Skip to main content

Biometabolomics of Disease Resistance to Biotrophs

  • Chapter
  • First Online:
Molecular Mechanism of Crucifer’s Host-Resistance

Abstract

Biometabolomics of disease resistance plays a significant role in induction of immunity signaling pathways and defense responses. With the perception of pathogens, signaling is initiated that results in the execution of a broad range of defense responses to stop the infection and pathogenesis of invading pathogens. Polar metabolites of Brassica plants including glucosinolates, polar indole metabolites, soluble compounds, and wall-bound phenolics are induced to confer resistance to Albugo. The phytoalexins cyclobrassinin, rapalexin, and brassilexin are inhibitory to Albugo zoospores release.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aarts N, Metz M, Holub E, Staskawicz BJ, Daniels MJ, Parker JE (1998) Different requirements for EDS1 and NDR1 by disease resistance genes define at least two R gene-mediated signaling pathways in Arabidopsis. Proc Natl Acad Sci U S A 95:10306–10311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Acevedo-Garcia J, Spencer D, Thieron H, Reinstadler A, Hammond-Kosack K, Phillips AL (2016) mlo-based powdery mildew resistance in hexaploid bread wheat generated by a non-transgenic TILLING approach. Plant Biotechnol J 15:367–378. https://doi.org/10.1111/pbi.12631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adam L, Ellwood S, Wilson I, Xiao S, Saenz G, Oliver R, Turner JG, Somerville S (1999) Comparison of Erysiphe cichoracearum and E. cruciferarum and a survey of 360 Arabidopsis thaliana accessions for their resistance to these two powdery mildew pathogens. Mol Plant Microbe Interact 12:1031–1043

    Article  CAS  PubMed  Google Scholar 

  • Afzal AJ, Wood AJ, Lightfoot DA (2008) Plant receptor-like serinethreonine kinases: roles in signaling and plant defense. Mol Plant Microbe Interact 21:507–517

    Article  CAS  PubMed  Google Scholar 

  • Agarwal A, Kaul V, Faggian R, Rookes JE, Ludwig-Muller J, Cahill DM (2011) Analysis of global host gene expression during the primary phase of the Arabidopsis thaliana–Plasmodiophora brassicae interaction. Funct Plant Biol 38:462–478

    Article  CAS  PubMed  Google Scholar 

  • Ahloowalia BS, Maluszynski M, Nichterlein K (2004) Global impact of mutation-derived varieties. Euphytica 135:187–201

    Article  Google Scholar 

  • Ahuja I, Kissen R, Bones AM (2012) Phytoalexins in defense against pathogens. Trends Plant Sci 17:73–90. https://doi.org/10.1016/j.tplants.2011.11.002

    Article  CAS  PubMed  Google Scholar 

  • Aist JR (1976) Papillae and related wound plugs of plant cells. Annu Rev Phytopathol 14:145–163

    Article  Google Scholar 

  • Aldon D, Mbengue M, Mazars C, Galaud JP (2018) Calcium signaling in plant biotic interactions. Int J Mol Sci 19(3):665. https://doi.org/10.3390/ijms19030665

    Article  CAS  PubMed Central  Google Scholar 

  • Ali S, Mir ZA, Tyagi A, Mehari H, Meena RP, Bhat JA, Yadav P, Papalou P, Rawat S, Grover A (2017) Overexpression of NPR1 in Brassica juncea confers broad spectrum resistance to fungal pathogens. Front Plant Sci 8:1693. https://doi.org/10.3389/fpls.2017.01693

    Article  PubMed  PubMed Central  Google Scholar 

  • Ali M, Cheng Z, Ahmad H, Hayat S (2018) Reactive oxygen species (ROS) as defences against a broad range of plant fungal infections and case study on ROS employed by crops against Verticillium dahliae wilts. J Plant Interact 13:353–363. https://doi.org/10.1080/17429145.2018.1484188

    Article  CAS  Google Scholar 

  • Alkooranee JT, Liu S, Aledan TR, Yin Y, Li M (2015) First report of powdery mildew caused by Erysiphe cruciferarum on Brassica napus in China. Plant Dis 99(11):1651

    Article  Google Scholar 

  • de Almeida EJ, Favery B (2011) The plant cytoskeleton remodelling in nematode induced feeding sites. In: Jones J, Gheysen G, Fenoll C (eds) Genomics and molecular genetics of plant–nematode interactions. Springer, Heidelberg, pp 369–393

    Google Scholar 

  • de Almeida EJ, Favery B, Engler G, Abad P (2005) Loss of susceptibility as an alternative for nematode resistance. Curr Opin Biotechnol 16:112–117

    Article  Google Scholar 

  • Alvarez ME (2000) Salicylic acid in the machinery of hypersensitive cell death and disease resistance. Plant Mol Biol 44:429–442

    Article  CAS  PubMed  Google Scholar 

  • Ament K, Krasikov V, Allmann S, Rep M, Takken FLW, Schuurink RC (2010) Methyl salicylate production in tomato affects biotic interactions. Plant J 62(1):124–134. https://doi.org/10.1111/j.1365-313X.2010.04132.x

    Article  CAS  PubMed  Google Scholar 

  • An Q, Ehlers K, Kogel KH, van Bel AJE, Huckelhoven R (2006) Multivesicular compartments proliferate in susceptible and resistant MLA12-barley leaves in response to infection by the biotrophic powdery mildew fungus. New Phytol 172:563–576

    Article  CAS  PubMed  Google Scholar 

  • Andersson MX, Kourtchenko O, Dangl JL, Mackey D, Ellerström M (2006) Phospholipase-dependent signalling during the AvrRpm1-and AvrRpt2-induced disease resistance responses in Arabidopsis thaliana. Plant J 47:947–959

    Article  CAS  PubMed  Google Scholar 

  • Anonymous (1985) Foliar diseases of Brassicas. Research report 1984, horticulture. Dublin, Ireland; An Foras Taluntais, pp 45–46

    Google Scholar 

  • Antico CJ, Colon C, Banks T, Ramonell KM (2012) Insights into the role of jasmonic acid-mediated defenses against necrotrophic and biotrophic fungal pathogens. Front Biol 7:48–56. https://doi.org/10.1007/s11515-011-1171-1

