Skip to main content

Prediction the Age of Human Brains from Gene Expression

  • Conference paper
  • First Online:
Cognitive Systems and Signal Processing (ICCSIP 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1397))

Included in the following conference series:

  • 1463 Accesses

Abstract

Understanding temporal characteristics of gene expression in normal human brain can help explain the neurodevelopment, working mechanism and functional diversity. Based on the gene expression dataset of developing human brains from the Allen Brain Atlas, we accurately predicted the age of human brains using support vector machine and identified 9,934 age related genes. Significant changes occur in gene expression of human brains before and after birth, thus we establish support vector machine (SVM) models for the subjects before birth and after birth, respectively. In general, the age of subjects can be well predicted by the SVM models, with the Pearson correlation coefficient of predicted age and the labeled age of all subjects is 0.9397 with P-value < 0.001 (before birth: r = 0.9465, P-value < 0.001; after birth: r = 0.9121, P-value < 0.001). For the total subjects, mean absolute error (MAE) of age prediction is 2.82 years with standard error (SE) is 0.15 years (before birth: MAE = 1.03 post-conceptual weeks (pcws), SE = 0.08 pcws; after birth: MAE = 4.70 years, SE = 0.20 years). This investigation reveal the bulk of temporal regulation occurred during prenatal development. By analyzing the functional annotations of age related genes, we found expression differences of genes before and after birth may be related to their functions. Finally, we found the prediction accuracy of each period can reflect its specificity of gene expression, which is negatively correlated to the gene expression similarity across periods. This study provides new insights into temporal dynamic pattern of gene expression in human brains and its relationship with functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Salzberg, S.L.: Open questions: how many genes do we have? BMC Biol. 16, 94 (2018)

    Article  Google Scholar 

  2. Wang, W., Wang, G.Z.: Understanding molecular mechanisms of the brain through transcriptomics. Front Physiol. 10, 214 (2019)

    Article  Google Scholar 

  3. Colantuoni, C., Lipska, B.K., Ye, T., et al.: Temporal dynamics and genetic control of transcription in the human prefrontal cortex. Nature 478, 519–523 (2011)

    Article  Google Scholar 

  4. Hawrylycz, M., Miller, J.A., Menon, V., et al.: Canonical genetic signatures of the adult human brain. Nature Neurosci. 18(12), 1832–1846 (2015)

    Article  Google Scholar 

  5. Li, M., Santpere, G., Imamura Kawasawa, Y., et al.: Integrative functional genomic analysis of human brain development and neuropsychiatric risks. Science 362(6420), eaat7615 (2018)

    Google Scholar 

  6. Hawrylycz, M.J., Lein, E.S., Guillozet-Bongaarts, A.L., et al.: An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 489(7416), 391–399 (2012)

    Article  Google Scholar 

  7. Kang, H.J., Kawasawa, Y.I., Cheng, F., et al.: Spatio-temporal transcriptome of the human brain. Nature 478(7370), 483–489 (2011)

    Article  Google Scholar 

  8. Miller, J.A., Ding, S.L., Sunkin, S.M., et al.: Transcriptional landscape of the prenatal human brain. Nature 508(7495), 199–206 (2014)

    Article  Google Scholar 

  9. Bakken, T.E., Miller, J.A., Ding, S.L., et al.: A comprehensive transcriptional map of primate brain development. Nature 535(7612), 367–375 (2016)

    Article  Google Scholar 

  10. Thompson, C.L., Ng, L., Menon, V., et al.: A high-resolution temporal-spatial atlas of gene expression of the developing mouse brain. Neuron 83, 309–323 (2014)

    Article  Google Scholar 

  11. Zhu, Y., Sousa, A.M.M., Gao, T., et al.: Temporal-spatial transcriptomic divergence across human and macaque brain development. Science 362(6420), eaat8077 (2018)

    Google Scholar 

  12. Wang, D., Liu, S., Warrell, J., et al.: Comprehensive functional genomic resource and integrative model for the human brain. Science 362(6420), eaat8464 (2018)

    Google Scholar 

  13. Amiri, A., Coppola, G., Scuderi, S., et al.: Transcriptome and epigenome landscape of human cortical development modeled in organoids. Science 362(6420), eaat6720 (2018)

    Google Scholar 

  14. Dosenbach, N.U.F., et al.: Prediction of individual brain maturity using fMRI. Science 329, 1358 (2010)

    Google Scholar 

  15. Qin, J., et al.: Predicting individual brain maturity using dynamic functional connectivity. Front. Hum. Neurosci. 9, 418 (2015)

    Article  Google Scholar 

  16. Pan, J.B., Hu, S.C., Wang, H., Zou, Q., Ji, Z.L.: PaGeFinder: quantitative identification of temporal-spatial pattern genes. Bioinformatics 28(11), 1544–5 (2012)

