Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 218 Accesses

Abstract

In this part, a comparative kinetic study for several RMs for OER by investigating the RM-assisted charging focusing on the chemical decomposition rate of discharge product and the RM diffusivity in the controlled lithium–oxygen cells. It was revealed that the overall RM kinetics have a positive correlation with the RM redox potential, and, the RM with multi-redox capability can display kinetic properties depending on its oxidation states. Among the investigated RMs, DMPZ2+ (5,10-dihydro-5,10-dimethylphenazine) exhibits the highest lithium peroxide decomposition rate, while TEMPO+ (2,2,6,6-tetramethyl-1-piperidinyloxy) shows the highest mass diffusion rate. Furthermore, the selection of electrolytes is observed to greatly influence the rate capability of the RM-assisted charge, and thereby be carefully considered.

The essence of this chapter has been published in Journal of Materials Chemistry A. Reproduced with permission from [Ko, Y. et al., J. Mater. Chem. A, 2019, 7, 6491–6498] Copyright (2019) Royal Society of Chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bruce PG, Freunberger SA, Hardwick LJ, Tarascon J-M (2012) Li–O 2 and Li–S batteries with high energy storage. Nat Mater 11(1):19

    Article  CAS  Google Scholar 

  2. Christensen J, Albertus P, Sanchez-Carrera RS, Lohmann T, Kozinsky B, Liedtke R et al (2011) A critical review of Li/air batteries. J Electrochem Soc 159(2):R1–R30

    Article  Google Scholar 

  3. Girishkumar G, McCloskey B, Luntz A, Swanson S, Wilcke W (2010) Lithium−air battery: promise and challenges. J Phys Chem Lett 1(14):2193–2203

    Article  CAS  Google Scholar 

  4. Li F, Chen J (2017) Mechanistic Evolution of Aprotic Lithium-Oxygen Batteries. Adv Energy Mater 7(24):1602934

    Article  Google Scholar 

  5. Aurbach D, McCloskey BD, Nazar LF, Bruce PG (2016) Advances in understanding mechanisms underpinning lithium–air batteries. Nat Energy 1(9):16128

    Article  CAS  Google Scholar 

  6. Chen Y, Freunberger SA, Peng Z, Fontaine O, Bruce PG (2013) Charging a Li–O2 battery using a redox mediator. Nat Chem 5(6):489–494

    Article  Google Scholar 

  7. Bergner BJ, Schürmann A, Peppler K, Garsuch A, Janek Jr (2014) TEMPO: a mobile catalyst for rechargeable Li-O2 batteries. J Am Chem Soc 136(42):15054–15064

    Google Scholar 

  8. Feng N, He P, Zhou H (2015) Enabling catalytic oxidation of Li2O2 at the liquid-solid interface: the evolution of an aprotic Li–O2 battery. ChemSusChem 8(4):600–602

    Article  CAS  Google Scholar 

  9. Lim H-D, Lee B, Zheng Y, Hong J, Kim J, Gwon H et al (2016) Rational design of redox mediators for advanced Li–O2 batteries. Nat Energy 1:16066

    Article  CAS  Google Scholar 

  10. Chen Y, Gao X, Johnson LR, Bruce PG (2018) Kinetics of lithium peroxide oxidation by redox mediators and consequences for the lithium–oxygen cell. Nat Commun 9(1):767

    Article  Google Scholar 

  11. Zhang W, Shen Y, Sun D, Huang Z, Zhou J, Yan H et al (2016) Promoting Li2O2 oxidation via solvent-assisted redox shuttle process for low overpotential Li-O2 battery. Nano Energy 30:43–51

    Article  CAS  Google Scholar 

  12. Zhang J, Sun B, Zhao Y, Kretschmer K, Wang G (2017) Modified Tetrathiafulvalene as an organic conductor for improving performances of Li−O2 batteries. Angew Chem Int Ed 56(29):8505–8509

    Google Scholar 

  13. Bard AJ, Faulkner LR, Leddy J, Zoski CG (1980) Electrochemical methods: fundamentals and applications, vol 2. Wiley New York

    Google Scholar 

  14. Marcus RA, Sutin N (1985) Electron transfers in chemistry and biology. Biochim Biophys Acta Rev Bioenerg 811(3):265–322

    Google Scholar 

  15. Adams BD, Radtke C, Black R, Trudeau ML, Zaghib K, Nazar LF (2013) Current density dependence of peroxide formation in the Li–O2 battery and its effect on charge. Energy Environ Sci 6(6):1772–1778

    Article  CAS  Google Scholar 

  16. Ottakam Thotiyl MM, Freunberger SA, Peng Z, Bruce PG (2012) The carbon electrode in nonaqueous Li–O2 cells. J Am Chem Soc 135(1):494–500

    Article  Google Scholar 

  17. Wandt J, Jakes P, Granwehr J, Gasteiger HA, Eichel RA (2016) Singlet oxygen formation during the charging process of an aprotic lithium–oxygen battery. Angew Chem 128(24):7006–7009

    Article  Google Scholar 

  18. Mahne N, Schafzahl B, Leypold C, Leypold M, Grumm S, Leitgeb A et al (2017) Singlet oxygen generation as a major cause for parasitic reactions during cycling of aprotic lithium–oxygen batteries. Nat Energy 2(5):17036

    Article  CAS  Google Scholar 

  19. Zheng P, Meng X, Wu J, Liu Z (2008) Density and viscosity measurements of dimethoxymethane and 1, 2-dimethoxyethane from 243 K to 373 K up to 20 MPa. Int J Thermophys 29(4):1244–1256

    Article  CAS  Google Scholar 

  20. Kodama D, Kanakubo M, Kokubo M, Hashimoto S, Nanjo H, Kato M (2011) Density, viscosity, and solubility of carbon dioxide in glymes. Fluid Phase Equilib 302(1):103–108

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youngmin Ko .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ko, Y. (2021). Investigation on the Kinetic Property of Redox Mediators. In: Development of Redox Mediators for High-Energy-Density and High-Efficiency Lithium-Oxygen Batteries. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-16-2532-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-2532-9_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-2531-2

  • Online ISBN: 978-981-16-2532-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics