Skip to main content

Hybrid Nanoparticles in Image-Guided Drug Delivery

  • Chapter
  • First Online:
Nanoparticles for Drug Delivery

Part of the book series: Gels Horizons: From Science to Smart Materials ((GHFSSM))

  • 648 Accesses

Abstract

The recent advancements in nanotechnology have opened immense opportunities for the management several clinical complications. The multidisciplinary approach of combining drug delivery and image-guided diagnostics led to the evolution of theranostic approaches which exhibit significant translational potential. However, these approaches are still in infantile or conceptual phase where increased research is being carried out globally. Also, very minimal findings are being practiced in clinical arena. The bridging of knowledge from basic biology, disease pathology and materials science to nanotechnology is inevitable for successful theranostic strategies and the field of nanoscience is advancing in multidisciplinary dimensions which would pave the ways for the development of novel theranostic strategies for disease management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shastry B (2006) Pharmacogenetics and the concept of individualized medicine. Pharmacogenomics J 6:16

    Article  CAS  Google Scholar 

  2. Lau J, Lin K-S, Bénard F (2017) Past, present, and future: development of theranostic agents targeting carbonic anhydrase IX. Theranostics 7:4322

    Article  CAS  Google Scholar 

  3. Jarvinen TA, Liu ET (2003) HER-2/neu and topoisomerase IIα-simultaneous drug targets in cancer. Comb Chem High Throughput Screen 6:455–470

    Article  Google Scholar 

  4. Patel SK, Janjic JM (2015) Macrophage targeted theranostics as personalized nanomedicine strategies for inflammatory diseases. Theranostics 5:150

    Article  CAS  Google Scholar 

  5. Kuijper S, Turner CJ, Adams RH (2007) Regulation of angiogenesis by Eph–ephrin interactions. Trends Cardiovasc Med 17:145–151

    Article  CAS  Google Scholar 

  6. Chen Y, Pullambhatla M, Minn I, Wang Y, Jin J, Bhujwalla Z, Mease R, Pomper M (2015) A PSMA-targeted theranostic agent for prostate cancer. J Nucl Med 56:1212–1212

    Google Scholar 

  7. Lu W (2018) Editorial for molecular imaging and theranostics. Acta Pharm Sinica B 8(3):318

    Article  Google Scholar 

  8. Peterson LM, Mankoff DA, Lawton T, Yagle K, Schubert EK, Stekhova S, Gown A, Link JM, Tewson T, Krohn KA (2008) Quantitative imaging of estrogen receptor expression in breast cancer with PET and 18F-fluoroestradiol. J Nucl Med 49:367–374

    Article  Google Scholar 

  9. Van Den Abbeele AD, Badawi RD (2002) Use of positron emission tomography in oncology and its potential role to assess response to imatinib mesylate therapy in gastrointestinal stromal tumors (GISTs). Eur J Cancer 38:S60–S65

    Article  Google Scholar 

  10. Van Dam GM, Themelis G, Crane LM, Harlaar NJ, Pleijhuis RG, Kelder W, Sarantopoulos A, De Jong JS, Arts HJ, Van Der Zee AG (2011) Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results. Nat Med 17:1315

    Google Scholar 

  11. Kelkar SS, Reineke TM (2011) Theranostics: combining imaging and therapy. Bioconjug Chem 22:1879–1903

    Article  CAS  Google Scholar 

  12. Perez EA, Romond EH, Suman VJ, Jeong J-H, Sledge G, Geyer JR, C. E., Martino S, Rastogi P, Gralow J, Swain SM (2014) Trastuzumab plus adjuvant chemotherapy for human epidermal growth factor receptor 2–positive breast cancer: planned joint analysis of overall survival from NSABP B-31 and NCCTG N9831. J Clin Oncol 32:3744

    Google Scholar 

  13. Eggermont AM, Chiarion-Sileni V, Grob J-J, Dummer R, Wolchok JD, Schmidt H, Hamid O, Robert C, Ascierto PA, Richards JM (2016) Prolonged survival in stage III melanoma with ipilimumab adjuvant therapy. New Engl J Med 375:1845–1855

    Article  CAS  Google Scholar 

  14. Lee MH, Sessler JL, Kim JS (2015) Disulfide-based multifunctional conjugates for targeted theranostic drug delivery. Acc Chem Res 48:2935–2946

    Article  CAS  Google Scholar 

  15. Yue C, Zhang C, Alfranca G, Yang Y, Jiang X, Yang Y, Pan F, de la Fuente JM, Cui D (2016) Near-infrared light triggered ROS-activated theranostic platform based on Ce6-CPT-UCNPs for simultaneous fluorescence imaging and chemo-photodynamic combined therapy. Theranostics 6(4):456

    Article  CAS  Google Scholar 

  16. Winkelstein JA (1973) Opsonins: their function, identity, and clinical significance. J Pediatr 82:747–753

    Article  CAS  Google Scholar 

  17. Xie J, Lee S, Chen X (2010) Nanoparticle-based theranostic agents. Adv Drug Deliv Rev 62:1064–1079

    Article  CAS  Google Scholar 

  18. Yao VJ, D’angelo S, Butler KS, Theron C, Smith TL, Marchio S, Gelovani JG, Sidman RL, Dobroff AS, Brinker CJ (2016) Ligand-targeted theranostic nanomedicines against cancer. J Controlled Release 240:267–286

    Google Scholar 

  19. Sperling RA, Parak WJ (2010) Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philos Trans R Soc A Math Phys Eng Sci 368:1333–1383

    Article  CAS  Google Scholar 

  20. Torchilin VP (2005) Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discovery 4:145

    Article  CAS  Google Scholar 

  21. Torchilin VP (2007) Micellar nanocarriers: pharmaceutical perspectives. Pharm Res 24:1

    Article  CAS  Google Scholar 

  22. Hood M, Mari M, Muñoz-Espí R (2014) Synthetic strategies in the preparation of polymer/inorganic hybrid nanoparticles. Materials 7:4057–4087

    Article  Google Scholar 

  23. Rong J, Oberbeck F, Wang X, Li X, Oxsher J, Niu Z, Wang Q (2009) Tobacco mosaic virus templated synthesis of one dimensional inorganic–polymer hybrid fibres. J Mater Chem 19:2841–2845

    Article  CAS  Google Scholar 

  24. Hocine O, Gary-Bobo M, Brevet D, Maynadier M, Fontanel S, Raehm L, Richeter S, Loock B, Couleaud P, Frochot C (2010) Silicalites and mesoporous silica nanoparticles for photodynamic therapy. Int J Pharm 402:221–230

    Article  CAS  Google Scholar 

  25. Popat A, Hartono SB, Stahr F, Liu J, Qiao SZ, Lu GQM (2011) Mesoporous silica nanoparticles for bioadsorption, enzyme immobilisation, and delivery carriers. Nanoscale 3:2801–2818

    Article  CAS  Google Scholar 

  26. Jain PK, Huang X, El-Sayed IH, El-Sayed MA (2008) Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res 41:1578–1586

    Article  CAS  Google Scholar 

  27. Buckle T, Chin PT, Van Leeuwen FW (2010) (Non-targeted) radioactive/fluorescent nanoparticles and their potential in combined pre-and intraoperative imaging during sentinel lymph node resection. Nanotechnology 21:

    Article  CAS  Google Scholar 

  28. Nahrendorf M, Zhang H, Hembrador S, Panizzi P, Sosnovik DE, Aikawa E, Libby P, Swirski FK, Weissleder R (2008) Nanoparticle PET-CT imaging of macrophages in inflammatory atherosclerosis. Circulation 117:379

    Article  CAS  Google Scholar 

  29. Nguyen Tri P, Ouellet-Plamondon C, Rtimi S, Assadi AA, Nguyen TA (2019) Methods for synthesis of hybrid nanoparticles, pp 51–63

    Google Scholar 

  30. Cao Y, Li D, Jiang F, Yang Y, Huang Z (2013) Engineering metal nanostructure for SERS application. J Nanomater 2013:1–12

    Article  CAS  Google Scholar 

  31. McGilvray KL, Decan MR, Wang D, Scaiano JC (2006) Facile photochemical synthesis of unprotected aqueous gold nanoparticles. J Am Chem Soc 128:15980–15981

    Article  CAS  Google Scholar 

  32. Abedini A, Daud AR, Abdul Hamid MA, Kamil Othman N, Saion E (2013) A review on radiation-induced nucleation and growth of colloidal metallic nanoparticles. Nanoscale Res Lett

    Google Scholar 

  33. Li T, Park HG, Choi S-H (2007) γ-Irradiation-induced preparation of Ag and Au nanoparticles and their characterizations. Mater Chem Phys 105:325–330

    Article  CAS  Google Scholar 

  34. Abedini A, Saion E, Larki F, Zakaria A, Noroozi M, Soltani N (2012) Room temperature radiolytic synthesized Cu@CuAlO2-Al2O3 nanoparticles. Int J Mol Sci 13:11941–11953

    Article  CAS  Google Scholar 

  35. Horikoshi S, Abe H, Torigoe K, Abe M, Serpone N (2010) Access to small size distributions of nanoparticles by microwave-assisted synthesis. Formation of Ag nanoparticles in aqueous carboxymethylcellulose solutions in batch and continuous-flow reactors. Nanoscale 2:1441

    Google Scholar 

  36. Saha S, Malik MM, Qureshi MS (2013) Microwave synthesis of silver nanoparticles. Nano Hybrids 4:99–112

    Article  CAS  Google Scholar 

  37. Karthikeyan B, Govindhan R, Amutheesan M (2019) Chemical methods for synthesis of hybrid nanoparticles, pp 179–188

    Google Scholar 

  38. Hakuta Y, Ohashi T, Hayashi H, Arai K (2011) Hydrothermal synthesis of zirconia nanocrystals in supercritical water. J Mater Res 19:2230–2234

    Article  CAS  Google Scholar 

  39. Hakuta Y, Ura H, Hayashi H, Arai K (2005) Effects of hydrothermal synthetic conditions on the particle size of γ-AlO(OH) in sub and supercritical water using a flow reaction system. Mater Chem Phys 93:466–472

    Article  CAS  Google Scholar 

  40. Hakuta Y, Ura H, Hayashi H, Arai K (2005) Continuous production of BaTiO3 nanoparticles by hydrothermal synthesis. Ind Eng Chem Res 44:840–846

    Article  CAS  Google Scholar 

  41. Hayashi H, Ueda A, Suino A, Hiro K, Hakuta Y (2009) Hydrothermal synthesis of yttria stabilized ZrO2 nanoparticles in subcritical and supercritical water using a flow reaction system. J Solid State Chem 182:2985–2990

    Article  CAS  Google Scholar 

  42. Mousavand T, Takami S, Umetsu M, Ohara S, Adschiri T (2006) Supercritical hydrothermal synthesis of organic-inorganic hybrid nanoparticles. J Mater Sci 41:1445–1448

    Article  CAS  Google Scholar 

  43. Tan C, Zhang H (2015) Wet-chemical synthesis and applications of non-layer structured two-dimensional nanomaterials. Nat Commun 6:7873

    Article  CAS  Google Scholar 

  44. Li H, Wu J, Yin Z, Zhang H (2014) Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets. Acc Chem Res 47:1067–1075

    Article  CAS  Google Scholar 

  45. Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S, McGovern IT, Holland B, Byrne M, Gun’Ko YK, Boland JJ, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari AC, Coleman JN (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3:563

    Google Scholar 

  46. Grzelczak M, Liz-Marzán LM (2014) The relevance of light in the formation of colloidal metal nanoparticles. Chem Soc Rev 43:2089–2097

    Article  CAS  Google Scholar 

  47. Ziegler C, Eychmüller A (2011) Seeded growth synthesis of uniform gold nanoparticles with diameters of 15−300 nm. J Phys Chem C 115:4502–4506

    Article  CAS  Google Scholar 

  48. Jiang Z-J, Liu C-Y (2003) Seed-mediated growth technique for the preparation of a silver nanoshell on a silica sphere. J Phys Chem B 107:12411–12415

    Article  CAS  Google Scholar 

  49. Zhang D, Gökce B, Notthoff C, Barcikowski S (2015) Layered seed-growth of agge football-like microspheres via precursor-free picosecond laser synthesis in water. Sci Rep 5:13661

    Article  Google Scholar 

  50. Rao BG, Mukherjee D, Reddy BM (2017) Novel approaches for preparation of nanoparticles, pp 1–36

    Google Scholar 

  51. Ueno S, Nakashima K, Sakamoto Y, Wada S (2015) Synthesis of silver-strontium titanate hybrid nanoparticles by sol-gel-hydrothermal method. Nanomaterials 5:386–397

    Article  CAS  Google Scholar 

  52. Allouche J, Le Beulze A, Dupin J-C, Ledeuil J-B, Blanc S, Gonbeau D (2010) Hybrid spiropyran–silica nanoparticles with a core-shell structure: sol–gel synthesis and photochromic properties. J Mater Chem 20:9370

    Article  CAS  Google Scholar 

  53. Shaik S, Sonawane SH, Barkade SS, Bhanvase B (2016) Synthesis of inorganic, polymer, and hybrid nanoparticles using ultrasound, pp 457–490

    Google Scholar 

  54. Teo BM, Suh SK, Hatton TA, Ashokkumar M, Grieser F (2011) Sonochemical synthesis of magnetic Janus nanoparticles. Langmuir 27:30–33

    Article  CAS  Google Scholar 

  55. Okitsu K, Ashokkumar M, Grieser F (2005) Sonochemical synthesis of gold nanoparticles: effects of ultrasound frequency. J Phys Chem B 109:20673–20675

    Article  CAS  Google Scholar 

  56. Cui Y, Zhou D, Sui Z, Han B (2015) Sonochemical synthesis of graphene oxide-wrapped gold nanoparticles hybrid materials: visible light photocatalytic activity. Chin J Chem 33:119–124

    Article  CAS  Google Scholar 

  57. Adair JH, Suvaci E (2001) Submicron electroceramic powders by hydrothermal synthesis, pp 8933–8937

    Google Scholar 

  58. Daraghmeh NH, Chowdhry BZ, Leharne SA, Al Omari MM, Badwan AA (2011) Chitin 36:35–102

    CAS  Google Scholar 

  59. Rajaeiyan A, Bagheri-Mohagheghi MM (2013) Comparison of sol-gel and co-precipitation methods on the structural properties and phase transformation of γ and α-Al2O3 nanoparticles. Adv Manufact 1:176–182

    Article  CAS  Google Scholar 

  60. Rawat M, Yadukrishnan P, Kumar N (2018) Mechanisms of action of nanoparticles in living systems, pp 220–236

    Google Scholar 

  61. Qidwai A, Pandey A, Kumar R, Shukla SK, Dikshit A (2018) Advances in biogenic nanoparticles and the mechanisms of antimicrobial effects. Ind J Pharm Sci 80

    Google Scholar 

  62. Slavin YN, Asnis J, Häfeli UO, Bach H (2017) Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J Nanobiotechnol 15

    Google Scholar 

  63. Tian J, Wong KKY, Ho C-M, Lok C-N, Yu W-Y, Che C-M, Chiu J-F, Tam PKH (2007) Topical delivery of silver nanoparticles promotes wound healing. ChemMedChem 2:129–136

    Article  CAS  Google Scholar 

  64. Shin S-H, Ye M-K, Kim H-S, Kang H-S (2007) The effects of nano-silver on the proliferation and cytokine expression by peripheral blood mononuclear cells. Int Immunopharmacol 7:1813–1818

    Article  CAS  Google Scholar 

  65. Choi O, Deng KK, Kim N-J, Ross L, Surampalli RY, Hu Z (2008) The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res 42:3066–3074

    Article  CAS  Google Scholar 

  66. Adams LK, Lyon DY, Alvarez PJJ (2006) Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Res 40:3527–3532

    Article  CAS  Google Scholar 

  67. Li Z, Hulderman T, Salmen R, Chapman R, Leonard SS, Young S-H, Shvedova A, Luster MI, Simeonova PP (2007) Cardiovascular effects of pulmonary exposure to single-wall carbon nanotubes. Environ Health Perspect 115:377–382

    Article  CAS  Google Scholar 

  68. Davoren M, Herzog E, Casey A, Cottineau B, Chambers G, Byrne HJ, Lyng FM (2007) In vitro toxicity evaluation of single walled carbon nanotubes on human A549 lung cells. Toxicol Vitro 21:438–448

    Article  CAS  Google Scholar 

  69. Warheit DB (2003) Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol Sci 77:117–125

    Article  Google Scholar 

  70. Hoet PHM, Brüske-Hohlfeld I, Salata OV (2004) J Nanobiotechnol 2:12

    Article  CAS  Google Scholar 

  71. Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839

    Article  CAS  Google Scholar 

  72. Blundell G, Henderson WJ, Price EW (1989) Soil particles in the tissues of the foot in endemic elephantiasis of the lower legs. Ann Trop Med Parasitol 83:381–385

    Article  CAS  Google Scholar 

  73. De Jong WH, Hagens WI, Krystek P, Burger MC, Sips AJAM, Geertsma RE (2008) Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials 29:1912–1919

    Article  CAS  Google Scholar 

  74. Tan S, Li X, Guo Y, Zhang Z (2013) Lipid-enveloped hybrid nanoparticles for drug delivery. Nanoscale 5:860

    Article  CAS  Google Scholar 

  75. Dalmoro A, Bochicchio S, Nasibullin SF, Bertoncin P, Lamberti G, Barba AA, Moustafine RI (2018) Polymer-lipid hybrid nanoparticles as enhanced indomethacin delivery systems. Eur J Pharm Sci 121:16–28

    Article  CAS  Google Scholar 

  76. Hu C-MJ, Fang RH, Wang K-C, Luk BT, Thamphiwatana S, Dehaini D, Nguyen P, Angsantikul P, Wen CH, Kroll AV, Carpenter C, Ramesh M, Qu V, Patel SH, Zhu J, Shi W, Hofman FM, Chen TC, Gao W, Zhang K, Chien S, Zhang L (2015) Nanoparticle biointerfacing by platelet membrane cloaking. Nature 526:118

    Article  CAS  Google Scholar 

  77. Toy R, Roy K (2016) Engineering nanoparticles to overcome barriers to immunotherapy. Bioeng Transl Med 1:47–62

    Article  CAS  Google Scholar 

  78. Godin B, Ferrari M (2012) Cardiovascular nanomedicine: a posse ad esse. Methodist DeBakey Cardiovasc J 8:2–5

    Article  Google Scholar 

  79. Winter PM, Neubauer AM, Caruthers SD, Harris TD, Robertson JD, Williams TA, Schmieder AH, Hu G, Allen JS, Lacy EK, Zhang H, Wickline SA, Lanza GM (2006) Endothelial alpha(v)beta3 integrin-targeted fumagillin nanoparticles inhibit angiogenesis in atherosclerosis. Arterioscler Thromb Vasc Biol 26:2103–2109

    Article  CAS  Google Scholar 

  80. McCarthy JR, Korngold E, Weissleder R, Jaffer FA (2010) A light-activated theranostic nanoagent for targeted macrophage ablation in inflammatory atherosclerosis. Small 6:2041–2049

    Article  CAS  Google Scholar 

  81. Hua X, Liu P, Gao YH, Tan KB, Zhou LN, Liu Z, Li X, Zhou SW, Gao YJ (2010) Construction of thrombus-targeted microbubbles carrying tissue plasminogen activator and their in vitro thrombolysis efficacy: a primary research. J Thromb Thrombolysis 30:29–35

    Article  Google Scholar 

  82. Nandwana V, Ryoo S-R, Kanthala S, McMahon KM, Rink JS, Li Y, Venkatraman SS, Thaxton CS, Dravid VP (2017) High-density lipoprotein-like magnetic nanostructures (HDL-MNS): theranostic agents for cardiovascular disease. Chem Mater 29:2276–2282

    Article  CAS  Google Scholar 

  83. Yi H, Ur Rehman F, Zhao C, Liu B, He N (2016) Recent advances in nano scaffolds for bone repair. Bone Res 4:16050

    Article  CAS  Google Scholar 

  84. Kalidoss M, Yunus Basha R, Doble M, Sampath Kumar TS (2019) Theranostic calcium phosphate nanoparticles with potential for multimodal imaging and drug delivery. Front Bioeng Biotechnol 7:126

    Article  Google Scholar 

  85. Kim G-W, Kang C, Oh Y-B, Ko M-H, Seo J-H, Lee D (2017) Ultrasonographic imaging and anti-inflammatory therapy of muscle and tendon injuries using polymer nanoparticles. Theranostics 7:2463–2476

    Article  CAS  Google Scholar 

  86. Shahbazi R, Ozpolat B, Ulubayram K (2016) Oligonucleotide-based theranostic nanoparticles in cancer therapy. Nanomedicine 11:1287–1308

    Article  CAS  Google Scholar 

  87. Kohler N, Sun C, Wang J, Zhang M (2005) Methotrexate-modified superparamagnetic nanoparticles and their intracellular uptake into human cancer cells. Langmuir 21:8858–8864

    Article  CAS  Google Scholar 

  88. Yu MK, Jeong YY, Park J, Park S, Kim JW, Min JJ, Kim K, Jon S (2008) Drug-loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo. Angew Chem Int Ed 47:5362–5365

    Article  CAS  Google Scholar 

  89. Ling Y, Wei K, Luo Y, Gao X, Zhong S (2011) Dual docetaxel/superparamagnetic iron oxide loaded nanoparticles for both targeting magnetic resonance imaging and cancer therapy. Biomaterials 32:7139–7150

    Article  CAS  Google Scholar 

  90. Savla R, Taratula O, Garbuzenko O, Minko T (2011) Tumor targeted quantum dot-mucin 1 aptamer-doxorubicin conjugate for imaging and treatment of cancer. J Controlled Release 153:16–22

    Article  CAS  Google Scholar 

  91. Ahmed N, Fessi H, Elaissari A (2012) Theranostic applications of nanoparticles in cancer. Drug Discovery Today 17:928–934

    Article  CAS  Google Scholar 

  92. Derfus AM, Chen AA, Min D-H, Ruoslahti E, Bhatia SN (2007) Targeted quantum dot conjugates for siRNA Delivery. Bioconjug Chem 18:1391–1396

    Article  CAS  Google Scholar 

  93. Melancon MP, Lu W, Zhong M, Zhou M, Liang G, Elliott AM, Hazle JD, Myers JN, Li C, Jason Stafford R (2011) Targeted multifunctional gold-based nanoshells for magnetic resonance-guided laser ablation of head and neck cancer. Biomaterials 32:7600–7608

    Article  CAS  Google Scholar 

  94. D Gibson J, Khanal P, Zubarev E (2007) Paclitaxel-functionalized gold nanoparticles, vol 129

    Google Scholar 

  95. Prabaharan M, Grailer J, Pilla S, A Steeber D, Gong S (2009) Gold nanoparticles with a monolayer of doxorubicin-conjugated amphiphilic block copolymer for tumor-targeted drug delivery, vol 30

    Google Scholar 

  96. Revia RA, Stephen ZR, Zhang M (2019) Theranostic nanoparticles for RNA-based cancer treatment. Acc Chem Res 52:1496–1506

    Article  CAS  Google Scholar 

  97. Bahadori M, Mohammadi F (2012) Nanomedicine for respiratory diseases. Tanaffos 11:18–22

    Google Scholar 

  98. Martynenko I, Litvin A, Purcell-Milton F, Baranov A, Fedorov A, Gun’ko Y (2017) Application of semiconductor quantum dots in bioimaging and biosensing, vol 5

    Google Scholar 

  99. Cho EC, Glaus C, Chen J, Welch MJ, Xia Y (2010) Inorganic nanoparticle-based contrast agents for molecular imaging. Trends Mol Med 16:561–573

    Article  CAS  Google Scholar 

  100. Rosen J, Yoffe S, Meerasa A (2011) Nanotechnology and diagnostic imaging: new advances in contrast agent technology. J Nanomed Nanotechnol 02

    Google Scholar 

  101. Cai W, Hsu AR, Li Z-B, Chen X (2007) Are quantum dots ready for in vivo imaging in human subjects? Nanoscale Res Lett 2:265–281

    Article  CAS  Google Scholar 

  102. Kumar R, Kulkarni A, Nagesha DK, Sridhar S (2012) In vitro evaluation of theranostic polymeric micelles for imaging and drug delivery in cancer. Theranostics 2:714–722

    Article  CAS  Google Scholar 

  103. Bagalkot V, Zhang L, Levy-Nissenbaum E, Jon S, Kantoff PW, Langer R, Farokhzad OC (2007) Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett 7:3065–3070

    Article  CAS  Google Scholar 

  104. Ramos J, Rege K (2012) Transgene delivery using poly(amino ether)-gold nanorod assemblies. Biotechnol Bioeng 109:1336–1346

    Article  CAS  Google Scholar 

  105. Xiao Y, Hong H, Matson VZ, Javadi A, Xu W, Yang Y, Zhang Y, Engle JW, Nickles RJ, Cai W, Steeber DA, Gong S (2012) Gold nanorods conjugated with doxorubicin and cRGD for combined anticancer drug delivery and PET imaging. Theranostics 2:757–768

    Article  CAS  Google Scholar 

  106. Kievit FM, Zhang M (2011) Cancer nanotheranostics: improving imaging and therapy by targeted delivery across biological barriers. Adv Mater 23:H217–247

    Article  CAS  Google Scholar 

  107. Lammers T, Kiessling F, Hennink WE, Storm G (2012) Drug targeting to tumors: principles, pitfalls and (pre-) clinical progress. J Controlled Release Official J Controlled Release Soc 161:175–187

    Article  CAS  Google Scholar 

  108. Stewart F, Mulvana H, Näthke I, Cochran S (2018) Theranostics in the Gut (chapter 8), pp 182–210

    Google Scholar 

  109. Wang L, Tang K, Zhang Q, Li H, Wen Z, Zhang H, Zhang H (2013) Somatostatin receptor-based molecular imaging and therapy for neuroendocrine tumors. Biomed Res Int 2013:1–11

    Google Scholar 

  110. Gao S, Hein S, Dagnæs-Hansen F, Weyer K, Yang C, Nielsen R, Christensen EI, Fenton RA, Kjems J (2014) Megalin-mediated specific uptake of Chitosan/siRNA nanoparticles in mouse kidney proximal tubule epithelial cells enables AQP1 gene silencing. Theranostics 4:1039–1051

    Article  CAS  Google Scholar 

  111. Williams RM, Jaimes EA, Heller DA (2016) Nanomedicines for kidney diseases. Kidney Int 90:740–745

    Article  CAS  Google Scholar 

  112. Haick H, Hakim M, Patrascu M, Levenberg C, Shehada N, Nakhoul F, Abassi Z (2009) Sniffing chronic renal failure in rat model by an array of random networks of single-walled carbon nanotubes. ACS Nano 3:1258–1266

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thankam, F.G., Sini, S., Thomas, S. (2021). Hybrid Nanoparticles in Image-Guided Drug Delivery. In: Joshy, K.S., Thomas, S., Thakur, V.K. (eds) Nanoparticles for Drug Delivery. Gels Horizons: From Science to Smart Materials. Springer, Singapore. https://doi.org/10.1007/978-981-16-2119-2_4

Download citation

Publish with us

Policies and ethics