, 54, 34–45.

    Article  Google Scholar 

  • Trivellato, B., Mariani, L., Martini, M., & Cavenago, D. (2019). Leading knowledge mobilization for public value: The case of the congestion charge zone (Area C) in Milan. Public Administration, 97(2), 311–324.

    Article  Google Scholar 

  • Tyfield, D., Ely, A., & Geall, S. (2015). Low carbon innovation in China: From overlooked opportunities and challenges to transitions in power relations and practices. Sustainable Development, 23(4), 206–216.

    Article  Google Scholar 

  • van der Jagt, A. P., Smith, M., Ambrose-Oji, B., Konijnendijk, C. C., Giannico, V., Haase, D., Lafortezza, R., Nastran, M., Pintar, M., Železnikar, Å ., & Cvejić, R. (2019). Co-creating urban green infrastructure connecting people and nature: A guiding framework and approach. Journal of Environmental Management, 233, 757–767

    Google Scholar 

  • Wang, N., & Chang, Y. C. (2014). The evolution of low-carbon development strategies in China. Energy, 68, 61–70.

    Article  Google Scholar 

  • Werulkar, A. S., & Kulkarni, P. S. (2015). A case study of residential solar photovoltaic system with utility backup in Nagpur, India. Renewable and Sustainable Energy Reviews, 52, 1809–1822.

    Article  Google Scholar 

  • Wu, W. L. (2014). Veggie Power. Tzu Chi Medical Care, 17, 22–29.

    Google Scholar 

  • Xi, J. (2017, October). Secure a decisive victory in building a moderately prosperous society in all respects and strive for the great success of socialism with Chinese characteristics for a new era. In Delivered at the 19th National Congress of the Communist Party of China October (Vol. 18, No. 2017).

    Google Scholar 

  • Xu, B., Wolfson, O., Yang, J., Stenneth, L., Philip, S. Y., & Nelson, P. C. (2013, June). Real-time street parking availability estimation. In 2013 IEEE 14th International Conference on Mobile Data Management (Vol. 1, pp. 16–25). IEEE.

    Google Scholar 

  • Yin, H., Zhao, J., Xi, X., & Zhang, Y. (2019). Evolution of regional low-carbon innovation systems with sustainable development: An empirical study with big-data. Journal of Cleaner Production, 209, 1545–1563.

    Article  Google Scholar 

  • Yu, S., Hu, X., Li, L., & Chen, H. (2020). Does the development of renewable energy promote carbon reduction? Evidence from Chinese provinces. Journal of Environmental Management, 268, 110634.

    Article  Google Scholar 

  • Yuan, H., Zhou, P., & Zhou, D. (2011). What is low-carbon development? A conceptual analysis. Energy Procedia, 5, 1706–1712.

    Article  Google Scholar 

  • Zhan, C., & de Jong, M. (2018). Financing eco cities and low carbon cities: The case of Shenzhen International Low Carbon City. Journal of Cleaner Production, 180, 116–125.

    Article  Google Scholar 

  • Zhang, D., Wang, J., Lin, Y., Si, Y., et al. (2017). Present situation and future prospect of renewable energy in China. Renewable and Sustainable Energy Reviews, 76, 865–871.

    Article  Google Scholar 

  • Zhang, M. M., Wang, Q., Zhou, D., & Ding, H. (2019). Evaluating uncertain investment decisions in low-carbon transition toward renewable energy. Applied Energy, 240, 1049–1060.

    Article  Google Scholar 

  • Zhang, S., Andrews-Speed, P., & Ji, M. (2014). The erratic path of the low-carbon transition in China: Evolution of solar PV policy. Energy Policy, 67, 903–912.

    Article  Google Scholar 

  • Zhang, T. (2019). Which policy is more effective, carbon reduction in all industries or in high energy-consuming industries? From dual perspectives of welfare effects and economic effects, Journal of Cleaner Production, 216, 184–196.

    Google Scholar 

  • Zhao, G., Guerrero, J. M., Jiang, K., & Chen, S. (2017). Energy modelling towards low carbon development of Beijing in 2030. Energy, 121, 107–113.

    Article  Google Scholar 

  • Zheng, Y., Rajasegarar, S., & Leckie, C. (2015, April). Parking availability prediction for sensor-enabled car parks in smart cities. In 2015 IEEE Tenth International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP) (pp. 1–6). IEEE.

    Google Scholar 

  • Zhou, Y., Hao, F., Meng, W., & Fu, J. (2014). Scenario analysis of energy-based low-carbon development in China. Journal of Environmental Sciences, 26(8), 1631–1640.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Ali Cheshmehzangi acknowledges the Asian Development Bank (ADB) and the National Development Reform Commission (NDRC) of China for the opportunity of a research project that he led during 2017 and 2018. In particular, we acknowledge colleagues and friends from ADB for their support and the opportunity to review China’s 13th Five-Year-Plan, which then identified the critical areas of low carbon development for the 14th Five-Year-Plan. Besides, we thank our team members at ‘Chinese Society for Urban Studies (CSUS)’ and ‘National Center for Climate Change Strategy and International Cooperation (NCSC)’, both based in Beijing, China. In particular, we acknowledge the support of Dr. Hailong LI (leading the CSUS Team) and Dr. Xiu YANG (leading the NCSC Team). With their support and valuable collaboration, we managed to put together a very detailed review and a comprehensive technical report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Cheshmehzangi .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cheshmehzangi, A., Chen, H. (2021). Learning from Main Low Carbon Strategies. In: China's Sustainability Transitions. Springer, Singapore. https://doi.org/10.1007/978-981-16-2621-0_9

Download citation

Publish with us

Policies and ethics