Skip to main content

Potential Application of Agriculturally Promising Microorganisms for Sustainable Crop Production and Protection

  • Chapter
  • First Online:
Application of Microbes in Environmental and Microbial Biotechnology

Part of the book series: Environmental and Microbial Biotechnology ((EMB))

  • 1275 Accesses

Abstract

Modern agriculture entails utilization of agrochemicals to boost the food output worldwide. Though these inorganic-based fertilizers are essential as a nutrient addendum to plants and consisted of phosphorus (P), potassium (K), and nitrogen (N) as their primary components, their continuous reliance causes environmental and human health risks, viz., interruption of ecological recycling and elimination of advantageous microbial consortium required to increase production of crops. In the past few years, microorganisms that reside in the soil were largely employed for increase of quality and quantity of crop production along with management of plant and soil health. In addition, greater yields are recorded in crop plants, when they are inoculated with plant growth-promoting microorganisms (PGPMs) during their cultivation. So, utilization of these PGPMs is an effective and promising approach to raise the grade of food production with no harm to the environment or human health. Further, research studies also supported application of these beneficial microorganisms as marvelous choice to chemical fertilizers and pesticides because they can supply nutrients via atmospheric nitrogen fixation and phosphorus hydrolyzation and prompt the growth of plants by synthesizing the substances needed for plant growth and protection. Moreover, to improve agricultural produce, modern biotechnology is employing recent methods of gene alteration to produce genetically engineered novel transgenic microbial strains. Thus, exploitation of microbial inoculants can be a profitable strategy to intensify the crop production by accumulating more nutrients from soil with limited usage of agrochemicals. The present study investigates current research and developments related to the application of microorganisms as versatile tools to boost the outgrowth and produce of various crop plants in an ecofriendly manner through sustainable agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abaid-Ullah M, Hassan MN, Jamil M, Brader G, Shah MK, Sessitsch A, Hafeez FY (2015) Plant growth promoting rhizobacteria: an alternate way to improve yield and quality of wheat (Triticum aestivum). Int J Agri Biol 17:51–60

    Google Scholar 

  • Adesemoye A, Torbert H, Kloepper JW (2009) Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microb Ecol 58:921–929. https://doi.org/10.1007/s00248-009-9531-y

    Article  CAS  Google Scholar 

  • Ahanger MA, Hashem A, Abd Allah EF, Ahmad P (2014) Arbuscular mycorrhiza in crop improvement under environmental stress. In: Ahmad P, Rasool S. (Eds.). Emerging Technologies and Management of Crop Stress Tolerance 2:69–95

    Article  Google Scholar 

  • Ahmad M, Zahir ZA, Asghar HN, Asghar M (2011) Inducing salt tolerance in mung bean through co-inoculation with Rhizobium and PGPR containing ACC-deaminase. Can J Microbiol 57:578–589

    Article  CAS  Google Scholar 

  • Ahmad P, Hashem A, Abd-Allah EF, Alqarawi AA, John R, Egamberdieva D (2015) Role of Trichoderma harzianum in mitigating NaCl stress in Indian mustard (Brassica juncea L) through antioxidative defense system. Front Plant Sci 6:868. https://doi.org/10.3389/fpls.2015.00868

    Article  Google Scholar 

  • Ahmad M, Nadeem SM, Naveed M, Zahir ZA (2016) Potassium-solubilizing Bacteria and their application in agriculture. In: Meena V, Maurya B, Verma J, Meena R. (eds) Potassium Solubilizing Microorganisms for Sustainable Agriculture. Springer, New Delhi. doi:https://doi.org/10.1007/978-81-322-2776-2_21

  • Ahmad M, Pataczek L, Hilger TH (2018) Perspectives of microbial inoculation for sustainable development and environmental management. Front Microbiol 9:2992. https://doi.org/10.3389/fmicb.2018.02992

    Article  Google Scholar 

  • Alabouvette C (1999) Fusarium wilt suppressive soils: an example of disease-suppressive soils. Australas Plant Pathol 28:57–64. https://doi.org/10.1071/AP99008

    Article  Google Scholar 

  • Alabouvette C, Rouxel F, Louvet J (1979) Characteristics of fusarium-wilt suppressive soils and prospects for their utilization in biological control. In: Schippers B, Gams W: & dquo; soil borne plant pathogens & dquo;. Academic press, 165-182; 686 p

    Google Scholar 

  • Alami Y, Achouak W, Marol C, Heulin T (2000) Rhizosphere soil aggregation and plant growth promotion of sunflowers by an exopolysaccharide-producing rhizobium sp. strain isolated from sunflower roots. Appl Environ Microbiol 66(8):3393–3398. https://doi.org/10.1128/aem.66.8.3393-3398

    Article  CAS  Google Scholar 

  • Ambethgar V (2009) Potential of entomopathogenic fungi in insecticide resistance management (IRM): a review. J Biopest 2(2):177–193

    CAS  Google Scholar 

  • Appl M (1982) The Haber–Bosch process and the development of chemical engineering. A Century of Chemical Engineering New York: Plenum Press pp 29–54. ISBN 978-0-306-40895-3

  • Appl M (2006) Ammonia. Ullmann's Encyclopedia of Industrial ChemistryWeinheim: Wiley-VCH. https://doi.org/10.1002/14356007.a02_143.pub2

  • Arshad M, Shaharoona B, Mahmood T (2008) Inoculation with Pseudomonas spp. containing ACC-deaminase partially eliminates the effects of drought stress on growth, yield, and ripening of pea (Pisum sativum L.). Pedosphere 18(5):611–620

    Article  Google Scholar 

  • Asch F, Padham JL (2005) Root associated bacterial suppress symptoms of iron toxicity in lowland rice. In: Tielkes E, Hulsebusch C, Hauser I, Deininger A, Becker K (eds) The global food and product chain-dynamics, innovations, conflicts, strategies. MDD GmbH Stuttgart, p 276

    Google Scholar 

  • Avis TJ, Gravel V, Antoun H, Tweddell RJ (2008) Multifaceted beneficial effects of rhizosphere microorganisms on plant health and productivity. Soil Biol Biochem 40:1733–1740

    Article  CAS  Google Scholar 

  • Babu AG, Kim JD, Oh BT (2013) Enhancement of heavy metal phytoremediation by Alnus firma with endophytic Bacillus thuringiensis GDB-1. J Hazard Mater 250-251:477–483. https://doi.org/10.1016/j.jhazmat.2013.02.014

    Article  CAS  Google Scholar 

  • Bainton N, Lynch J, Naseby D, Way J (2004) Survival and ecological fitness of Pseudomonas fluorescens genetically engineered with dual biocontrol mechanisms. Microb Ecol 48(3):349–357. http://www.jstor.org/stable/25153117

    Article  CAS  Google Scholar 

  • Barka EA, Nowak J, Clément C (2006) Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth-promoting rhizobacterium, Burkholderia phytofirmans strain PsJN. Appl Environ Microbiol 72(11):7246–7252. https://doi.org/10.1128/AEM.01047-06

    Article  CAS  Google Scholar 

  • Barney B, Knutson CM, Plunkett M (2016) Biofertilizer from genetically-modified Azotobacter vinelandii, US patent US9796957B2, assigned to regents of the University of Minnesota

    Google Scholar 

  • Bashan Y and de-Bashan LE (2010) How the plant growth-promoting bacterium Azospirillum promotes plant growth-a critical assessment. Adv Agron, 108, 77–136, doi:https://doi.org/10.1016/S0065-2113(10)08002-8

  • Benhamou N, Garand C, Goulet A (2002) Ability of nonpathogenic Fusarium oxysporum strain Fo47 to induce resistance against Pythium ultimum infection in cucumber. Appl Environ Microbiol 68(8):4044–4060. https://doi.org/10.1128/aem.68.8.4044-4060.2002

    Article  CAS  Google Scholar 

  • Berg G (2009) Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18

    Article  CAS  Google Scholar 

  • Berman-Frank I, Lundgren P, Falkowski PG (2003) Nitrogen fixation and photosynthetic oxygen evolution in cyanobacteria. Res Microbiol 154:157–164

    Article  CAS  Google Scholar 

  • Bhattacharyya P, Jha D (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350

    Article  CAS  Google Scholar 

  • Bhogal A, Nicholson F, Rollett A, Taylor M, Litterick A, Whittingham MJ, Williams JR (2018) Improvements in the quality of agricultural soils following organic material additions depend on both the quantity and quality of the materials applied. Front Sustain Food Syst 2:9

    Article  Google Scholar 

  • Bidyarani N, Prasanna R, Babu S, Hossain F, Saxena AK (2016) Enhancement of plant growth and yields in chickpea (Cicer arietinum L.) through novel cyanobacterial and biofilmed inoculants. Microbiol Res 188-189:97–105

    Article  CAS  Google Scholar 

  • Biswas DR, Narayanasamy G (2006) Rock phosphate enriched compost: an approach to improve low-grade Indian rock phosphate. Bioresour Technol 97(18):2243–2251. https://doi.org/10.1016/j.biortech.2006.02.004

    Article  CAS  Google Scholar 

  • Bruinsma (2017) World agriculture: towards 2015/2030: an FAO study. Routledge, Abingdon

    Book  Google Scholar 

  • Carvalho TLG, Balesmao-Pires E, Saraiva RM, Ferreira PCG, Hemerly AS (2014) Nitrogen signaling in plant interactions with associative and endophytic diazotrophic bacteria. J Exp Bot 65:5631–5642

    Article  CAS  Google Scholar 

  • Chandler D, Bailey AS, Tatchell GM, Davidson G, Greaves J, Grant WP (2011) The development, regulation and use of biopesticides for integrated pest management. Philosophical Transactions of the Royal Society B: Biological Sciences 366:1987–1998

    Article  Google Scholar 

  • Chen L, Luo S, Li X, Wan Y, Chen J, Liu C (2014) Interaction of cd hyperaccumulator Solanum nigrum L. and functional endophyte Pseudomonas sp. Lk9 on soil heavy metals uptake. Soil biol. Biochemist 68:300–308. https://doi.org/10.1016/j.soilbio.2013.10.021

    Article  CAS  Google Scholar 

  • Cheng Z, Woody OZ, McConkey BJ, Glick BR (2012) Combined effects of the plant growth-promoting bacterium Pseudomonas putida UW4 and salinity stress on the Brassica napus proteome. Appl Soil Ecol 61:255–263. https://doi.org/10.1016/j.apsoil.2011.10.006

    Article  Google Scholar 

  • Cho K, Toler H, Lee J, Ownley B, Stutz JC, Moore JL, Auge RM (2006) Mycorrhizal symbiosis and response of sorghum plants to combined drought and salinity stresses. J Plant Physiol 163:517–528

    Article  CAS  Google Scholar 

  • Cho SM, Kang BR, Han SH, Anderson AJ, Park JY, Lee YH (2008) 2R, 3Rbutanediol, a bacterial volatile produced by Pseudomonas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana. Mol Plant-Microbe Interact 21:1067–1075. https://doi.org/10.1094/mpmi-21-8-1067

    Article  CAS  Google Scholar 

  • Choudhary DK, Kasotia A, Jain S, Vaishnav A, Kumari S, Sharma KP, Varma A (2016) Bacterial-mediated tolerance and resistance to plants under abiotic and biotic stresses. J Plant Growth Regul 35:276–300. https://doi.org/10.1007/s00344-015-9521-x

    Article  CAS  Google Scholar 

  • Couillerot O, Prigent-Combaret C, Caballero-Mellado J, Moënne-Loccoz Y (2009) Pseudomonas fluorescens and closely-related fluorescent pseudomonads as biocontrol agents of soil-borne phytopathogens. Lett Appl Microbiol 48(5):505–512. https://doi.org/10.1111/j.1472-765X.2009.02566.x

    Article  CAS  Google Scholar 

  • Creus CM, Sueldo RJ, Barassi CA (2004) Water relations and yield in Azospirillum-inoculated wheat exposed to drought in the field. Can J Bot 82:273–281

    Article  Google Scholar 

  • Datta A, Shrestha S, Ferdous Z, Win CC (2015) Strategies for enhancing phosphorus efficiency in crop production systems. In: Rakshit A, Singh HB, Sen A (eds) Nutrient use efficiency: from basics to advances. Springer, New Delhi, India

    Google Scholar 

  • Dodd IC, Belimov AA, Sobeih WY, Safronova VI, Grierson D, Davies WJ (2005) Will modifying plant ethylene status improve plant productivity in water-limited environments? 4th international crop science congress

    Google Scholar 

  • Egamberdiyeva D (2007) The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils. Appl Soil Ecol 36(2):184–189. https://doi.org/10.1016/j.apsoil.2007.02.005

    Article  Google Scholar 

  • Fasciglione G, Casanovas EM, Quillehauquy V, Yommi AK, Goñi MG, Roura SI, Barassi CA (2015) Azospirillum inoculation effects on growth, product quality and storage life of lettuce plants grown under salt stress. Sci Hortic 195:154–162

    Article  CAS  Google Scholar 

  • Ferron P (1971) Modification of the development of Beauveria tenella mycosis in Melolontha melolontha larvae, by means of reduced doses of organophosphorus insecticides. Entomol gia Experimetalis et Applicata 14:457–466

    Article  CAS  Google Scholar 

  • Figueiredo MVB, Martinez CR, Burity HA, Chanway CP (2008) Plant growth-promoting rhizobacteria for improving nodulation and nitrogen fixation in the common bean (Phaseolus vulgaris L.). World J Microbiol Biotechnol 24:1187–1193. https://doi.org/10.1007/s11274-007-9591-4

    Article  CAS  Google Scholar 

  • Franche C, Lindstrom K, Elmerich C (2009) Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant Soil 321:35–59

    Article  CAS  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39. https://doi.org/10.1016/j.micres.2013.09.009

    Article  CAS  Google Scholar 

  • Gopalakrishnan S, Sathya A, Vijayabharathi R, Srinivas V (2016) Formulations of plant growth-promoting microbes for field applications. In: Microbial inoculants in sustainable agricultural productivity. Springer, New Delhi, pp 239–251. isbn:978-81-322-2642-0

    Chapter  Google Scholar 

  • Harrier LA, Watson CA (2004) The potential role of arbuscular mycorrhizal (AM) fungi in the bioprotection of plants against soil-borne pathogens in organic and/or other sustainable farming systems. Pest Manag Sci 60(2):149–157. https://doi.org/10.1002/ps.820

    Article  CAS  Google Scholar 

  • Hontzeas N, Richardson A, Belimov AA, Safranova VI, Abu-Omar MM, Glick BR (2005) Evidence for horizontal gene transfer (HGT) of ACC deaminase genes. Appl Environ Microbiol 71:7556–7558

    Article  CAS  Google Scholar 

  • Imran (2017) Climate change is a real fact confronting to agricultural productivity. Int J Environ Sci Nat Res 3(3):555613. https://doi.org/10.19080/IJESNR.2017.03.555613

    Article  Google Scholar 

  • Imran AK, Inamullah AF (2016) Yield and yield attributes of Mungbean (Vigna radiate L.) cultivars as affected by phosphorous levels under different tillage systems. Cogent Food Agric 2:1151982

    Google Scholar 

  • Imran AAK, Khan IU, Shahida N (2016) Weeds density and late sown maize productivity influenced by compost application and seed rates under temperate environment. Pak J Weed Sci Res 22(1):169–181

    Google Scholar 

  • Insecticide Act (1986). http://cibrc.nic.in

  • Islam F, Yasmeen T, Ali Q, Ali S, Arif MS, Hussain S, Rizvi H (2014) Influence of Pseudomonas aeruginosa as PGPR on oxidative stress tolerance in wheat under Zn stress. Ecotoxicol Environ Saf 104:285–293. https://doi.org/10.1016/j.ecoenv.2014.03.008

    Article  CAS  Google Scholar 

  • Jha Y, Subramanian RB (2014) PGPR regulate caspase-like activity, programmed cell death, and antioxidant enzyme activity in paddy under salinity. Physiol Mol Biol Plants 20(2):201–207. https://doi.org/10.1007/s12298-014-0224-8

    Article  CAS  Google Scholar 

  • Jing YX, Yan JL, He HD, Yang DJ, Xiao L, Zhong T, Yuan M, Cai XD, Li SB (2014) Characterization of bacteria in the rhizosphere soils of Polygonum pubescens and their potential in promoting growth and cd, Pb, Zn uptake by Brassica napus. Int J Phytoremediation 16(4):321–333

    Article  CAS  Google Scholar 

  • Jnawali AD, Ojha RB, Marahatta S (2015) Role of Azotobacter in soil fertility and sustainability – a review. Adv Plants Agric Res 2:1–5

    Google Scholar 

  • Jones KM, Kobayashi H, Davies BW, Taga ME, Walker GC (2007) How symbionts invade plants: the Sinorhizobium-Medicago model. Nat Rev Microbiol 5:619–633

    Article  CAS  Google Scholar 

  • Keswani C, Mishra S, Sarma BK, Singh SP, Singh HB (2014) Unraveling the efficient applications of secondary metabolites of various Trichoderma spp. Appl Microbiol Biotechnol 98(2):533–544. https://doi.org/10.1007/s00253-013-5344-5

    Article  CAS  Google Scholar 

  • Key S, Ma JK, Drake PM (2008) Genetically modified plants and human health. J R Soc Med 101(6):290–298. https://doi.org/10.1258/jrsm.2008.070372

    Article  Google Scholar 

  • Khan MS, Zaidi A, Ahmad E (2014) Mechanism of phosphate Solubilization and physiological functions of phosphate-solubilizing microorganisms in: phosphate solubilizing microbes for crop improvement. Springer International Publishing, Berlin, pp 31–62

    Google Scholar 

  • Khan A, Singh P, Srivastava A (2018) Synthesis, nature and utility of universal iron chelator-siderophore: a review. Microbiol Res 212–213:103–111

    Article  Google Scholar 

  • Kohler J, Hernández JA, Caravaca F, Roldán A (2008) Plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungi modify alleviation biochemical mechanisms in water-stressed plants. Funct Plant Biol 35(2):141–151

    Article  CAS  Google Scholar 

  • Kumar VV (2018) Biofertilizers and biopesticides in sustainable agriculture. In: role of rhizospheric microbes in soil. Springer, Singapore

    Google Scholar 

  • Kumari S, Vaishnav A, Jain S, Varma A, Choudary DK (2015) Bacterial-mediated induction of systemic tolerance to salinity with expression of stress alleviating enzymes in soybean (Glycine max L. Merrill). J Plant Growth Regul 34:558–573. https://doi.org/10.1007/s00344-015-9490-0

    Article  CAS  Google Scholar 

  • Li Z, Alves SB, Roberts DW, Fan M, Delalibera I, Tang J, Lopes RB, Faria M, Rangel DEN (2010) Biological control of insects in Brazil and China: history, current programs and reasons for their successes using entomopathogenic fungi. Biocontrol Sci Tech 20(2):117–136

    Article  Google Scholar 

  • Li RX, Cai F, Pang G, Shen QR, Li R, Chen W (2015) Solubilisation of phosphate and micronutrients by Trichoderma harzianum and its relationship with the promotion of tomato plant growth. PLoS One 10(6):e0130081. https://doi.org/10.1371/journal.pone.0130081

