Skip to main content

History of the Biplot

  • Chapter
  • First Online:
Modern Quantification Theory

Abstract

Visualization techniques represent one of the main pillars in the field of exploratory data analysis. A graphical description of data is often a more preferred option than a numerical one as it is more intuitive and immediate. Boxplots, histograms, and pie charts are familiar forms of data visualization which require only a rudimentary statistical understanding to construct and interpret. However, they are applicable only to univariate data. For multivariate data sets, a biplot can be presented in a manner which can be readily understood by non-statistically minded individuals. Ancient and primitive art, like African sculpture and Picasso’s invention of Cubism, offer examples as to how natural forms or data structures/types/configurations can be reduced to purely geometrical equivalents Loach 1998. While addressing a group of architecture students at Columbia University, Le Corbusier is recorded as saying in 1961.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agresti, A. (2002). Categorical Data Analysis (2nd ed.). New York: Wiley.

    Google Scholar 

  • Aitchison, J. (1983). Principal component analysis of compositional data. Biometrika, 70, 57–65.

    Article  MathSciNet  Google Scholar 

  • Aitchison, J. (1986). The Statistical Analysis of Compositional Data. London: Chapman & Hall.

    Google Scholar 

  • Aitchison, J., & Greenacre, M. (2002). Biplots of compositional data. Journal of the Royal Statistical Society: Series C (Applied Statistics), 51, 375–392.

    Google Scholar 

  • Alcántara, M., & Rivas, C. (2007). Las dimensiones de la polarizacion partidista en america latina. Política y Gobierno, 14, 349–390.

    Google Scholar 

  • Arias Díaz-Faes, A., Benito-García, N., Martín-Rodero, H., & Vicente-Villardón, J. (2011). Propuesta de aplicabilidad del método multivariante gráfico "biplot" a los estudios bibliométricos en biomedicina. in xiv jornadas nacionales de información y documentación en ciencias de la salud, cádiz, 13-15 de abril de 2011. (unpublished). Conference poster, http://hdl.handle.net/10760/15998.

  • Beh, E. J., & Lombardo, R. (2014). Correspondence analysis, practice. Methods and new strategies. Chichester: Wiley.

    Google Scholar 

  • Beh, E. J., & Lombardo, R. (2021). An introduction to correspondence analysis. Chichester: Wiley.

    Google Scholar 

  • Carlier, A., & Kroonenberg, P. M. (1996). Decompositions and biplots in three-way correspondence analysis. Psychometrika, 61, 355–373.

    Article  Google Scholar 

  • Ceyhun, E., Gokce, B., & Abdullah, Y. (2020). Economic policy responses to a pandemic: Developing the covid-19 economic stimulus index. CEPR press, 3, 40–53.

    Google Scholar 

  • De Rooij, M., & Heiser, W. (2005). Graphical representations and odds ratios in a distance association model for the analysis of cross-classified data. Psychometrika, 70, 99–123.

    Article  MathSciNet  Google Scholar 

  • Descartes, R. (1637). Discours de la méthode. Essay, Academia, Leiden.

    Google Scholar 

  • Eckart, C., & Young, G. (1936). The approximation of one matrix by another of lower rank. Psychometrika, 1, 211–218.

    Article  Google Scholar 

  • Gabriel, K. R. (1971). The biplot graphic display of matrices with application to principal component analysis. Biometrika, 58, 453–467.

    Article  MathSciNet  Google Scholar 

  • Gabriel, K. R. (1972). Analysis of meteorological data by means of canonical decomposition and biplots. Journal of Applied Meteorology, 11, 1071–1077.

    Article  Google Scholar 

  • Gabriel, K. R., & Odoroff, C. L. (1990). Biplots in biomedical research. Statistics in Medicine, 9, 469–485.

    Article  Google Scholar 

  • Galindo, P., Vaz, T., & Nijkamp, P. (2011). Institutional capacity to dynamically innovate: An application to the portuguese case. Technological Forecasting and Social Change, 78, 3–12.

    Article  Google Scholar 

  • Galindo, P. V. (1986). Una alternativa de representación simultánea: HJ biplot. Questió, 10, 13–23.

    Google Scholar 

  • Goodman, L. A. (1979). Simple models for the analysis of association in cross-classifications having ordered categories. Journal of the American Statistical Association, 74, 537–552.

    Article  MathSciNet  Google Scholar 

  • Goodman, L. A. (1985). The analysis of cross-classified data having ordered and/or unordered categories: Association models, correlation models and asymmetry models for contingency tables with or without missing entries. The Annals of Statistics, 13, 10–69.

    MathSciNet  MATH  Google Scholar 

  • Gower, J. C., & Hand, D. J. (1996). Biplots. Chapman and Hall.

    Google Scholar 

  • Gower, J. C., & Harding, S. A. (1988). Nonlinear biplots. Biometrika, 75, 445–455.

    Article  MathSciNet  Google Scholar 

  • Gower, J. C., Le Roux, N., & Lubbe, S. (2015). Biplots: Quantitative data. WIREs Computational Statistics, 7, 42–62.

    Article  MathSciNet  Google Scholar 

  • Gower, J. C., Le Roux, N., & Lubbe, S. (2016). Biplots: Qualititative data. WIREs Computational Statistics, 8, 82–111.

    Article  Google Scholar 

  • Gower, J. C., Lubbe, S., & Le Roux, N. (2011). Understanding biplots. Chichester: Wiley.

    Google Scholar 

  • Greenacre, M. (2013). Contribution biplots. Journal of Computational and Graphical Statistics, 22, 107–122.

    Article  MathSciNet  Google Scholar 

  • Greenacre, M. J. (1984). Theory and application of correspondence analysis. London: Academic.

    Google Scholar 

  • Greenacre, M. J. (1993a). Biplots in correspondence analysis. Journal of Applied Statistics, 20, 251–269.

    Article  Google Scholar 

  • Greenacre, M. J. (1993b). Correspondence analysis in practice. London: Academic.

    Google Scholar 

  • Greenacre, M. J. (2010a). Biplots in practice. Barcelona: Foudation BBVA.

    Google Scholar 

  • Greenacre, M. J. (2010b). Log-ratio analysis is a limiting case of correspondence analysis. Mathematical Geosciences, 42, 129–134.

    Article  Google Scholar 

  • Greenacre, M. J., & Lewi, P. (2009). Distributional equivalence and subcompositional coherence in the analysis of compositional data, contingency tables and ratio-scale measurements. Journal of Classification, 26, 29–54.

    Article  MathSciNet  Google Scholar 

  • Groenen, P., Le Roux, N., & Gardner-Lubbe, S. (2015). Spline-based nonlinear biplots. Advances in Data Analysis and Classification, 9, 219–238.

    Article  MathSciNet  Google Scholar 

  • Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components. Journal of Education Psychology, 24, 498–520.

    Article  Google Scholar 

  • Husson, F., Le, S., & Pages, J. (2010). Exploratory multivariate analysis by example using R. Chapman and Hall.

    Google Scholar 

  • Lewi, P. J. (1976). Spectral mapping, a technique for classifying biological activity profiles of chemical compounds. Arzneimittel Forschung, 26, 1295–1300.

    Google Scholar 

  • Loach, J. (1998). Le Corbusier and the creative use of mathematics. The British Journal for the History of Science, 31, 185–215.

    Article  Google Scholar 

  • Lombardo, R., Carlier, A., & D’Ambra, L. (1996). Nonsymmetric correspondence analysis for three-way contingency tables. Methodologica, 4, 59–80.

    Google Scholar 

  • Mardia, K. V., Kent, J. T., & Bibby, J. M. (1979). Multivariate analysis. New York: Academic.

    Google Scholar 

  • Pan, S., Chon, K., & Song, H. (2008). Visualizing tourism trends: A combination of atlas.ti and biplot. Journal of Travel Research, 46, 339–348.

    Article  Google Scholar 

  • Pearson, K. (1901). On lines and planes of closest fit to a system of points in space. Philosophical Magazine, 6, 559–572.

    MATH  Google Scholar 

  • Torres-Salinas, D., Robinson-García, N., Jiménez-Contreras, E., Herrera, F., & López-Cóza, E.D (2013). On the use of biplot analysis for multivariate bibliometric and scientific indicators. Journal of the American Society for Information Science and Technology, 64, 1468–1479.

    Google Scholar 

  • Udina, F. (2005). Interactive biplot construction. Journal of Statistical Software, 13:16 pages.

    Google Scholar 

  • Veiga de Cabo, J., & Martín-Rodero, H. (2011). Acceso Abierto: nuevos modelos de edición científica en entornos web 2.0. Salud Colectiva, 7, 519–527.

    Article  Google Scholar 

  • Wouters, L., Gohlmann, H., Bijnens, L., Kass, S., Molenberghs, G., & Lewi, P. (2003). Graphical exploration of gene expression data: A comparative study of three multivariate methods. Biometrics, 59, 1131–1139.

    Article  MathSciNet  Google Scholar 

  • Yan, W., & Kang, M. (2003). GGE biplot analysis: A graphical tool for breeders, geneticists, and agronomists. Boca Raton: CRC Press.

    Google Scholar 

  • Yan, W. K., Hunt, L., Sheng, Q., & Szlavnics, Z. (2000). Cultivar evaluation and megaenvironment investigation based on the gge biplot. Crop Science, 40, 597–605.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shizuhiko Nishisato .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nishisato, S., Beh, E.J., Lombardo, R., Clavel, J.G. (2021). History of the Biplot. In: Modern Quantification Theory. Behaviormetrics: Quantitative Approaches to Human Behavior, vol 8. Springer, Singapore. https://doi.org/10.1007/978-981-16-2470-4_9

Download citation

Publish with us

Policies and ethics