    Article  CAS  Google Scholar 

  • Aravind L, Koonin EV (1999) Fold prediction and evolutionary analysis of the POZ domain: structural and evolutionary relationship with the potassium channel tetramerization domain. J Mol Biol 285:1353–1361. https://doi.org/10.1006/jmbi.1998.2394

    Article  CAS  PubMed  Google Scholar 

  • Asada Y, Matsumoto I (1969) Formation of lignin-like substance in the root tissue of Japanese radish plant infected by downy mildew fungus. Ann Phytopathol Soc Japan 35:160–167

    Article  CAS  Google Scholar 

  • Asada Y, Matsumoto I (1971) Microspectrophotometric observations on the cell walls of Japanese radish (Raphanus sativus) root infected by Peronospora parasitica. Physiol Plant Pathol 1:377–383

    Article  Google Scholar 

  • Asada Y, Matsumoto I (1972) The nature of lignin obtained from downy mildew-infected Japanese radish root. Phytopathol Z 73:208–214

    Article  Google Scholar 

  • Asada Y, Ohguchi T, Matsumoto I (1975) Lignin formation in fungus infected plants. Rev Plant Protect Res 8:104–113

    CAS  Google Scholar 

  • Asai S, Furzer OJ, Cevik V, Kim DS, Ishaque N, Goritschnig S, Staskawicz BJ, Shirasu K, Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gomez-Gomez L, Boller T, Ausubel FM, Sheen J (2002) MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415:977–983

    Article  CAS  PubMed  Google Scholar 

  • Assaad FF, Qiu JL, Youngs H, Ehrhardt D, Zimmerli L, Kalde M, Wanner G, Peck SC, Edwards H, Ramonell K, Somerville CR, Thordal-Christensen H (2004) The PEN1 syntaxin defines a novel cellular compartment upon fungal attack and is required for the timely assembly of papillae. Mol Biol Cell 156(1):5118–5129

    Article  Google Scholar 

  • Attaran E, Zeier TE, Griebel T, Zeier J (2009) Methyl salicylate production and jasmonate signaling are not essential for systemic acquired resistance in Arabidopsis. Plant Cell 21:954–971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Auld D, Heikkinen M, Erickson D, Sernyk J, Romero J (1992) Rapeseed mutants with reduced levels of polyunsaturated fatty acids and increased levels of oleic acid. Crop Sci 32:657–662

    Article  CAS  Google Scholar 

  • Azevedo C, Betsuyaku S, Peart J, Takahashi A, Noel L, Sadanandom A, Casais C, Parker J, Shirasu K (2006) Role of SGT1 in resistance protein accumulation in plant immunity. EMBO J 25:2007–2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Backer R, Naidoo S, van den Berg N (2019) The non-expresser of pathogenesis-related genes 1 (NPR1) and related family: mechanistic insights in plant disease resistance. Front Plant Sci 10:102. https://doi.org/10.3389/fpls.2019.00102

    Article  PubMed  PubMed Central  Google Scholar 

  • Bai TT, Xie WB, Zhou PP, Wu ZL, Xiao WC, Zhou L, Sun J, Ruan XL, Li HP (2013) Transcriptome and expression profile analysis of highly resistant and susceptible banana roots challenged with Fusarium oxysporum f. sp. cubense tropical race 4. PLoS One 8:e73945. https://doi.org/10.1371/journal.pone.0073945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bak S, Feyereisen R (2001) The involvement of two p450 enzymes, CYP83B1 and CYP83A1, in auxin homeostasis and glucosinolate biosynthesis. Plant Physiol 127:108–118. https://doi.org/10.1104/pp.127.1.108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bak S, Beisson F, Bishop G, Hamberger B, Hofer R, Paquette S, Werck-Reichhart D (2011) Cytochromes p450. Arabidopsis Book 9:e0144

    Article  PubMed  PubMed Central  Google Scholar 

  • Bakshi M, Oelmüller R (2014) WRKY transcription factors: Jack of many trades in plants. Plant Signal Behav 9:e27700. https://doi.org/10.4161/psb.27700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baluska F, Bacigalova K, Oud JL, Hauskrecht M, Kubica S (1995) Rapid reorganization of micro-tubular cytoskeleton accompanies early changes in nuclear ploidy and chromatin structure in post-mitotic cells of barley leaves infected with powdery mildew. Protoplasma 185:140–151

    Article  Google Scholar 

  • Bari R, Jones JD (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69:473–488. https://doi.org/10.1007/s11103-008-9435-0

    Article  CAS  PubMed  Google Scholar 

  • Bayer M, Nawy T, Giglione C, Galli M, Meinnel T, Lukowitz W (2009) Paternal control of embryonic patterning in Arabidopsis thaliana. Science 323:1485–1488

    Article  CAS  PubMed  Google Scholar 

  • Beckers GJ, Jaskiewicz M, Liu Y, Underwood WR, He SY, Zhang S, Conrath U (2009) Mitogen-activated protein kinases 3 and 6 are required for full priming of stress responses in Arabidopsis thaliana. Plant Cell 21:944–953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bednarek P (2012) Chemical warfare or modulators of defence responses—the function of secondary metabolites in plant immunity. Curr Opin Plant Biol 15:407–414. https://doi.org/10.1016/j.pbi.2012.03.002

    Article  CAS  PubMed  Google Scholar 

  • Bednarek P, Osbourn A (2009) Plant–microbe interactions: chemical diversity in plant defense. Science 324:746–748

    Article  CAS  PubMed  Google Scholar 

  • Bednarek P, Schneider B, Svatos A, Oldham NJ, Hahlbrock K (2005) Structural complexity, differential response to infection, and tissue specificity of indolic and phenylpropanoid secondary metabolism in Arabidopsis roots. Plant Physiol 138:1058–1107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bednarek P, Pislewska-Bednarek M, Svatos A, Schneider B, Doubsky J, Mansurova M, Humphry M, Consonni C, Panstruga R, Sanchez-Vallet A, Molina A, Schulze-Lefert P (2009) A glucosinolate metabolism pathway in living plant cells mediates broad-spectrum antifungal defense. Science 323:101–106. https://doi.org/10.1126/science.1163732

    Article  CAS  PubMed  Google Scholar 

  • Beekwilder J, van Leeuwen W, van Dam NM, Bertossi M, Grandi V, Mizzi L, Soloviev M, Szabados L, Molthoff JW, Schipper B, Verbocht H, de Vos RCH, Morandini P, Arts MGM, Bovy A (2008) The impact of the absence of aliphatic glucosinolates on insect herbivory in Arabidopsis. PLoS One 3:e2068

    Article  PubMed  PubMed Central  Google Scholar 

  • Belanger RR, Bushnell WR, Dik AJ, Carver TLW (2002) The powdery mildews: a comprehensive treatise. American Phytopathology Society (APS Press), St. Paul

    Google Scholar 

  • Belanger RR, Benhamou N, Menzies JG (2003) Cytological evidence of an active role of silicon in wheat resistance to powdery mildew (Blumeria graminis f. sp. tritici). Phytopathology 93:402–412

    Article  CAS  PubMed  Google Scholar 

  • Benaroudj N, Lee DH, Goldberg AL (2001) Trehalose accumulation during cellular stress protects cells and cellular proteins from damage by oxygen radicals. J Biol Chem 276:24261–24267. https://doi.org/10.1074/jbc.M101487200

    Article  CAS  PubMed  Google Scholar 

  • Berken A (2006) ROPs in the spotlight of plant signal transduction. Cell Mol Life Sci 63:2446–2459

    Article  CAS  PubMed  Google Scholar 

  • Bernoux M, Ve T, Williams S, Warren C, Hatters D, Valkov E, Zhang X, Ellis JG, Kobe B, Dodds PN (2011) Structural and functional analysis of a plant resistance protein TIR domain reveals interfaces for selfassociation, signaling, and autoregulation. Cell Host Microbe 9:200–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bethke G, Unthan T, Uhrig JF, Poschl Y, Gust AA, Scheel D, Lee J (2009) Flg22 regulates the release of an ethylene response factor substrate from MAP kinase 6 in Arabidopsis thaliana via ethylene signaling. Proc Natl Acad Sci U S A 106:8067–8072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhardwaj V, Meier S, Petersen LN, Ingle RA, Roden LC (2011) Defense responses of Arabidopsis thaliana to infection by Pseudomonas syringae are regulated by the circadian clock. PLoS One 6:e26968. https://doi.org/10.1371/journal.pone.0026968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhat RA, Miklis M, Schmelzer E, Schulze-Lefert P, Panstruga R (2005) Recruitment and interaction dynamics of plant penetration resistance components in a plasma membrane microdomain. Proc Natl Acad Sci U S A 102:3135–3140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bittel P, Robatzek S (2007) Microbe-associated molecular patterns (MAMPs) probe plant immunity. Curr Opin Plant Biol 10:335–341

    Article  CAS  PubMed  Google Scholar 

  • Bittner-Eddy PD, Beynon JL (2001) The Arabidopsis downy mildew resistance gene, RPP13-Nd, functions independently of NDR1 and EDS1 and does not require the accumulation of salicylic acid. Mol Plant Microbe Interact 14:416–421

    Article  CAS  PubMed  Google Scholar 

  • Bjorkman A, Person B (1957) Studies on finely divided wood. Part 2. The properties of lignins extracted with neutral solvents from softwoods and hardwoods. Svensk Papperstidning 5:158–169

    Google Scholar 

  • Bohlenius H, Mørch SM, Godfrey D, Nielsen ME, Thordal-Christensen H (2010) The multivesicular body-localized GTPase ARFA1b/1c is important for callose deposition and ROR2 syntaxin-dependent preinvasive basal defense in barley. Plant Cell 22:3831–3844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boller T, Felix G (2009) A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60:379–406. https://doi.org/10.1146/annurev.arplant.57.032905.105346

    Article  CAS  PubMed  Google Scholar 

  • Bones AM, Rossiter JT (2006) The enzymic and chemically induced decomposition of glucosinolates. Phytochemistry 67:1053–1067

    Article  CAS  PubMed  Google Scholar 

  • Bottcher C, Westphal L, Schmotz C, Prade E, Scheel D, Glawischnig E (2009) The multifunctional enzyme CYP71B15 (PHYTOALEXIN DEFICIENT3) converts cysteine-indole-3-acetonitrile to camalexin in the indole-3-acetonitrile metabolic network of Arabidopsis thaliana. Plant Cell 21:1830–1845

    Article  PubMed  PubMed Central  Google Scholar 

  • Bracker CE (1968) Ultra-structure of the haustorial apparatus of Erysiphe graminis and its relationship to the epidermal cell of barley. Phytopathology 58:12–30

    Google Scholar 

  • Brandl W, Herrmann K, Grotjahn LZ (1984) Hydroxycinnamoyl esters of malic acid in small radish (Raphanus sativus L. var. sativus). Zeitschrift fur Naturforschung 39c:515–520

    Article  CAS  Google Scholar 

  • Brown JKM (2015) Durable resistance of crops to disease: a Darwinian perspective. Annu Rev Phytopathol 53:513–539. https://doi.org/10.1146/annurev-phyto-102313-045914

    Article  CAS  PubMed  Google Scholar 

  • Buer CS, Djordjevic MA (2009) Architectural phenotypes in the transparent testa mutants of Arabidopsis thaliana. J Exp Bot 60:751–763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bulman SR, Siemens J, Ridgway HJ, Eady C, Conner AJ (2006) Identification of genes from the obligate intracellular plant pathogen, Plasmodiophora brassicae. FEMS Microbiol Lett 264:198–204

    Article  CAS  PubMed  Google Scholar 

  • Bulman S, Candy JM, Fiers M, Lister R, Conner AJ, Eady CC (2011) Genomics of biotrophic, plant-infecting plasmodiophorids using in vitro dual cultures. Protist 162:449–461

    Article  CAS  PubMed  Google Scholar 

  • Burki F, Kudryavtsev A, Matz MV, Aglyamova GV, Bulman S, Fiers M, Keeling PJ, Pawlowski J (2010) Evolution of Rhizaria: new insights from phylogenomic analysis of uncultivated protists. BMC Evol Biol 10:377–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burr CA, Leslie ME, Orlowski SK, Chen I, Wright CE, Daniels MJ, Liljegren SJ (2011) CAST AWAY, a membrane-associated receptor-like kinase, inhibits organ abscission in Arabidopsis. Plant Physiol 156:1837–1850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buscaill P, Rivas S (2014) Transcriptional control of plant defence responses. Curr Opin Plant Biol 20:35–46

    Article  CAS  PubMed  Google Scholar 

  • Caarls L, Pieterse CMJ, Van Wees SCM (2015) How salicylic acid takes transcriptional control over jasmonic acid signaling. Front Plant Sci 6:170. https://doi.org/10.3389/fpls.2015.00170

    Article  PubMed  PubMed Central  Google Scholar 

  • Caarls L, Van der Does D, Hickman R, Jansen W, Verk MCV, Proietti S, Lorenzo O, Solano R, Pieterse CMJ, Van Wees SCM (2016) Assessing the role of ETHYLENE RESPONSE FACTOR transcriptional repressors in salicylic acid-mediated suppression of jasmonic acid-responsive genes. Plant Cell Physiol 58:266–278. https://doi.org/10.1093/pcp/pcw187

    Article  CAS  Google Scholar 

  • Cahill D, Rookes J, Michalczyk A, McDonald K, Drake A (2002) Microtubule dynamics in compatible and incompatible interactions of soybean hypocotyl cells with Phytophthora sojae. Plant Pathol 51:629–640

    Article  Google Scholar 

  • Caillaud MC, Abad P, Favery B (2008a) Cytoskeleton reorganization, a key process in root-knot nematode-induced giant cell ontogenesis. Plant Signal Behav 3:816–818

    Article  PubMed  PubMed Central  Google Scholar 

  • Caillaud MC, Lecomte P, Jammes F, Quentin M, Pagnotta S, Andrio E, de Almeida EJ, Marfaing N, Gounon P, Abad P, Favery B (2008b) MAP65-3 microtubule-associated protein is essential for nematode-induced giant cell ontogenesis in Arabidopsis. Plant Cell 20(2):423–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campe R, Langenbach C, Leissing F, Popescu GV, Popescu SC, Goellner K, Beckers GJM, Conrath U (2015) ABC transporter PEN3/PDR8/ABCG36 interacts with calmodulin that, like PEN3, is required for Arabidopsis nonhost resistance. New Phytol 209:294–306

    Article  PubMed  Google Scholar 

  • Cao H, Bowling SA, Gordon AS, Dong X (1994) Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance. Plant Cell 6:1583–1592. https://doi.org/10.1105/tpc.6.11.1583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao H, Glazebrook J, Clarke JD, Volko S, Dong X (1997) The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 88:57–63. https://doi.org/10.1016/S0092-8674(00)81858

    Article  CAS  PubMed  Google Scholar 

  • Cao H, Li X, Dong XN (1998) Generation of broad-spectrum disease resistance by overexpression of an essential regulatory gene in systemic acquired resistance. Proc Natl Acad Sci U S A 95:6531–6536. https://doi.org/10.1073/pnas.95.11.6531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao T, Srivastava S, Rahman MH, Kav NNV, Hotte N, Deyholos MK, Strelkov SE (2008) Proteome-level changes in the roots of Brassica napus as a result of Plasmodiophora brassicae infection. Plant Sci 174(1):97–115

    Article  CAS  Google Scholar 

  • Cao Y, Liang Y, Tanaka K, Nguyen CT, Jedrzejczak RP, Joachimiak A, Stacey G (2014) The kinase LYK5 is a major chitin receptor in Arabidopsis and forms a chitin-induced complex with related kinase CERK1. eLife 3:e03766. https://doi.org/10.7554/eLife.03766

    Article  PubMed Central  Google Scholar 

  • Catanzariti AM, Dodds PN, Lawrence GJ, Ayliffe MA, Ellis JG (2006) Haustorially expressed secreted proteins from flax rust are highly enriched for avirulence elicitors. Plant Cell 18:243–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Century KS, Shapiro AD, Repetti PP, Dahlbeck D, Holub E, Staskawicz BJ (1997) NDR1, a pathogen-induced component required for Arabidopsis disease resistance. Science 278:1963–1965

    Google Scholar 

  • Chan J, Jensen CG, Jensen LC, Bush M, Lloyd CW (1999) The 65-kDa carrot microtubule-associated protein forms regularly arranged filamentous cross-bridges between microtubules. Proc Natl Acad Sci U S A 96:14931–14936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandran D, Tai YC, Hather G, Dewdney J, Denoux C, Burgess DG, Ausubel FM, Speed TP, Wildermuth MC (2009) Temporal global expression data reveal known and novel salicylate-impacted processes and regulators mediating powdery mildew growth and reproduction on Arabidopsis. Plant Physiol 149:1435–1451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandran D, Inada N, Hather G, Kleindt CK, Wildermuth MC (2010) Laser micro dissection of Arabidopsis cells at the powdery mildew infection site reveals site-specific processes and regulators. Proc Natl Acad Sci U S A 107:460–465. https://doi.org/10.1073/pnas.0912492107

    Article  PubMed  Google Scholar 

  • Chandran D, Rickert J, Huang Y, Steinwand MA, Marr SK, Wildermuth MC (2014) Atypical E2F transcriptional repressor DEL1 acts at the intersection of plant growth and immunity by controlling the hormone salicylic acid. Cell Host Microbe 15:506–513

    Article  CAS  PubMed  Google Scholar 

  • Chapman JM, Muhlemann JK, Gayomba SR, Muday GK (2019) RBOH-dependent ROS synthesis and ROS scavenging by plant specialized metabolites to modulate plant development and stress responses. Chem Res Toxicol 32:370–396. https://doi.org/10.1021/acs.chemrestox.9b00028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen F, D’Auria JC, Tholl D, Ross JR, Gershenzon J, Noel JP, Pichersky E (2003) An Arabidopsis thaliana gene for methylsalicylate biosynthesis, identified by a biochemical genomics approach, has a role in defense. Plant J 36:577–588

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Zou J, Cowling WA, Meng J (2010) Allelic diversity in a novel gene pool of canola-quality Brassica napus enriched with alleles from B. rapa and B. carinata. Crop Pasture Sci 61:483–492. https://doi.org/10.1071/CP09327

    Article  CAS  Google Scholar 

  • Chen X, Barnaby JY, Sreedharan A, Huang X, Orbović V, Grosser JW, Wang N, Dong X, Song WY (2013) Over-expression of the citrus gene CtNH1 confers resistance to bacterial canker disease. Physiol Mol Plant Pathol 84:115–122. https://doi.org/10.1016/j.pmpp.2013.07.002

    Article  CAS  Google Scholar 

  • Chen J, Pang W, Chen B, Zhang C, Piao Z (2016a) Transcriptome analysis of Brassica rapa near-isogenic lines carrying clubroot-resistant and—susceptible alleles in response to Plasmodiophora brassicae during early infection. Front Plant Sci 6:1–14. https://doi.org/10.3389/fpls.2015.01183

    Article  Google Scholar 

  • Chen L, Zhang X, Xu H, Song B, Fan X (2016b) Introgression of clubroot resistance into an elite pak choi inbred line through marker-assisted introgression breeding. Plant Breed 135:471–475. https://doi.org/10.1111/pbr.12379

    Article  Google Scholar 

  • Chisholm ST, Coaker G, Day B, Staskawicz BJ (2006) Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124:803–814

    Article  CAS  PubMed  Google Scholar 

  • Chou HM, Bundock N, Rolfe SA, Scholes JD (2000) Infection of Arabidopsis thaliana leaves with Albugo candida (white blister rust) causes a reprogramming of host metabolism. Mol Plant Pathol 1:99–113

    Article  CAS  PubMed  Google Scholar 

  • Christiansen KM, Gu Y, Rodibaugh N, Innes RW (2011) Negative regulation of defence signalling pathways by the EDR1 protein kinase. Mol Plant Pathol 12:746–758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chu M, Song T, Falk KC, Zhang X, Liu X, Chang A, Lahlali R, McGregor L, Gossen BD, Peng G, Yu F (2014) Fine mapping of Rcr1 and analyses of its effect on transcriptome patterns during infection by Plasmodiophora brassicae. BMC Genomics 15:1166. https://doi.org/10.1186/1471-2164-15-1166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clay NK, Adio AM, Denoux C, Jander G, Ausubel FM (2009) Glucosinolate metabolites required for an Arabidopsis innate immune response. Science 323:95–101. https://doi.org/10.1126/science.1164627

    Article  CAS  PubMed  Google Scholar 

  • Collins NC, Thordal-Christensen H, Lipka V, Bau S, Kombrink E, Qiu JL, Hückelhoven R, Stein M, Freialdenhoven A, Somerville SC, Schulze-Lefert P (2003) SNARE-protein-mediated disease resistance at the plant cell wall. Nature 256(1):973–977

    Article  Google Scholar 

  • Consonni C, Humphry ME, Hartmann HA, Livaja M, Durner J, Westphal L, Vogel J, Lipka V, Kemmerling B, Schulze-Lefert P, Somerville SC, Panstruga R (2006) Conserved requirement for a plant host cell protein in powdery mildew pathogenesis. Nat Genet 386(1):716–720

    Article  Google Scholar 

  • Consonni C, Bednarek P, Humphry M, Francocci F, Ferrari S, Harzen A (2010) Tryptophan-derived metabolites are required for antifungal defense in the Arabidopsis mlo2 mutant. Plant Physiol 152:1544–1561. https://doi.org/10.1104/pp.109.147660

    Article  CAS  PubMed  Google Scholar 

  • Crouzet J, Trombik T, Fraysse AS, Boutry M (2006) Organization and function of the plant pleiotropic drug resistance ABC transporter family. FEBS Lett 580:1123–1130

    Article  CAS  PubMed  Google Scholar 

  • Dangl JL, Horvath DM, Staskawicz BJ (2013) Pivoting the plant immune system from dissection to deployment. Science 341:746–751

    Article  CAS  PubMed  Google Scholar 

  • Davis KR, Ausubel F (1989) Characterization of elicitor-induced defense responses in suspension-cultured cells of Arabidopsis. Mol Plant Microbe Interact 2:363–368

    Article  Google Scholar 

  • Delaney TP, Uknes S, Vernooij B, Friedrich L, Weymann K, Negrotto D, Gaffney T, Gut-Rella M, Kessmann H, Ward E, Ryals J (1994) A central role for salicylic acid in plant disease resistance. Science 266:1247–1250

    Article  CAS  PubMed  Google Scholar 

  • Delaney TP, Friedrich L, Ryals JA (1995) Arabidopsis signal transduction mutant defective in chemically and biologically induced disease resistance. Proc Natl Acad Sci U S A 92:6602–6606. https://doi.org/10.1073/pnas.92.14.6602

  • Dempsey DA, Shah J, Klessig DF (1999) Salicylic acid and disease resistance in plants. Crit Rev Plant Sci 18:547–575

    Article  CAS  Google Scholar 

  • Devos S, Vissenberg K, Verbelen JP, Prinsen E (2005) Infection of Chinese cabbage by Plasmodiophora brassicae leads to a stimulation of plant growth: impacts on cell wall metabolism and hormone balance. New Phytol 166(1):241–250

    Article  CAS  PubMed  Google Scholar 

  • Devos S, Laukens K, Deckers P, Van Der Straeten D, Beeckman T, Inze D, van Onckelen H, Witters E, Prinsen E (2006) A hormone and proteome approach to picturing the initial metabolic events during Plasmodiophora brassicae infection on Arabidopsis. Mol Plant-Microbe Interact 19:1431–1433

    Article  CAS  PubMed  Google Scholar 

  • Dewdney J, Reuber TL, Wildermuth MC, Devoto A, Cui J, Stutius LM, Drummond EP, Ausubel FM (2000) Three unique mutants of Arabidopsis identify eds loci required for limiting growth of a biotrophic fungal pathogen. Plant J 24:205–218

    Article  CAS  PubMed  Google Scholar 

  • Ding Y, Sun T, Ao K, Peng Y, Zhang Y, Li X, Zhang Y (2018) Opposite roles of salicylic acid receptors NPR1 and NPR3/NPR4 in transcriptional regulation of plant immunity. Cell 173:1454–1467.e1415

    Article  CAS  PubMed  Google Scholar 

  • Dixon RA (2001) Natural products and plant disease resistance. Nature 411:843–847

    Article  CAS  PubMed  Google Scholar 

  • Dixon RA, Paiva NL (1995) Stress induced phenyl-propanoid metabolism. Plant Cell 7:1085–1097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Djamei A, Schipper K, Rabe F, Ghosh A, Vincon V, Kahnt J, Osorio S, Tohge T, Fernie AR, Feussner I, Feussner K, Meinicke P, Stierhof YD, Schwarz H, Macek B, Mann M, Kahmann R (2011) Metabolic priming by a secreted fungal effector. Nature 478:395–398

    Article  CAS  PubMed  Google Scholar 

  • Dorjgotov D, Jurca ME, Fodor-Dunai C, Szucs A, Otvos K, Klement E, Biro J, Feher A (2009) Plant Rho-type (Rop) GTPase-dependent activation of receptor-like cytoplasmic kinases in vitro. FEBS Lett 583:1175–1182

    Article  CAS  PubMed  Google Scholar 

  • Doughty KJ, Bennett RN, Nashaat NI, Schrijvers S, Kiddle G, Pye BJ, Mitchell SE, Wallsgrove RM (1995) The response of oilseed rape (Brassica napus L.) seedlings to Peronospora parasitica and Alternaria brassicae following treatment with salicylic acid or methyl jasmonate. In: Proceedings of the 9th international rapeseed congress, Cambridge, UK, July 4-7, 1995, vol 3, pp 971–973

    Google Scholar 

  • Durrant WE, Dong X (2004) Systemic acquired resistance. Annu Rev Phytopathol 42:185–209. https://doi.org/10.1146/annurev.phyto.42.040803.140421

    Article  CAS  PubMed  Google Scholar 

  • Dutt M, Barthe G, Irey M, Grosser J (2015) Transgenic citrus expressing an Arabidopsis NPR1 gene exhibit enhanced resistance against huanglongbing (HLB; citrus greening). PLoS One 10:e0137134. https://doi.org/10.1371/journal.pone.0147657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eckey C, Korell M, Leib K, Biedenkopf D, Jansen C, Langen G, Kogel KH (2004) Identification of powdery mildew-induced barley genes by cDNA-AFLP: functional assessment of an early expressed MAP kinase. Plant Mol Biol 55:1–15

    Article  CAS  PubMed  Google Scholar 

  • Ederli L, Dawe A, Pasqualini S, Quaglia M, Xiong L, Gehring C (2015) Arabidopsis flower specific defense gene expression patterns affect resistance to pathogens. Front Plant Sci 6:79. https://doi.org/10.3389/fpls.2015.00079

  • Eggert D, Naumann M, Reimer R, Voigt CA (2014) Nanoscale glucan polymer network causes pathogen resistance. Sci Rep 4:4159. https://doi.org/10.1038/srep04159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ehness R, Ecker M, Godt DE, Roitsch T (1997) Glucose and stress independently regulate source and sink metabolism and defence mechanisms via signal transduction pathways involving protein phosphorylation. Plant Cell 9:1825–1841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El Modafar C, El Boustani E (2001) Cell wall-bound phenolic acid and lignin contents in date palm as related to its resistance to Fusarium oxysporum. Biol Plant 44:125–130. https://doi.org/10.1023/A:1017942927058

    Article  Google Scholar 

  • Ellinger D, Voigt CA (2014) Callose biosynthesis in Arabidopsis with a focus on pathogen response: what we have learned within the last decade. Ann Bot 114:1349–1358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellinger D, Naumann M, Falter C, Zwikowics C, Jamrow T, Manisseri C, Somerville SC, Voigt CA (2013) Elevated early callose deposition results in complete penetration resistance to powdery mildew in Arabidopsis. Plant Physiol 161:1433–1444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellinger D, Glockner A, Koch J, Naumann M, Sturtz V, Schütt K, Manisseri C, Somerville SC, Voigt CA (2014) Interaction of the Arabidopsis GTPase RabA4c with its effector PMR4 results in complete penetration resistance to powdery mildew. Plant Cell 26:3185–3200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellis C, Karafyllidis I, Turner JG (2002a) Constitutive activation of jasmonate signaling in an Arabidopsis mutant correlates with enhanced resistance to Erysiphe cichoracearum, Pseudomonas syringae, and Myzus persicae. Mol Plant Microbe Interact 15:1025–1030. https://doi.org/10.1094/MPMI.2002.15.10.1025

    Article  CAS  PubMed  Google Scholar 

  • Ellis C, Karafyllidis I, Wasternack C, Turner JG (2002b) The Arabidopsis mutant cev1 links cell wall signaling to jasmonate and ethylene responses. Plant Cell 14:1557–1566. https://doi.org/10.1105/tpc.002022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Enright S, Cipollini D (2007) Infection by powdery mildew Erysiphe cruciferarum (Erysiphaceae) strongly affects growth and fitness of Alliaria petiolata (Brassicaceae). Am J Bot 94:1813–1820

    Article  PubMed  Google Scholar 

  • Eulgem T, Somssich IE (2007) Networks of WRKY transcription factors in defense signaling. Curr Opin Plant Biol 10:366–371

    Article  CAS  PubMed  Google Scholar 

  • Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY super family of plant transcription factors. Trends Plant Sci 5:199–206. https://doi.org/10.1016/S1360-1385(00)01600-9

    Article  CAS  PubMed  Google Scholar 

  • Fabro G, Di Rienzo JA, Voigt CA, Savchenko T, Dehesh K, Somerville S, Alvarez ME (2008) Genome-wide expression profiling Arabidopsis at the stage of Golovinomyces cichoracearum haustorium formation. Plant Physiol 146:1421–1439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fahey JW, Zalcmann AT, Talalay P (2001) The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56:5–51

    Article  CAS  PubMed  Google Scholar 

  • Falk A, Feys BJ, Frost LN, Jones JD, Daniels MJ, Parker JE (1999) EDS1, an essential component of R gene-mediated disease resistance in Arabidopsis has homology to eukaryotic lipases. Proc Natl Acad Sci U S A 96:3292–3297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan J, Crooks C, Creissen G, Hill L, Fairhurst S, Doerner P, Lamb C (2011) Pseudomonas sax genes overcome aliphatic isothiocyanate-mediated non-host resistance in Arabidopsis. Science 331:1185–1188

    Google Scholar 

  • Fauteux F, Remus-Borel W, Menzies JG, Belanger RR (2005) Silicon and plant disease resistance against pathogenic fungi. FEMS Microbiol Lett 249:1–6. https://doi.org/10.1016/j.femsle.2005.06.034

    Article  CAS  PubMed  Google Scholar 

  • Fauteux F, Chain F, Belzile F, Menzies JG, Belanger RR (2006) The protective role of silicon in the Arabidopsis-powdery mildew pathosystem. Proc Natl Acad Sci U S A 103:17554–17559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feechan A, Kwon E, Yun BW, Wang Y, Pallas JA, Loake GJ (2005) A central role for S-nitrosothiols in plant disease resistance. Proc Natl Acad Sci U S A 102:8054–8059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feechan A, Kabbara S, Dry IB (2011) Mechanisms of powdery mildew resistance in the Vitaceae family. Mol Plant Pathol 12:263–274

    Article  PubMed  Google Scholar 

  • Feng J, Hwang R, Hwang SF, Strelkov SE, Gossen BD, Zhou QX, Peng G (2010) Molecular characterization of a serine protease Pro1 from Plasmodiophora brassicae that stimulates resting spore germination. Mol Plant Pathol 11(4):503–512. https://doi.org/10.1111/J.1364-3703.2010.00623.X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrari S, Plotnikova JM, De Lorenzo G, Ausubel FM (2003) Arabidopsis local resistance to Botrytis cinerea involves salicylic acid and camalexin and requires EDS4 and PAD2, but not SID2, EDS5 or PAD4. Plant J 35:193–205. https://doi.org/10.1046/j.1365-313X.2003.01794.x

  • Feys BJ, Moisan LJ, Newman MA, Parker JE (2001) Direct interaction between the Arabidopsis disease resistance signaling proteins, EDS1 and PAD4. EMBO J 20:5400–5411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feys BJ, Wiermer M, Bhat RA, Moisan LJ, Medina-Escobar N, Neu C, Cabral A, Parker JE (2005) Arabidopsis SENESCENCE-ASSOCIATED GENE101 stabilizes and signals within an ENHANCED DISEASE SUSCEPTIBILITY1 complex in plant innate immunity. Plant Cell 17:2601–2613

    Google Scholar 

  • Fotopoulos V, Gilbert MJ, Pittman JK, Marvier AC, Buchanan AJ, Sauer N, Hall JL, Williams LE (2003) The monosaccharide transporter gene, AtSTP4, and the cell-wall invertase, Atfruct1, are induced in Arabidopsis during infection with the fungal biotroph Erysiphe cichoracearum. Plant Physiol 132(2):821–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freymark G, Diehl T, Miklis M, Romeis T, Panstruga R (2007) Antagonistic control of powdery mildew host cell entry by barley calcium-dependent protein kinases (CDPKs). Mol Plant-Microbe Interact 20:1213–1221

    Article  CAS  PubMed  Google Scholar 

  • Friedrich L, Lawton K, Dietrich R, Willits M, Cade R, Ryals J (2001) NIM1 overexpression in Arabidopsis potentiates plant disease resistance and results in enhanced effectiveness of fungicides. Mol Plant Microbe Interact 14:1114–1124. https://doi.org/10.1094/MPMI.2001.14.9.1114

    Article  CAS  PubMed  Google Scholar 

  • Frye CA, Innes RW (1998) An Arabidopsis mutant with enhanced resistance to powdery mildew. Plant Cell 10:947–956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frye CA, Tang D, Innes RW (2001) Negative regulation of defense responses in plants by a conserved MAPKK kinase. Proc Natl Acad Sci U S A 98:373–378

    Article  CAS  PubMed  Google Scholar 

  • Fu ZQ, Dong X (2013) Systemic acquired resistance: turning local infection into global defense. Annu Rev Plant Biol 64:839–863. https://doi.org/10.1146/annurev-arplant-042811-105606

    Article  CAS  PubMed  Google Scholar 

  • Fu Y, Gu Y, Zheng Z, Wasteneys G, Yang Z (2005) Arabidopsis interdigitating cell growth requires two antagonistic pathways with opposing action on cell morphogenesis. Cell 120:687–700

    Google Scholar 

  • Fu D, Uauy C, Distelfeld A, Blechl A, Epstein L, Chen X, Sela H, Fahima T, Dubcovsky J (2009) A kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science 323(5919):1357–1360. https://doi.org/10.1126/science.1166289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu ZQ, Yan S, Saleh A, Wang W, Ruble J, Oka N et al (2012) NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. Nature 486:228–232. https://doi.org/10.1038/nature11162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu F, Liu X, Wang R, Zhai C, Peng G, Yu F, Fernando WGD (2019) Fine mapping of Brassica napus blackleg resistance gene Rlm1 through bulked segregant RNA sequencing. Sci Rep 9(1):14600

    Article  PubMed  PubMed Central  Google Scholar 

  • Fuchs R, Kopischke M, Klapprodt C, Hause G, Meyer AJ, Schwarzlander M, Fricker MD, Lipka V (2016) Immobilized subpopulations of leaf epidermal mitochondria mediate PEN2-dependent pathogen entry control in Arabidopsis. Plant Cell 28:130–145

    Article  PubMed  Google Scholar 

  • Galindo-Gonzalez L, Manolii V, Hwang SF, Strelkov SE (2020) Response of Brassica napus to Plasmodiophora brassicae involves salicylic acid-mediated immunity: an RNA-Seq-based study. Front Plant Sci 11:1025. https://doi.org/10.3389/fpls.2020.01025

    Article  PubMed  PubMed Central  Google Scholar 

  • Gamir J, Darwiche R, Van’t Hof P, Choudhary V, Stumpe M, Schneiter R, Mauch F (2017) The sterol-binding activity of PATHOGENESIS-RELATED PROTEIN 1 reveals the mode of action of an antimicrobial protein. Plant J 89:502–509