    Article  CAS  Google Scholar 

  • Lim JH, Kim SD (2013) Induction of drought stress resistance by multi-functional PGPR Bacillus licheniformis K11 in pepper. Plant Pathol J 29(2):201–208. https://doi.org/10.5423/PPJ.SI.02.2013.0021

    Article  Google Scholar 

  • Loaces I, Ferrando L, Fernández Scavino A (2011) Dynamics, diversity and function of endophytic Siderophore-producing Bacteria in Rice. Microb Ecol 61:606–618. https://doi.org/10.1007/s00248-010-9780-9

    Article  Google Scholar 

  • Lone R, Shuab R, Khan S, Ahmad J, Koul KK (2017) Arbuscular mycorrhizal fungi for sustainable agriculture. In: Kumar V, Kumar M, Sharma S, Prasad R (eds) Probiotics and Plant Health. Springer, Singapore. doi:https://doi.org/10.1007/978-981-10-3473-2_25

  • Martinez-Viveros O, Jorquera M, Crowley DE, Gajardo G, Mora ML (2010) Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. J Soil Sci Plant Nutr 10(3):293–319

    Article  Google Scholar 

  • Mathew DC, Ho YN, Gicana RG, Mathew GM, Chien MC, Huang CC (2015) A rhizosphere-associated symbiont, Photobacterium spp. strain MELD1, and its targeted synergistic activity for phytoprotection against mercury. PLoS One 10(3):e0121178. doi:https://doi.org/10.1371/journal.pone.0121178

  • McLellan CA, Turbyville TJ, Wijeratne EM, Kerschen A, Vierling E, Queitsch C, Whitesell L, Gunatilaka AA (2007) A rhizosphere fungus enhances Arabidopsis thermotolerance through production of an HSP90 inhibitor. Plant Physiol 145(1):174–182. https://doi.org/10.1104/pp.107.101808

    Article  CAS  Google Scholar 

  • Meena KK, Kumar M, Kalyuzhnaya MG, Yandigeri MS, Singh DP, Saxena AK (2012) Epiphytic pink-pigmented methylotrophic bacteria enhance germination and seedling growth of wheat (Triticum aestivum) by producing phytohormone. Antonie Van Leeuwenhoek 101(4):777–786. https://doi.org/10.1007/s10482-011-9692-9

    Article  CAS  Google Scholar 

  • Moscardi F (1999) Assessment of the application of baculoviruses for control of Lepidoptera. Annu Rev Entomol 44:257–289. https://doi.org/10.1146/annurev.ento.44.1.257

    Article  CAS  Google Scholar 

  • Nadeem SM, Zahir ZA, Naveed M, Arshad M (2009) Rhizobacteria containing ACC-deaminase confer salt tolerance in maize grown on salt affected fields. Can J Microbiol 55(11):1302–1309. https://doi.org/10.1139/w09-092

    Article  CAS  Google Scholar 

  • Nadeem SM, Ahmad M, Zahir ZA, Javaid A, Ashraf M (2014) The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol Adv 32(2):429–448

    Article  Google Scholar 

  • Nautiyal CS, Bhadauria S, Kumar P, Lal H, Mondal R, Verma D (2000) Stress induced phosphate solubilization in bacteria isolated from alkaline soils. FEMS Microbiol Lett 182(2):291–296. https://doi.org/10.1111/j.1574-6968.2000.tb08910.x

    Article  CAS  Google Scholar 

  • Naveed M, Mitter B, Reichenauer TG, Wieczorek K, Sessitsch A (2014) Increased drought stress resilience of maize through endophytic colonization by Burkholderia phytofirmans PsJN and Enterobacter sp FD17. Environ Exp Bot 97:30–39. https://doi.org/10.1016/j.envexpbot.2013.09.014

    Article  CAS  Google Scholar 

  • Nia SH, Zarea MJ, Rejali F, Varma A (2012) Yield and yield components of wheat as affected by salinity and inoculation with Azospirillum strains from saline or non-saline soil. J Saudi Soc Agric Sci 11:113–121

    Google Scholar 

  • Omar MNA, Osman MEH, Kasim WA and Abd El-Daim IA (2009) Improvement of salt tolerance mechanisms of barley cultivated under salt stress using Azospirillum brasilense. In: Ashraf M, Ozturk M, Athar H (eds) Salinity and water stress. Tasks for vegetation sciences, vol 44. Springer, Dordrecht. doi:https://doi.org/10.1007/978-1-4020-9065-3_15

  • Ortas I, Rafique M, Ahmed IAM (2017) Application of arbuscular mycorrhizal fungi into agriculture. In: Wu QS (ed) Arbuscular mycorrhizas and stress tolerance of plants. Springer Nature Singapore Pte Ltd., Singapore, pp 305–327

    Chapter  Google Scholar 

  • Panlada T, Piromyou P, Longtonglang A, Noisa-Ngiam R, Boonkerd N, Teaumroong N (2013) Alleviation of the effect of environmental stresses using co-inoculation of mungbean by Bradyrhizobium and rhizobacteria containing stress-induced ACC deaminase enzyme. Soil Sci Plant Nutr 59(4):559–571. https://doi.org/10.1080/00380768.2013.804391