    Article  Google Scholar 

  17. Hoshiba, Y., Toda, T., Ebisu, H., et al.: Sox11 balances dendritic morphogenesis with neuronal migration in the developing cerebral cortex. J. Neurosci. 36(21), 5775–84 (2016)

    Article  Google Scholar 

  18. Huang, D.W., Sherman, B.T., Lempicki, R.A.: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protoc. 4(1), 44–57 (2009)

    Article  Google Scholar 

  19. Noordermeer, S.D.S., Luman, M., Greven, C.U., et al.: Structural brain abnormalities of attention-deficit/hyperactivity disorder with oppositional defiant disorder. Biol. Psychiatry 82(9), 642–650 (2017)

    Article  Google Scholar 

  20. Beitz, J.M.: Parkinson's disease: a review. Front. Biosci. (Schol. Ed.) 6, 65-74 (2014)

    Google Scholar 

  21. Mao, N.N., Zheng, H.N., Long, Z.Y., et al.: Gender differences in dynamic functional connectivity based on resting-state fMRI. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2017, 2940–2943 (2017)

    Google Scholar 

  22. Zhang, C., Dougherty, C.C., Baum, S.A., White, T., Michael, A.M.: Functional connectivity predicts gender: evidence for gender differences in resting brain connectivity. Hum. Brain Mapp. 39(4), 1765–1776 (2018)

    Article  Google Scholar 

  23. Weis, S., Patil, K.R., Hoffstaedter, F., Nostro, A., Yeo, B.T.T., Eickhoff, S.B.: Sex classification by resting state brain connectivity. Cereb Cortex pii, bhz129 (2019)

    Google Scholar 

  24. Curtis, C.E., D’Esposito, M.: Persistent activity in the prefrontal cortex during working memory. Trends Cogn. Sci. 7(9), 415–423 (2003)

    Article  Google Scholar 

  25. Eckert, U., Metzger, C.D., Buchmann, J.E., et al.: Preferential networks of the mediodorsal nucleus and centromedian-parafascicular complex of the thalamus–a DTI tractography study. Hum. Brain Mapp. 33(11), 2627–37 (2012)

    Article  Google Scholar 

  26. Marusak, H.A., Calhoun, V.D., Brown, S., et al.: Dynamic functional connectivity of neurocognitive networks in children. Hum. Brain Mapp. 38(1), 97–108 (2017)

    Article  Google Scholar 

  27. Mak, L.E., Minuzzi, L., MacQueen, G., Hall, G., Kennedy, S.H., Milev, R.: The default mode network in healthy individuals: a systematic review and meta-analysis. Brain Connect. 7(1), 25–33 (2017)

    Article  Google Scholar 

  28. Chen, Y., Zhao, X., Zhang, X., et al.: Age related early/late variations of functional connectivity across the human lifespan. Neuroradiology 60(4), 403–412 (2018)

    Article  Google Scholar 

  29. Richiardi, J., et al.: Correlated gene expression supports synchronous activity in brain networks. Science 348(6240), 1241–1244 (2015)

    Article  Google Scholar 

  30. Bakken, T.E., Miller, J.A., Luo, R., et al.: Temporal-spatial dynamics of the postnatal developing primate brain transcriptome. Hum. Mol. Genet. 24(15), 4327–4339 (2015)

    Article  Google Scholar 

  31. Golland, P., Fischl, B.: Information Processing in Medical Imaging. Taylor, C.J., Noble, J.A. (eds.), vol. 2732, pp. 330–41. Springer, Heidelberg (2003). https://doi.org/10.1007/b11820

  32. Craddock, R.C., James, G.A., Holtzheimer, P.E., Hu, X.P., Mayberg, H.S.: A whole brain fMRI atlas generated via spatially constrained spectral clustering. Hum. Brain Mapp. 33, 1914–1928 (2012)

    Article  Google Scholar 

  33. Zeng, L.L., et al.: Neurobiological basis of head motion in brain imaging. PNAS 111(16), 6058–6062 (2014)

    Article  Google Scholar 

  34. Tzourio-Mazoyer, N., et al.: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15, 273–289 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Science Foundation of China (61722313, 61503397, 61420106001, and 61773391) and the Fok Ying Tung Education Foundation (161057).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dewen Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, W., Qin, J., Zeng, L., Shen, H., Hu, D. (2021). Prediction the Age of Human Brains from Gene Expression. In: Sun, F., Liu, H., Fang, B. (eds) Cognitive Systems and Signal Processing. ICCSIP 2020. Communications in Computer and Information Science, vol 1397. Springer, Singapore. https://doi.org/10.1007/978-981-16-2336-3_31

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-2336-3_31

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-2335-6

  • Online ISBN: 978-981-16-2336-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics