Skip to main content

Therapeutic Proteins: Production and Delivery

  • Chapter
  • First Online:
Life Sciences Industry

Part of the book series: New Paradigms of Living Systems ((NPLS,volume 2))

Abstract

Commonly, protein-based drugs are referred as therapeutic proteins. However, the term was first used to the biologics that are genetically engineered version of naturally occurring human proteins. Therapeutic proteins are large molecules consisting of long chain amino acids with multi-folded structural entity responsible for variety of biological functions. Therapeutic proteins can be clinically used in replacing an abnormally behaved protein responsible for a specific disease. They can also be supplemented with body’s supply of a beneficial protein to minimize the impact of diseases or chemotherapy. The genetically engineered proteins are approximately similar to natural proteins, and their functional efficacy can be increased by conjugating with glycans or unnatural amino acids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sato AK, Viswanathan M, Kent RB, Wood CR (2006) Therapeutic peptides: technological advances driving peptides into development. Curr Opin Biotechnol 17:638–642

    Article  CAS  PubMed  Google Scholar 

  2. Leader B, Baca QJ, Golan DE (2008) Protein therapeutics: summary and pharmacological classification. Nat Rev Drug Discov 7:21–39

    Article  CAS  PubMed  Google Scholar 

  3. Walker LC, LeVine H (2000) The cerebral proteopathies: neurodegenerative disorders of protein conformation and assembly. Mol Neurobiol 21(1–2):83–95

    Article  CAS  PubMed  Google Scholar 

  4. Roth DA, Kessler CM, Pasi KJ, Rup B, Courter SG, Tubridy KL (2001) Human recombinant factor IX: safety and efficacy studies in hemophilia B patients previously treated with plasma-derived factor IX concentrates. Blood 100(12):4242

    Google Scholar 

  5. Akash MSH, Rehman K, Chen S (2013) IL-1Ra and its delivery strategies: inserting the association in perspective. Pharm Res 30:2951–2966

    Article  CAS  PubMed  Google Scholar 

  6. Corwin HL, Gettinger A, Pearl RG, Fink MP, Levy MM, Shapiro MJ, Corwin MJ, Colton T (2002) Efficacy of recombinant human erythropoietin in critically ill patients: a randomized controlled trial. JAMA 288:2827–2835

    Article  CAS  PubMed  Google Scholar 

  7. van Zonneveld M, Honkoop P, Hansen BE, Niesters HG, Darwish Murad S, de Man RA, Schalm SW, Janssen HL (2004) Long term follow-up of alpha-interferon treatment of patients with chronic hepatitis B. Hepatology 39:804–810

    Article  PubMed  CAS  Google Scholar 

  8. Jankovic J, Brin MF (1991) Therapeutic uses of botulinum toxin. N Engl J Med 324:1186–1194

    Article  CAS  PubMed  Google Scholar 

  9. Eriksson BI, Wille-Jorgensen P, Kalebo P, Mouret P, Rosencher N, Bosch P, Baur M, Ekman S, Bach D, Lindbratt S, Close P (1997) J Bone Joint Surg Am 79:326–333

    Article  CAS  PubMed  Google Scholar 

  10. Saltz LB, Meropol NJ, Loehrer PJ Sr, Needle MN, Kopit J, Mayer RJ (2004) Phase II trial of cetuximab in patients with refractory colorectal cancer that expresses the epidermal. J Clin Oncol 22(7):1201–1208

    Article  CAS  PubMed  Google Scholar 

  11. Cohen SB, Moreland LW, Cush JJ, Greenwald MW, Block S, Shergy WJ, Hanrahan PS, Kraishi MM, Patel A, Sun G, Bear MB (2004) A multicentre, double blind, randomised, placebo controlled trial of anakinra (Kineret), a recombinant interleukin 1 receptor antagonist, in patients with rheumatoid arthritis treated with background methotrexate. Ann Rheum Dis 63:1062–1068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tesser J, Fleischmann R, Dore R, Bennett R, Solinger A, Joh T, Modafferi D, Schechtman J (2004) Concomitant medication use in a large, international, multicenter, placebo controlled trial of anakinra, a recombinant interleukin 1 receptor antagonist, in patients with rheumatoid arthritis. J Rheumatol 31:649–654

    CAS  PubMed  Google Scholar 

  13. Witzig TE, Gordon LI, Cabanillas F, Czuczman MS, Emmanouilides C, Joyce R, Pohlman BL, Bartlett NL, Wiseman GA, Padre N et al (2002) Randomized controlled trial of yttrium-90-labeledibritumomab tiuxetan radioimmunotherapy versus rituximab immuno therapy for patients with relapsed or refractory low-grade, follicular, or transformed B-cell non-Hodgkin’s lymphoma. J Clin Oncol 20:2453–2463

    Article  CAS  PubMed  Google Scholar 

  14. Sodee DB, Malguria N, Faulhaber P, Resnick MI, Albert J, Bakale G (2000) Multicenter ProstaScint imaging findings in 2154patients with prostate cancer. The ProstaScint Imaging Centers. Urology 56:988–993

    Article  CAS  PubMed  Google Scholar 

  15. Campos-Neto A, Rodrigues-Junior V, Pedral-Sampaio DB, Netto EM, Ovendale PJ, Coler RN, Skeiky YA, Badaro R, Reed SG (2001) Evaluation of DPPD, a single recombinant Mycobacterium tuberculosis protein as an alternative antigen for the Mantoux test. Tuberculosis 81:353–358

    Article  CAS  PubMed  Google Scholar 

  16. Prakash PJ, Poorani E, Anantharaman P, Balasubramaniam T (2009) L-Glutaminase production and the growth of marine bacteria. Res J Microbiol 4:168–172

    Article  CAS  Google Scholar 

  17. Sato D, Nozaki T (2009) Methionine gamma-lyase: the unique reaction mechanism, physiological roles, and therapeutic applications against infectious diseases and cancers. IUBMB Life 61:1019–1028

    Article  CAS  PubMed  Google Scholar 

  18. Ebrahiminezhad A, Rasoul-Amini S, Ghasemi Y (2011) l-Asparaginase production by moderate halophilic bacteria isolated from Maharloo salt lake. Indian J Microbiol 51:307–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sharma B, Singh S, Kanwar SS (2014) L-methionase: a therapeutic enzyme to treat malignancies. Biomed Res Int 2014:506287

    PubMed  PubMed Central  Google Scholar 

  20. ResearchAndMarkets.com (2020) Protein therapeutics market: global industry trends, share, size, growth, opportunity and forecast 2020-2025

    Google Scholar 

  21. Deer JR, Allison DS (2004) High-level expression of proteins in mammalian cells using transcription regulatory sequences from the Chinese hamster EF-1 alpha gene. Biotechnol Prog 20:880–889

    Article  CAS  Google Scholar 

  22. Chan KK, Wu SM, Nissom PM, Oh SK, Choo AB (2008) Generation of high-level stable transgene expressing human embryonic stem cell lines using Chinese hamster elongation factor-1 alpha promoter system. Stem Cells Dev 17:825–836

    Article  CAS  PubMed  Google Scholar 

  23. Ho SC, Mariati Y, Fang SG, Yang Y (2015) Impact of using different promoters and matrix attachment regions on recombinant protein expression level and stability in stably transfected CHO cells. Mol Biotechnol 57:138–144

    Article  CAS  PubMed  Google Scholar 

  24. Yew NS, Przybylska M, Ziegler RJ, Liu D, Cheng SH (2001) High and sustained transgene expression in vivo from plasmid vectors containing a hybrid ubiquitin promoter. Mol Ther 4:75–82

    Article  CAS  PubMed  Google Scholar 

  25. Sladitschek HL, Neveu PA (2016) Bidirectional promoter engineering for single cell MicroRNA sensors in embryonic stem cells. PLoS One 11:e0155177

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Seo HW et al (2010) Evaluation of combinatorial cis-regulatory elements for stable gene expression in chicken cells. BMC Biotechnol 19(10):69

    Article  CAS  Google Scholar 

  27. Schlabach MR, Hu JK, Li M, Elledge SJ (2010) Synthetic design of strong promoters. Proc Natl Acad Sci U S A 107:2538–2543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kim JM, Kim JS, Park DH, Kang HS, Yoon J, Baek K, Yoon Y (2004) Improved recombinant gene expression in CHO cells using matrix attachment regions. J Biotechnol 107(2):95–105

    Article  CAS  PubMed  Google Scholar 

  29. Zahn-Zabal M, Kobr M, Girod PA, Imhof M, Chatellard P, de Jesus M, Wurm F, Mermod N (2001) Development of stable cell lines for production or regulated expression using matrix attachment regions. J Biotechnol 87(1):29–42

    Article  CAS  PubMed  Google Scholar 

  30. Campbell M, Corisdeo S, McGee C, Kraichely D (2010) Utilization of site-specific recombination for generating therapeutic protein producing cell lines. Mol Biotechnol 45(3):199–202

    Article  CAS  PubMed  Google Scholar 

  31. Kennard ML, Goosney DL, Monteith D, Zhang L, Moffat M, Fischer D, Mott J (2009) The generation of stable, high MAb expressing CHO cell lines based on the artificial chromosome expression (ACE) technology. Biotechnol Bioeng 104:540–553

    Article  CAS  PubMed  Google Scholar 

  32. Shizuya H, Birren B, Kim UJ, Mancino V, Slepak T, Tachiiri Y, Simon M (1992) Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc Natl Acad Sci U S A 89:8794–8797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Monaco AP, Larin Z (1994) YACs, BACs, PACs and MACs: artificial chromosomes as research tools. Trends Biotechnol 12:280–286

    Article  CAS  PubMed  Google Scholar 

  34. Kazuki Y, Oshimura M (2011) Human artificial chromosomes for gene delivery and the development of animal models. Mol Ther 19:1591–1601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ioannou PA, Amemiya CT, Garnes J, Kroisel PM, Shizuya H, Chen C, Batzer MA, de Jong PJ (1994) A new bacteriophage P1-derived vector for the propagation of large human DNA fragments. Nat Genet 6:84–89

    Article  CAS  PubMed  Google Scholar 

  36. Kichler A (2004) Gene transfer with modified polyethylenimines. J Gene Med 6(Suppl 1):S3–S10

    Article  CAS  PubMed  Google Scholar 

  37. Mehier-Humbert S, Guy RH (2005) Physical methods for gene transfer: improving the kinetics of gene delivery into cells. Adv Drug Deliv Rev 57(5):733–753

    Article  CAS  PubMed  Google Scholar 

  38. Scherer F, Anton M, Schillinger U, Henke J, Bergemann C et al (2002) Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and in vivo. Gene Ther 9(2):102–109

    Article  CAS  PubMed  Google Scholar 

  39. Wong TK, Neumann E (1982) Electric field mediated gene transfer. Biochem Biophys Res Commun 107(2):584–587

    Article  CAS  PubMed  Google Scholar 

  40. Kunert R, Reinhart D (2016) Advances in recombinant antibody manufacturing. Appl Microbiol Biotechnol 100:3451–3461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kuo CC et al (2018) The emerging role of systems biology for engineering protein production in CHO cells. Curr Opin Biotechnol 51:64–69

    Article  CAS  PubMed  Google Scholar 

  42. Cockett MI, Bebbington CR, Yarranton GT (1990) High level expression of tissue inhibitor of metalloproteinases in Chinese hamster ovary cells using glutamine synthetase gene amplification. Biotechnology 8:662–667

    CAS  PubMed  Google Scholar 

  43. Jun SC, Kim MS, Hong HJ, Lee GM (2006) Limitations to the development of humanized antibody producing Chinese hamster ovary cells using glutamine synthetase-mediated gene amplification. Biotechnol Prog 22:770–780

    Article  CAS  PubMed  Google Scholar 

  44. Tanaka SS, Mitsuda SH, Shimizu N (2014) How a replication origin and matrix attachment region accelerate gene amplification under replication stress in mammalian cells. PLoS One 9:e103439. https://doi.org/10.1371/journal.pone.0103439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Araki Y, Hamafuji T, Noguchi C, Shimizu N (2012) Efficient recombinant production in mammalian cells using a novel IR/MAR gene amplification method. PLoS One 7:e41787. https://doi.org/10.1371/journal.pone.0041787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Noguchi C, Araki Y, Miki D, Shimizu N (2012) Fusion of the Dhfr/Mtx and IR/MAR gene amplification methods produces a rapid and efficient method for stable recombinant protein production. PLoS One 7:e52990. https://doi.org/10.1371/journal.pone.0052990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yoshimura H et al (2001) High levels of human recombinant cyclooxygenase-1 expression in mammalian cells using a novel gene amplification method. Protein Expr Purif 80:41–46

    Article  CAS  Google Scholar 

  48. Shimizu N, Hanada N, Utani K, Sekiguchi N (2007) Interconversion of intra- and extra-chromosomal sites of gene amplification by modulation of gene expression and DNA methylation. J Cell Biochem 102:515–529

    Article  CAS  PubMed  Google Scholar 

  49. Kennard ML et al (2009) Auditioning of CHO host cell lines using the artificial chromosome expression (ACE) technology. Biotechnol Bioeng 104:526–539

    Article  CAS  PubMed  Google Scholar 

  50. Batra A et al (1986) The expression of a nopaline synthase - human growth hormone chimaeric gene in transformed tobacco and sunflower callus tissue. Plant Mol Biol 6(5):347–357

    Article  Google Scholar 

  51. Mason HS et al (1992) Expression of hepatitis B surface antigen in transgenic plants. PNAS 89(24):11745–11749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Boothe J, Nykiforuk C, Shen Y, Zaplachinski S, Szarka S, Kuhlman P, Murray E, Morck D, Moloney MM (2010) Seed-based expression systems for plant molecular farming. Plant Biotechnol J 8:588–606

    Article  CAS  PubMed  Google Scholar 

  53. Sack M et al (2015) (2015) From gene to harvest: insights into upstream process development for the GMP production of a monoclonal antibody in transgenic tobacco plants. Plant Biotechnol J 13(8):1094–1105

    Article  CAS  PubMed  Google Scholar 

  54. Abiri R et al (2016) Critical review of the concept of transgenic plants: insights into pharmaceutical biotechnology and molecular farming. Curr Issues Mol Biol 18:21–42

    PubMed  Google Scholar 

  55. Gomord V et al (2004) Production and glycosylation of plant-made pharmaceuticals: the antibodies as a challenge. Plant Biotechnol J 2:83–100

    Article  CAS  PubMed  Google Scholar 

  56. Ullrich KK, Hiss M, Rensing SA (2015) Means to optimize protein expression in transgenic plants. Curr Opin Biotechnol 32:61–67

    Article  CAS  PubMed  Google Scholar 

  57. Fischer R, Emans N (2009) Molecular farming of pharmaceutical proteins. Transgenic Res 9:279–299

    Article  Google Scholar 

  58. Franconi R, Demurtas OC, Massa S (2010) Plant-derived vaccines and other therapeutics produced in contained systems. Expert Rev Vaccines 9(8):877–892

    Article  CAS  PubMed  Google Scholar 

  59. Decker EL, Reski R (2007) Moss bioreactors producing improved biopharmaceuticals. Curr Opin Biotechnol 18:393–398

    Article  CAS  PubMed  Google Scholar 

  60. Kamenarova K et al (2005) Molecular faming in plants: an approach of agricultural biotechnology. J Cell Mol Biol 4:77–86

    Google Scholar 

  61. Hernandez R (2016) Scaling up Progressive Expression Systems. BioPharm Int 29(6):28

    Google Scholar 

  62. Sparrow PAC et al (2007) Pharma-Planta: road testing the developing regulatory guidelines for plant-made pharmaceuticals. Transgenic Res 16(2):147–161

    Article  CAS  PubMed  Google Scholar 

  63. Gerlach JQ et al (2010) Plant-produced biopharmaceuticals. In: Kole C et al (eds) Transgenic crop plants. Springer, Heidelberg, pp 269–299

    Chapter  Google Scholar 

  64. Desai PN et al (2010) Production of heterologous proteins in plants: strategies for optimal expression. Biotechnol Adv 28:427–435

    Article  CAS  PubMed  Google Scholar 

  65. Twyman RM et al (2003) Molecular farming in plants: host system and expression technology. Trends Biotechnol 21:570–578

    Article  CAS  PubMed  Google Scholar 

  66. Gomord V, Faye L (2004) Post-translational modification of therapeutic proteins in plants. Curr Opin Plant Biol 7:171–181

    Article  CAS  PubMed  Google Scholar 

  67. Schillberg S, Twyman RM (2007) Pharma-Planta: recombinant pharmaceuticals from plants for human health. In: Engelhard M, Hagen K, Thiele F (eds) Pharming, a new branch of biotechnology. Europäische Akademie, Berlin, pp 13–31

    Google Scholar 

  68. Franken E et al (1997) Recombinant proteins from transgenic plants. Curr Opin Biotechnol 8:411–416

    Article  CAS  PubMed  Google Scholar 

  69. Daniell H et al (2001) Medical molecular farming: production of antibodies, bio-pharmaceuticals and edible vaccines in plants. Trends Plant Sci 6:219–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Seeliger MA et al (2003) Cooperative organization in a macromolecular complex. Nat Struct Biol 10(9):718–724

    Article  CAS  PubMed  Google Scholar 

  71. Peters T (1995) All about albumin: biochemistry, genetics, and medical applications. Academic, San Diego

    Google Scholar 

  72. Alexander MR et al (1979) Therapeutic use of albumin. JAMA 241:2527–2529

    Article  CAS  PubMed  Google Scholar 

  73. Hastings GE, Wolf PG (1992) The therapeutic use of albumin. Arch Fam Med 1:281–287

    Article  CAS  PubMed  Google Scholar 

  74. Marth E, Kleinhappl B (2001) Albumin is a necessary stabilizer of TBE-vaccine to avoid fever in children after vaccination. Vaccine 20:532–537

    Article  CAS  PubMed  Google Scholar 

  75. Tsuchida E et al (2009) Artificial oxygen carriers, haemoglobin vesicles and albumin-hemes, based on bioconjugate chemistry. Bioconjug Chem 20:1419–1440

    Article  CAS  PubMed  Google Scholar 

  76. Zhang W et al (2006) Spread of HIV in one village in central China with a high prevalence rate of blood-borne AIDS. Int J Infect Dis 10:475–480

    Article  PubMed  Google Scholar 

  77. Farran I et al (2002) Targeted expression of human serum albumin to potato tubers. Transgenic Res 11:337–346

    Article  CAS  PubMed  Google Scholar 

  78. Huang LF et al (2005) Production of human serum albumin by sugar starvation induced promoter and rice cell culture. Transgenic Res 14:569–581

    Article  CAS  PubMed  Google Scholar 

  79. Lau OS, Sun SS (2009) Plant seeds as bioreactors for recombinant protein production. Biotechnol Adv 27:1015–1022

    Article  CAS  PubMed  Google Scholar 

  80. Yang H et al (2011) Large-scale production of functional human serum albumin from transgenic rice seeds. Proc Natl Acad Sci U S A 22:108

    Google Scholar 

  81. Balunas MJ et al (2006) Relationships between inhibitory activity against a cancer cell line panel, profiles of plants collected, and compound classes isolated in an anticancer drug discovery project. Chem Biodivers 3(8):897–915

    Article  CAS  PubMed  Google Scholar 

  82. Arijit M (2014) A novel extraction of trichosanthin from Trichosanthes kirilowii roots using three-phase partitioning and its in vitro anticancer activity. Pharm Biol 52(6):677–680

    Article  CAS  Google Scholar 

  83. Fang EF et al (2011) Recent progress in medicinal investigations on trichosanthin and other ribosome inactivating proteins from the plant genus trichosanthes. Curr Med Chem 18(28):4410–4417

    Article  CAS  PubMed  Google Scholar 

  84. Shaw PC et al (2005) Recent advances in trichosanthin, a ribosome-inactivating protein with multiple pharmacological properties. Toxicon 45(6):683–689

    Article  CAS  PubMed  Google Scholar 

  85. Yusibov V et al (1999) Plant viral vectors based on tobamoviruses. Curr Top Microbiol Immunol 240:81–94

    CAS  PubMed  Google Scholar 

  86. Rybicki EP (2009) Plant-produced vaccines: promise and reality. Drug Discov Today 14:16–24

    Article  CAS  PubMed  Google Scholar 

  87. Le DHT, Hu H, Commandeur U, Steinmetz NF (2017) Chemical addressability of potato virus X for its applications in bio/nanotechnology. J Struct Biol 200:360–368

    Article  CAS  PubMed  Google Scholar 

  88. Peruzzi PP, Chiocca EA (2016) Cancer immunotherapy: a vaccine from plant virus proteins. Nat Nanotechnol 11:214–215

    Article  CAS  PubMed  Google Scholar 

  89. Jobsri J, Allen A, Rajagopal D, Shipton M, Kanyuka K, Lomonossoff GP, Ottensmeier C, Diebold SS, Stevenson FK, Savelyeva N (2015) Plant virus particles carrying tumour antigen activate TLR7 and Induce high levels of protective antibody. PLoS ONE 10:e0118096

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Bruckman LN (2014) Biodistribution, pharmacokinetics, and blood compatibility of native and PEGylated tobacco mosaic virus nano-rods and -spheres in mice. Virology 449:163–173

    Article  CAS  PubMed  Google Scholar 

  91. Nester EW et al (1984) Crown gall: a molecular and physiological analysis. Annu Rev Plant Physiol 35:387–413

    Article  CAS  Google Scholar 

  92. Binns, Thomashow (1988) Cell biology of agrobacterium infection and transformation of plants. Annu Rev Microbiol 42:575–606

    Article  CAS  Google Scholar 

  93. Scott SE, Wilkinson MJ (1999) Low probability of chloroplast movement from oilseed rape (Brassica napus) into wild Brassica rapa. Nat Biotechnol 17:390–392

    Article  CAS  PubMed  Google Scholar 

  94. Daniell H et al (1998) Containment of herbicide resistance through genetic engineering of the chloroplast genome. Nat Biotechnol 16:345–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. De Cosa B et al (2001) Overexpression of the Bt Cry2Aa2 operon in chloroplasts leads to formation of insecticidal crystals. Nat Biotechnol 19:71–74

    Article  PubMed  PubMed Central  Google Scholar 

  96. Daniell H et al (2001) Marker free transgenic plants: engineering the chloroplast genome without the use of antibiotic selection. Curr Genet 39:109–116

    Article  CAS  PubMed  Google Scholar 

  97. Daniell H et al (2001) Antibiotic free chloroplast genetic engineering – an environmentally friendly approach. Trends Plant Sci 6:237–239

    Article  CAS  PubMed  Google Scholar 

  98. Daniell H et al (2001c) Expression of cholera toxin B subunit gene and assembly as functional oligomers in transgenic tobacco chloroplasts. J Mol Biol 311:1001–1009

    Article  CAS  PubMed  Google Scholar 

  99. Staub JM et al (2000) High-yield production of a human therapeutic protein in tobacco chloroplasts. Nat Biotechnol 18:333–338

    Article  CAS  PubMed  Google Scholar 

  100. Rogers KK (2003) The potential of plant-made pharmaceuticals. http://www.plantpharma.org/ials/index

  101. Kirk DD et al (2005) Risk analysis for plant-made vaccines. Transgenic Res 14:449–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Goldstein DA, Thomas JA (2004) Biopharmaceuticals derived from genetically modified plants. QJM 97:705–716

    Article  CAS  PubMed  Google Scholar 

  103. Food and Drug Administration (2002) Pharmaceutical current good manufacturing practices (cGMPs) for the 21st century – A risk-based approach

    Google Scholar 

  104. Food and Drug Administration (2003) Pharmaceutical cGMPs for the 21st century. A risk based approach: second progress report and implementation plan

    Google Scholar 

  105. Patricia VA (2007) Available on http://www.pharmtech.com/pharmtech/article/articleDetail.jsp?id=469915

  106. Yu LX, Amidon G, Khan MA et al (2014) Understanding pharmaceutical quality by design. AAPS J 16(4):771–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Miller RW (2001) Process analytical technologies (PAT) – part 2. Am Pharm Rev 6:1

    CAS  Google Scholar 

  108. Miller RW (2002) Process analytical technologies (PAT)- part 1. Am Pharm Rev 5:1

    Google Scholar 

  109. Arrivo SM (2003) The role of PAT in pharmaceutical research and development. Am Pharm Rev 6:2

    Google Scholar 

  110. Food and Drug Administration (2004) Guidance for industry: PAT-A framework for innovative pharmaceutical development. Manufacturing, and Quality Assurance, Rockville

    Google Scholar 

  111. Diehl B, Grout B (2011) NIR spectroscopy - just one of many analytical tools for PAT. Am Pharm Rev 3:70–74

    Google Scholar 

  112. Howard W, Ward II, Sekulic SS, Wheeler MJ, Taber G, Urbanski FJ, Sistare FE, Norris T, Aldridge PK (1998) On-line determination of reaction completion in a closed-loop hydrogenator using NIR spectroscopy. Appl Spectrosc 52(1):17–21

    Article  Google Scholar 

  113. Santangelo M, Maranzano B, Norris K, McDermott T (2010) Near infrared (nir) determination of uniformity for a drug product powder for oral suspension (POS) in Amber Glass Bottles. Am Pharm Rev 2010:68–72

    Google Scholar 

  114. Bell M (2010) NIR as an in-process tool. Am Pharm Rev 11(3):75–79

    Google Scholar 

  115. Mattrey FT, Dolman S, Nyrop J, Skrdla PJ (2011) On-line FTIR monitoring and simultaneous optimization of a strecker reaction performed in a laboratory scale flow-through reactor. Am Pharm Rev 14:7

    Google Scholar 

  116. Sparen A, Johansson J, Svensson O, Folestad S, Claybourn M (2009) Transmission Raman spectroscopy for quantitative analysis of pharmaceutical solids. Am Pharm Rev 2009:62–73

    Google Scholar 

  117. Robbe CL et al (2003) Exploring pharmaceutical applications of near-infrared technology. Am Pharm Rev 6:3

    Google Scholar 

  118. Goode J (2004) The on-line analysis of aqueous based products from a separation column using near infrared spectroscopy. IFPAC 2004 Meeting

    Google Scholar 

  119. Skibsted E, Lindemann C, Roca C, Olsson L (2001) Online bioprocess monitoring with a multi-wavelength fluorescence sensor using multivariate calibration. J Biotechnol 88:47–57

    Article  CAS  PubMed  Google Scholar 

  120. Ge X, Tolosa L, Simpson J, Rao G (2003) Genetically engineered binding proteins as biosensors for fermentation and cell culture. Biotechnol Bioeng 84:723–731

    Article  CAS  PubMed  Google Scholar 

  121. Foster KR, Schwan HP (1986) Dielectric properties of tissues. In: Polk C, Postorv E (eds) CRC handbook of biological effects of electromagnetic fields. CRC Press, Boca Raton, pp 27–95

    Google Scholar 

  122. Davey CL, Kell DB (1995) The low-frequency dielectric properties of biological cells. In: Walz D, Berg H, Milazzo G (eds) Bioelectrochemistry of cells and tissues. Birkhauser, Basel, pp 159–207

    Chapter  Google Scholar 

  123. Maca HW, Barney M, Goetzke G, Daniels D, Ryder D (1994) The use of radio frequency capacitance for the measurement of yeast viable biomass and its use in the automatic pitching of fermentations. MBAA Tech Quart 31:146–148

    Google Scholar 

  124. Carvell J, Dowd JE (2006) On-line measurements and control of viable cell density in cell culture manufacturing processes using radio-frequency impedance. Cytotechnology 50(1–3):35–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Larson T, Gawlitzek M, Evans H, Albers U, Cacia J (2002) Chemometric evaluation of on-line high pressure liquid chromatography in mammalian cell cultures: analysis of amino acids and glucose. Biotechnol Bioeng 77:553–563

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bahera, B.K., Prasad, R., Behera, S. (2021). Therapeutic Proteins: Production and Delivery. In: Life Sciences Industry. New Paradigms of Living Systems, vol 2. Springer, Singapore. https://doi.org/10.1007/978-981-16-2051-5_5

Download citation

Publish with us

Policies and ethics