Skip to main content

Ionically Gelled Gellan Gum in Drug Delivery

  • Chapter
  • First Online:
Ionically Gelled Biopolysaccharide Based Systems in Drug Delivery

Part of the book series: Gels Horizons: From Science to Smart Materials ((GHFSSM))

Abstract

Gellan gum (GG) is a bacterial exopolysaccharide obtained commercially from Sphingomonas paucimobilis. Two chemical forms of GG exist, i.e. native/acylated and deacylated. Ionotropic/ionic gelation is a promising tool in the development of biocompatible novel drug delivery systems. GG is a naturally occurring polysaccharide that bears the potential to encapsulate a large number of micro- and macro-therapeutic molecules via different carrier systems such as microspheres, hydrogels, beads and microparticles. By the achievements of polymer chemistry, development of intelligent and the strategic encapsulation techniques helps the natural polysaccharide to use in numerous drug delivery. The usage of expensive and toxic organic solvents in the microencapsulation process has been significantly minimized by the progress of ionotropic gelation method. Ionically gelled GG delivers great prospects for designing new drug delivery systems, thus encompassing the frontier of future pharmaceutical development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jansson P-E, Lindberg B, Sandford PA (1983) Structural studies of gellan gum, an extracellular polysaccharide elaborated by Pseudomonas elodea. Carbohyd Res 124(1):135–139

    Article  CAS  Google Scholar 

  2. Raghunandan K, et al (2018) Production of gellan gum, an exopolysaccharide, from biodiesel-derived waste glycerol by Sphingomonas spp. 3 Biotech 8(1):71

    Google Scholar 

  3. Chowhan A, Giri TK (2020) Polysaccharide as renewable responsive biopolymer for in situ gel in the delivery of drug through ocular route. Int J Biol Macromol 150:559–572

    Article  CAS  PubMed  Google Scholar 

  4. Osmałek T, Froelich A, Tasarek S (2014) Application of gellan gum in pharmacy and medicine. Int J Pharm 466(1–2):328–340

    Article  PubMed  CAS  Google Scholar 

  5. Prajapati VD et al (2013) An insight into the emerging exopolysaccharide gellan gum as a novel polymer. Carbohyd Polym 93(2):670–678

    Article  CAS  Google Scholar 

  6. Bacelar AH et al (2016) Recent progress in gellan gum hydrogels provided by functionalization strategies. J Mater Chem B 4(37):6164–6174

    Article  CAS  PubMed  Google Scholar 

  7. Oliveira JT et al (2010) Gellan gum injectable hydrogels for cartilage tissue engineering applications: in vitro studies and preliminary in vivo evaluation. Tissue Eng Part A 16(1):343–353

    Article  CAS  PubMed  Google Scholar 

  8. Sebria NJM, Amin KAM (2016) Gellan gum/ibuprofen hydrogel for dressing application: mechanical properties, release activity and biocompatibility studies. Int J Appl Chem 12(4):483–498

    Google Scholar 

  9. Carmona-Moran CA et al (2016) Development of gellan gum containing formulations for transdermal drug delivery: Component evaluation and controlled drug release using temperature responsive nanogels. Int J Pharm 509(1–2):465–476

    Article  CAS  PubMed  Google Scholar 

  10. Rukmanikrishnan B, et al (2020) Binary and ternary sustainable composites of gellan gum, hydroxyethyl cellulose and lignin for food packaging applications: Biocompatibility, antioxidant activity, UV and water barrier properties. Int J Biol Macromol

    Google Scholar 

  11. Zia KM et al (2018) Recent trends on gellan gum blends with natural and synthetic polymers: A review. Int J Biol Macromol 109:1068–1087

    Article  CAS  PubMed  Google Scholar 

  12. Shin H, Olsen BD, Khademhosseini A (2014) Gellan gum microgel-reinforced cell-laden gelatin hydrogels. J Mater Chem B 2(17):2508–2516

    Article  CAS  PubMed  Google Scholar 

  13. Liang L et al (2020) Carboxymethyl konjac glucomannan mechanically reinforcing gellan gum microspheres for uranium removal. Int J Biol Macromol 145:535–546

    Article  CAS  PubMed  Google Scholar 

  14. Muthukumar T, Song JE, Khang G (2019) Biological role of gellan gum in improving scaffold drug delivery, cell adhesion properties for tissue engineering applications. Molecules 24(24):4514

    Article  CAS  PubMed Central  Google Scholar 

  15. Palumbo FS et al (2020) Gellan gum-based delivery systems of therapeutic agents and cells. Carbohyd Polym 229:

    Article  CAS  Google Scholar 

  16. Racoviţă S et al (2009) Polysaccharides based on micro-and nanoparticles obtained by ionic gelation and their applications as drug delivery systems. Rev Roum Chim 54(9):709–718

    Google Scholar 

  17. Bocchetta P (2020) Ionotropic Gelation of Chitosan for next-generation composite proton conducting flat structures. Molecules 25(7):1632

    Article  CAS  PubMed Central  Google Scholar 

  18. Verma A et al (2018) Emulgels: application potential in drug delivery. Functional Biopolymers. Springer, Cham, pp 343–371

    Chapter  Google Scholar 

  19. Pedroso-Santana S, Fleitas-Salazar N (2020) Ionotropic gelation method in the synthesis of nanoparticles/microparticles for biomedical purposes. Polym Int 69(5):443–447

    Article  CAS  Google Scholar 

  20. Patil P, Chavanke D, Wagh M (2012) A review on ionotropic gelation method: novel approach for controlled gastroretentive gelispheres. Int J Pharm Pharm Sci 4(4):27–32

    CAS  Google Scholar 

  21. Agnihotri SA, Mallikarjuna NN, Aminabhavi TM (2004) Recent advances on chitosan-based micro-and nanoparticles in drug delivery. J Controlled Release 100(1):5–28

    Article  CAS  Google Scholar 

  22. Tiwari A, et al (2019) Alginate-based composites in drug delivery applications. Versatile Polymers in Biomedical Applications and Therapeutics, Alginates

    Google Scholar 

  23. Nakajima K, Ikehara T, Nishi T (1996) Observation of gellan gum by scanning tunneling microscopy. Carbohyd Polym 30(2–3):77–81

    Article  CAS  Google Scholar 

  24. Kanesaka S, Watanabe T, Matsukawa S (2004) Binding effect of Cu2+ as a trigger on the sol-to-gel and the coil-to-helix transition processes of polysaccharide, gellan gum. Biomacromol 5(3):863–868

    Article  CAS  Google Scholar 

  25. Abbas Z, Marihal S (2014) Gellan gum-based mucoadhesive microspheres of almotriptan for nasal administration: Formulation optimization using factorial design, characterization, and in vitro evaluation. J Pharm & Bioallied Sci 6(4):267

    Article  CAS  Google Scholar 

  26. Boni FI, Prezotti FG, Cury BSF (2016) Gellan gum microspheres crosslinked with trivalent ion: Effect of polymer and crosslinker concentrations on drug release and mucoadhesive properties. Drug Dev Ind Pharm 42(8):1283–1290

    Article  CAS  PubMed  Google Scholar 

  27. Destruel P-L et al (2020) Novel in situ gelling ophthalmic drug delivery system based on gellan gum and hydroxyethyl cellulose: Innovative rheological characterization, in vitro and in vivo evidence of a sustained precorneal retention time. Int J Pharm 574:

    Article  CAS  PubMed  Google Scholar 

  28. D’Arrigo G et al (2014) Gellan gum nanohydrogel containing anti-inflammatory and anti-cancer drugs: a multi-drug delivery system for a combination therapy in cancer treatment. Eur J Pharm Biopharm 87(1):208–216

    Article  PubMed  CAS  Google Scholar 

  29. Nair AB et al (2019) Gellan Gum-based hydrogel for the transdermal delivery of Nebivolol: optimization and evaluation. Polymers 11(10):1699

    Article  CAS  PubMed Central  Google Scholar 

  30. Sun J, Zhou Z (2018) A novel ocular delivery of brinzolamide based on gellan gum: in vitro and in vivo evaluation. Drug Des, Dev Ther 12:383

    Article  Google Scholar 

  31. Rajinikanth PS, Mishra B (2009) Stomach-site specific drug delivery system of clarithromycin for eradication of Helicobacter pylori. Chem Pharm Bull 57(10):1068–1075

    Article  CAS  Google Scholar 

  32. Sahoo S et al (2013) Formulation, in vitro drug release study and anticancer activity of 5-fluorouracil loaded gellan gum microbeads. Acta Pol Pharm 70(1):123–127

    CAS  PubMed  Google Scholar 

  33. Prezotti FG et al (2018) Gellan gum/pectin beads are safe and efficient for the targeted colonic delivery of resveratrol. Polymers 10(1):50

    Article  PubMed Central  CAS  Google Scholar 

  34. Adrover A et al (2019) Gellan Gum/Laponite beads for the modified release of drugs: experimental and modeling study of gastrointestinal release. Pharmaceutics 11(4):187

    Article  CAS  PubMed Central  Google Scholar 

  35. Meneguin AB et al (2018) Retrograded starch/pectin coated gellan gum-microparticles for oral administration of insulin: A technological platform for protection against enzymatic degradation and improvement of intestinal permeability. Eur J Pharm Biopharm 123:84–94

    Article  CAS  PubMed  Google Scholar 

  36. Verma A et al (2019) Locust bean gum in drug delivery application. Natural Polysaccharides in drug delivery and biomedical applications. Elsevier, Amsterdam, pp 203–222

    Chapter  Google Scholar 

  37. Berkland C et al (2002) Precise control of PLG microsphere size provides enhanced control of drug release rate. J Controlled Release 82(1):137–147

    Article  CAS  Google Scholar 

  38. Freitas S, Merkle HP, Gander B (2005) Microencapsulation by solvent extraction/evaporation: reviewing the state of the art of microsphere preparation process technology. J Controlled Release 102(2):313–332

    Article  CAS  Google Scholar 

  39. Prakash S et al (2015) Development and optimization of floating microspheres of gliclazide. Int J Pharm Sci Res 6(5):807–817

    CAS  Google Scholar 

  40. Abbas AK, Alhamdany AT (2020) Floating microspheres of Enalapril Maleate as a developed controlled release dosage form: Investigation of the effect of an ionotropic gelation technique. Turk J Pharm Sci 17(2):159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Maiti S et al (2011) Al + 3 ion cross-linked and acetalated gellan hydrogel network beads for prolonged release of glipizide. Carbohyd Polym 85(1):164–172

    Article  CAS  Google Scholar 

  42. Prezotti FG, Cury BSF, Evangelista RC (2014) Mucoadhesive beads of gellan gum/pectin intended to controlled delivery of drugs. Carbohyd Polym 113:286–295

    Article  CAS  Google Scholar 

  43. Panda PK, et al (2019) Application potential of Pectin in drug delivery. In: Natural polymers for pharmaceutical applications, Apple Academic Press, pp 87–114

    Google Scholar 

  44. Patil J et al (2010) Ionotropic gelation and polyelectrolyte complexation: the novel techniques to design hydrogel particulate sustained, modulated drug delivery system: a review. Dig J Nanomater Biostructures 5(1):241–248

    Google Scholar 

  45. Henao E, et al (2018) Polyelectrolyte complexation versus ionotropic gelation for chitosan-based hydrogels with carboxymethylcellulose, carboxymethyl starch, and alginic acid. Int J Chem Eng

    Google Scholar 

  46. Choi JH et al (2019) Evaluation of double network hydrogel of poloxamer-heparin/gellan gum for bone marrow stem cells delivery carrier. Colloids Surf, B 181:879–889

    Article  CAS  Google Scholar 

  47. Ramburrun P et al (2017) Design and characterization of neurodurable gellan-xanthan pH-responsive hydrogels for controlled drug delivery. Expert Opin Drug Deliv 14(3):291–306

    Article  CAS  PubMed  Google Scholar 

  48. Musazzi UM et al (2018) Gellan nanohydrogels: Novel nanodelivery systems for cutaneous administration of piroxicam. Mol Pharm 15(3):1028–1036

    Article  CAS  PubMed  Google Scholar 

  49. Hao J et al (2016) Fabrication of an ionic-sensitive in situ gel loaded with resveratrol nanosuspensions intended for direct nose-to-brain delivery. Colloids Surf, B 147:376–386

    Article  CAS  Google Scholar 

  50. Narkar M, Sher P, Pawar A (2010) Stomach-specific controlled release gellan beads of acid-soluble drug prepared by ionotropic gelation method. AAPS PharmSciTech 11(1):267–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Shirsath NR, Goswami AK (2020) Vildagliptin-loaded gellan gum mucoadhesive beads for sustained drug delivery: design, optimisation and evaluation. Mat Technol, 1–13

    Google Scholar 

  52. Patil J et al (2011) Ionotropically gelled novel hydrogel beads: Preparation, characterization and in vitro evaluation. Indian J Pharm Sci 73(5):504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Patil JS et al (2016) Natural Gellan Gum (Phytagel®) based novel hydrogel beads of Rifampicin for oral delivery with improved functionality. Indian J Pharm Educ Res 50(2):S159–S167

    Article  CAS  Google Scholar 

  54. Singh BN, Kim KH (2005) Effects of divalent cations on drug encapsulation efficiency of deacylated gellan gum. J Microencapsul 22(7):761–771

    Article  CAS  PubMed  Google Scholar 

  55. Verma A, Pandit JK (2011) Rifabutin-loaded floating gellan gum beads: effect of calcium and polymer concentration on incorporation efficiency and drug release. Trop J Pharm Res 10(1)

    Google Scholar 

  56. Rajinikanth, P (2007) Preparation and in vitro characterization of gellan based floating beads of acetohydroxamic acid for eradication of H. pylori. Acta Pharma 57(4):413–427

    Google Scholar 

  57. Kedzierewicz F et al (1999) Effect of the formulation on the in-vitro release of propranolol from gellan beads. Int J Pharm 178(1):129–136

    Article  CAS  PubMed  Google Scholar 

  58. de Oliveira Cardoso VM et al (2020) Insights into the impact of cross-linking processes on physicochemical characteristics and mucoadhesive potential of gellan gum/retrograded starch microparticles as a platform for colonic drug release. J Drug Deliv Sci Technol 55:

    Article  CAS  Google Scholar 

  59. Prezotti FG et al (2020) Oral nanoparticles based on gellan gum/pectin for colon-targeted delivery of resveratrol. Drug Dev Ind Pharm 46(2):236–245

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Panda, P.K., Verma, A., Saraf, S., Tiwari, A., Jain, S.K. (2021). Ionically Gelled Gellan Gum in Drug Delivery. In: Nayak, A.K., Hasnain, M.S., Pal, D. (eds) Ionically Gelled Biopolysaccharide Based Systems in Drug Delivery. Gels Horizons: From Science to Smart Materials. Springer, Singapore. https://doi.org/10.1007/978-981-16-2271-7_3

Download citation

Publish with us

Policies and ethics