    Article  CAS  Google Scholar 

  • Perret X, Staehelin C, Broughton WJ (2000) Molecular basis of symbiotic promiscuity. Microbiol Mol Biol Rev 64:180–201

    Article  CAS  Google Scholar 

  • Porcel R, Aroca R, Ruiz-Lozano JM (2012) Salinity stress alleviation using arbuscular mycorrhizal fungi. A review Agronomy for Sustainable Development 32:181–200

    Article  CAS  Google Scholar 

  • Raaijmakers JM, Mazzola M (2012) Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria. Annu Rev Phytopathol 50:403–424. https://doi.org/10.1146/annurev-phyto-081211-172908

    Article  CAS  Google Scholar 

  • Ram RM, Singh HB (2018) Trichoderma spp: Nature’s gift to mankind. In Chaurasiya HK, Mishra DP (eds) plant systematics and biotechnology: challenges and opportunities. Today’s and Tomorrow’s printers and publishers, New Delhi, pp. 133–141

    Google Scholar 

  • Ram RM, Keswani C, Mishra S, Tripathi R, Ray S, Singh SP, Singh HB (2016) Trichoderma secondary metabolites: applications and future prospects. In: Vaish SS (ed) Plant diseases and their sustainable management. Biotech books, New Delhi, pp 113–127

    Google Scholar 

  • Reddy C, Saravanan RS (2013) Polymicrobial multi-functional approach for enhancement of crop productivity. Adv Appl Microbiol 82: 53-113

    Google Scholar 

  • Rillig MC, Sosa-Hernández MA, Roy J, Aguilar-Trigueros CA, Vályi K, Lehmann A (2016) Towards an integrated mycorrhizal technology: harnessing mycorrhiza for sustainable intensification in agriculture. Front Plant Sci 7:1625. https://doi.org/10.3389/fpls.2016.01625

    Article  Google Scholar 

  • Rodriguez A, Sanders IR (2015) The role of community and population ecology in applying mycorrhizal fungi for improved food security. ISME J 9(5):1053

    Article  Google Scholar 

  • Sahoo RK, Ansari MW, Pradhan M, Dangar TK, Mohanty S, Tuteja N (2014a) Phenotypic and molecular characterization of native Azospirillum strains from rice fields to improve crop productivity. Protoplasma 251(4):943–953. https://doi.org/10.1007/s00709-013-0607-7

    Article  CAS  Google Scholar 

  • Sahoo RK, Ansari MW, Pradhan M, Dangar TK, Mohanty S, Tuteja N (2014b) A novel Azotobacter vinelandii (SRIAz3) functions in salinity stress tolerance in rice. Plant Signal Behav 9(7):e29377. https://doi.org/10.4161/psb.29377

    Article  CAS  Google Scholar 

  • Sanchis V, Bourguet D (2008) Bacillus thuringiensis: applications in agriculture and insect resistance management. A review. Agron Sustain Dev 28:11–20

    Article  Google Scholar 

  • Santi C, Bogusz D, Franche C (2013) Biological nitrogen fixation in non-legume plants. Ann Bot 111(5):743–767. https://doi.org/10.1093/aob/mct048

    Article  CAS  Google Scholar 

  • de Santiago A, Quintero JM, Avilés M, Delgado A (2011) Effect of Trichoderma asperellum strain T34 on iron, copper, manganese, and zinc uptake by wheat grown on a calcareous medium. Plant Soil 342:97–104. https://doi.org/10.1007/s11104-010-0670-1

    Article  CAS  Google Scholar 

  • Scholte EJ, Takken W, Knols BG (2007) Infection of adult Aedes aegypti and ae. Albopictus mosquitoes with the entomopathogenic fungus Metarhizium anisopliae. Acta Trop 102(3):151–158. https://doi.org/10.1016/j.actatropica.2007.04.011

    Article  Google Scholar 

  • Schwarzott D, Walker C, Schüssler A (2001) Glomus, the largest genus of the arbuscular mycorrhizal fungi (Glomales), is nonmonophyletic. Mol Phylogenet Evol 21(2):190–197. https://doi.org/10.1006/mpev.2001.1007

    Article  CAS  Google Scholar 

  • Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springer Plus 2(1):587

    Article  Google Scholar 

  • Shelake RM, Waghunde RR, Verma PP, Singh C, Kim JY (2019) Carbon sequestration for soil fertility management: microbiological perspective. In: Soil fertility management for sustainable development. Springer, Singapore, pp 25–42

    Chapter  Google Scholar 

  • Shukla N, Awasthi RP, Rawat L, Kumar J (2012a) Biochemical and physiological responses of rice (Oryza sativa L.) as influenced by Trichoderma harzianum under drought stress. Plant Physiol Biochem 54:78–88. https://doi.org/10.1016/j.plaphy.2012.02.001

    Article  CAS  Google Scholar 

  • Shukla PS, Agarwal PK, Jha B (2012b) Improved salinity tolerance of Arachis hypogaea (L.) by the interaction of halotolerant plant-growth-promoting rhizobacteria. J. Plant Growth Regul 31:95–206

    Google Scholar 

  • Singh HB (2014) Management of plant pathogens with microorganisms. Proc Natl Acad Sci 80:443–454

    Google Scholar 

  • Singh G, Biswas DR and Marwaha TS (2010) Mobilization of potassium from waste mica by plant growth promoting rhizobacteria and its assimilation by maize (zea mays) and wheat (triticum aestivum l.): a hydroponics study under phytotron growth chamber. J Plant Nutr 33:1236–1251. doi:10.1080/01904161003765760

    Google Scholar 

  • Singh DP, Prabha R, Yandigeri MS and Arora DK (2011) Cyanobacteria mediated phenyl propanoids and phytohormones in rice (Oryza sativa) enhance plant growth and stress tolerance Antoon Leeuw 100: 557-568

    Google Scholar 

  • Singh HB, Singh BN, Singh SP, Sarma BK (2012) Exploring different avenues of Trichoderma as potent biofungicidal and plant growth promoting candidate—an overview. Rev plant Pathol 109:315–426

    Google Scholar 

  • Sorty AM, Meena KK, Choudhary K, Bitla UM, Minhas PS, Krishnani KK (2016) Effect of plant growth promoting Bacteria associated with halophytic weed (Psoralea corylifolia L) on germination and seedling growth of wheat under saline conditions. Appl Biochem Biotechnol 180(5):872–882. https://doi.org/10.1007/s12010-016-2139-z

    Article  CAS  Google Scholar 

  • Souza RD, Ambrosini A, Passaglia LM (2015) Plant growth-promoting bacteria as inoculants in agricultural soils. Genet Mol Biol 38(4):401–419. https://doi.org/10.1590/S1415-475738420150053

    Article  Google Scholar 

  • Srivastava PC, Rawat D, Pachauri SP, Shrivastava M (2015) Strategies for enhancing zinc efficiency in crop plants. In: Rakshit A, Singh HB, Sen A (eds) Nutrient use efficiency: from basics to advances. Springer, New Delhi, pp 87–10

    Chapter  Google Scholar 

  • Steenhoudt O, Vanderleyden J (2000) Azospirillum, a free living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev 24:487–506

    Article  CAS  Google Scholar 

  • Swaine EK, Swaine MD, Killham K (2007) Effects of drought on isolates of Bradyrhizobium elkanii cultured from Albizia adianthifolia seedlings of different provenances. Agrofor Syst 69:135–145. https://doi.org/10.1007/s10457-006-9025-6

    Article  Google Scholar 

  • Terre S, Asch F, Padham J, Sikora RA, Becker M (2007) Influence of root zone bacteria on root iron plaque formation in rice subjected iron toxicity. In: Tielkes E (ed) utilization of diversity in land use systems: sustainable and organic approaches to meet human needs. Tropentag, Witzenhausen, p 446

    Google Scholar 

  • Timmusk S, Abd El-Daim IA, Copolovici L, Tanilas T, Kännaste A, Behers L, Nevo E, Seisenbaeva G, Stenström E, Niinemets Ãœ (2014) Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments: enhanced biomass production and reduced emissions of stress volatiles. PloSone 9(5):e96086. https://doi.org/10.1371/journal.pone.0096086

    Article  CAS  Google Scholar 

  • Tiwari S, Singh P, Tiwari R, Meena KK, Yanadegeri M, Singh DP (2011) Salt-tolerant rhizobacteria-mediated induced tolerance in wheat (Triticum aestivum) and chemical diversity in rhizosphere enhance plant growth. Biol Fertil Soils 47:907. https://doi.org/10.1007/s00374-011-0598-5

    Article  CAS  Google Scholar 

  • Toro A (1996) Nodulation competitiveness in the rhizobium-legume symbiosis. World J Microbiol Biotechnol 12(2):157–162. https://doi.org/10.1007/BF00364680

    Article  CAS  Google Scholar 

  • Trivedi P, Schenk PM, Wallenstein MD, Singh BK (2017) Tiny microbes, big yields: enhancing food crop production with biological solutions. Microb Biotechnol 10(5):999–1003. https://doi.org/10.1111/1751-7915.12804

    Article  Google Scholar 

  • Vaid SK, Kumar B, Sharma A, Shukla AK, Srivastava PC (2014) Effect of zinc solubilizing bacteria on growth promotion and zinc nutrition of rice. J Soil Sci Plant Nutr 14:889–910

    Google Scholar 

  • Vaishnav A, Kumari S, Jain S, Varma A, Choudhary DK (2015) Putative bacterial volatile-mediated growth in soybean (Glycine max L. Merrill) and expression of induced proteins under salt stress. J Appl Microbiol 119(2):539–551. https://doi.org/10.1111/jam.12866

    Article  CAS  Google Scholar 

  • Vaishnav A, Kumari S, Jain S, Varma A, Tuteja N, Choudhary DK (2016a) PGPR-mediated expression of salt tolerance gene in soybean through volatiles under sodium nitroprusside. J Basic Microbiol 56:1274–1288. https://doi.org/10.1002/jobm.201600188

    Article  CAS  Google Scholar 

  • Vaishnav A, Varma A, Tuteja N and Choudhary DK (2016b) PGPR mediated amelioration of crops under salt stress. In: Choudhary D, Varma A, Tuteja N (eds) Plant-microbe interaction: an approach to sustainable agriculture. Springer, Singapore

    Google Scholar 

  • Vaishnav A, Hansen AP, Agarwal PK, Verma A and Chowdary DK (2017a) A biotechnological perspectives of legume-rhizobium symbiosis. In rhizobium biology and biotechnology, soil biology, Vol. 50, springer, Cham

    Google Scholar 

  • Vaishnav A, Varma A, Tuteja N, Choudhary DK (2017b) Characterization of bacterial volatiles and their impact on plant health under abiotic stress. In: Choudhary DK et al (eds) Volatiles and food security. Springer, Singapore

    Google Scholar 

  • Vaishnav A, Sharma SK, Choudhary DK, Sharma KP, Ahmad E, Sharma MP, Ramesh A, Saxena AK (2018) Nitric oxide as a signaling molecule in plant-bacterial interactions. In: Egamberdieva D, Ahmad P (eds) Plant microbiome: stress response, Microorganisms for sustainability. Springer Nature, Singapore, pp 183–199

    Chapter  Google Scholar 

  • Van Dommelen A, Croonenborghs A, Spaepen S, Vanderleyden J (2009) Wheat growth promotion through inoculation with an ammonium-excreting mutant of Azospirillum brasilense. Biol Fertil Soils 45:549–553. https://doi.org/10.1007/s00374-009-0357-z

    Article  CAS  Google Scholar 

  • Vassilev N, Vassilev M, Nikolaeva I (2006) Simultaneous P-solubilizing and biocontrol activity of microorganisms: potentials and future trends. Appl Microbiol Biotechnol 71(2):137–144. https://doi.org/10.1007/s00253-006-0380-z

    Article  CAS  Google Scholar 

  • Waghunde RR, Shelake RM, Sabalpara AN (2016) Trichoderma: a significant fungus for agriculture and environment. Afr J Agric Res 11:1952–1965

    Article  Google Scholar 

  • Walsh U, O'Gara F, Economidis I and Hogan S (1999) Harnessing the potential of genetically modified microorganisms and plants, ISBN 92-894-0295-4

    Google Scholar 

  • Wang CJ, Yang W, Wang C, Gu C, Niu DD, Liu HX, Wang HP, Gua HP (2012) Induction of drought tolerance in cucumber plants by a consortium of three plant growth-promoting rhizobacterium strains. PLoS One 7(12):e52565. https://doi.org/10.1371/journal.pone.0052565

    Article  CAS  Google Scholar 

  • Wang H, Li H, Zhang M, Song Y, Huang J, Huang H, Shao M, Liu Y, Kang Z (2018) Carbon dots enhance the nitrogen fixation activity of Azotobacter chroococcum ACS Appl mater. Interfaces 10:16308–16314

    CAS  Google Scholar 

  • Winkelmann G (2007) Ecology of siderophores with special reference to the fungi. Biometals 20:379. https://doi.org/10.1007/s10534-006-9076-1

    Article  CAS  Google Scholar 

  • Yakhin OI, Lubyanov AA, Yakhinn IA, Brown PH (2017) Biostimulants in plant science: a global perspective. Front Plant Sci 7:2049. https://doi.org/10.3389/fpls.2016.02049

    Article  Google Scholar 

  • Zahir ZA, Ghani U, Naveed M, Nadeem SM and Asghar HN (2009) Comparative effectiveness of Pseudomonas and Serratia sp. containing ACC-deaminase for improving growth and yield of wheat (Triticum aestivum L.) under salt-stressed conditions. Arch. Microbiol.,191(5): 415-424

    Google Scholar 

  • Zhang F, Huo Y, Cobb AB, Luo G, Zhou J, Yang G, Wilson GWT, Zhang Y (2018) Trichoderma biofertilizer links to altered soil chemistry, altered microbial communities, and improved grassland biomass. Front Microbiol 9:848. https://doi.org/10.3389/fmicb.2018.oo848

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of the Department of Biotechnology, GITAM Institute of Technology, GITAM (Deemed to be University), Visakhapatnam, in the successful completion of this study.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karri, V.R. (2022). Potential Application of Agriculturally Promising Microorganisms for Sustainable Crop Production and Protection. In: Inamuddin, Ahamed, M.I., Prasad, R. (eds) Application of Microbes in Environmental and Microbial Biotechnology. Environmental and Microbial Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-16-2225-0_18

Download citation

Publish with us

Policies and ethics