    Article  CAS  PubMed  Google Scholar 

  • Gardiner J (2013) The evolution and diversification of plant microtubule associated proteins. Plant J 75:219–229

    Article  CAS  PubMed  Google Scholar 

  • Genre A, Chabaud M, Timmers T (2005) Arbuscular mycorrhizal fungi elicit a novel intracellular apparatus in Medicago truncatula root epidermal cells before infection. Plant Cell 17:3489–3499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghanmi D, McNally DJ, Benhamou N, Menzies JG, Belanger RR (2004) Powdery mildew of Arabidopsis thaliana: a pathosystem for exploring the role of silicon in plant-microbe interactions. Physiol Mol Plant Pathol 64:189–199

    Article  CAS  Google Scholar 

  • Gil F, Gay JL (1977) Ultra-structural and physiological properties of the host interfacial components of haustoria of Erysiphe pisi in vivo and in vitro. Physiol Plant Pathol 10:1–4

    Article  Google Scholar 

  • Gilmore B, Myers JR, Kean D (2002) Completion of testing of Phaseolus coccineus plant introductions (Pls) for white mold, Sclerotinia sclerotiorum, resistance. Ann Rep Bean Improv Coop, p. 45

    Google Scholar 

  • Gish LA, Clark SE (2011) The RLK/Pelle family of kinases. Plant J66:117–127

    Google Scholar 

  • Gjetting T, Carver TL, Skot L, Lyngkjaer MF (2004) Differential gene expression in individual papilla-resistant and powdery mildew-infected barley epidermal cells. Mol Plant Microbe Interact 176(1):729–738

    Article  Google Scholar 

  • Gjetting T, Hagedorn PH, Schweizer P, Thordal-Christensen H, Carver TL, Lyngkjaer MF (2007) Single-cell transcript profiling of barley attacked by the powdery mildew fungus. Mol Plant Microbe Interact 206(1):235–246

    Article  Google Scholar 

  • Glawischnig E, Hansen BG, Olsen CE, Halkier BA (2004) Camalexin is synthesized from indole-3-acetaldoxime, a key branching point between primary and secondary metabolism in Arabidopsis. Proc Natl Acad Sci U S A 101:8245–8250. https://doi.org/10.1073/pnas.0305876101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227. https://doi.org/10.1146/annurev.phyto.43.040204.135923

    Article  CAS  PubMed  Google Scholar 

  • Glazebrook J, Rogers EE, Ausubel FM (1996) Isolation of Arabidopsis mutants with enhanced disease susceptibility by direct screening. Genetics 143:973–982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glazebrook J, Zook M, Mert F, Kagan I, Rogers EE, Crute IR, Holub EB, Hammerschmidt R, Ausubel FM (1997) Phytoalexin-deficient mutants of Arabidopsis reveal that PAD4 encodes a regulatory factor and that four PAD genes contribute to downy mildew resistance. Genetics 146:381–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Godika S, Pathak AK (2005) Control of white rust and Alternaria blight diseases of mustard by foliar sprays of Ridomil. Pestol 29:9–10

    CAS  Google Scholar 

  • Gomez-Gomez L, Felix G, Boller T (1999) A single locus determines sensitivity to bacterial flagellin in Arabidopsis thaliana. Plant J 18:277–284

    Article  CAS  PubMed  Google Scholar 

  • Grant M, Lamb C (2006) Systemic immunity. Curr Opin Plant Biol 9:414–420. https://doi.org/10.1016/j.pbi.2006.05.013

    Article  CAS  PubMed  Google Scholar 

  • Green JR, Carver TL, Gurr SJ (2002) The formation and function of infection and feeding structures. In: Belanger RR, Bushnell WR, Dik AJ, Carver TL (eds) The powdery mildews: a comprehensive treatise. APS Press, St Paul, pp 66–82

    Google Scholar 

  • Greenhalgh JR, Mitchell ND (1976) The involvement of flavour volatiles in the resistance to downy mildew of wild and cultivated forms of Brassica oleracea. New Phytol 77:391–398

    Article  CAS  Google Scholar 

  • Grubb CD, Abel S (2006) Glucosinolate metabolism and its control. Trends Plant Sci 11:89–100. https://doi.org/10.1016/j.tplants.2005.12.006

    Article  CAS  PubMed  Google Scholar 

  • Gu YQ, Wildermuth MC, Chakravarthy S, Loh YT, Yang C, He X, Han Y, Martin GB (2002) Tomato transcription factors Pti4, Pti5, and Pti6 activate defense responses when expressed in Arabidopsis. Plant Cell 14:817–831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo CY, Wu GH, Xing J, Li WQ, Tang DZ, Cui BM (2013) A mutation in a coproporphyrinogen III oxidase gene confers growth inhibition, enhanced powdery mildew resistance and powdery mildew-induced cell death in Arabidopsis. Plant Cell Rep 32:687–702

    Article  CAS  PubMed  Google Scholar 

  • Gus-Meyer S, Naton B, Hahlbrock K, Schmelzer E (1998) Local mechanical stimulation induces components of the pathogen defense response in parsley. Proc Natl Acad Sci U S A 146(1):8398–8403

    Article  Google Scholar 

  • Hagemeier J, Schneider B, Oldham NJ, Hahlbrock K (2001) Accumulationof soluble and wall-bound indolic metabolites in Arabidopsis thaliana leaves infected with virulent or avirulent Pseudomonas syringae pathovar tomato strains. Proc Natl Acad Sci U S A 98:753–758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hahlbrock K, Bednarek P, Ciolkowski I, Hamberger B, Heise A, Liedgens H, Logemann E, Nürnberger T, Schmelzer E, Somssich IE et al (2003) Non-self recognition, transcriptional reprogramming, and secondarymetabolite accumulation during plant/pathogen interactions. Proc Natl Acad Sci U S A 100:14569–14576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halkier BA, Gershenzon J (2006) Biology and biochemistry of glucosinolates. Annu Rev Plant Biol 57:303–333. https://doi.org/10.1146/annurev.arplant.57.032905.105228

    Article  CAS  PubMed  Google Scholar 

  • Hamada T (2014) Microtubule organization and microtubule-associated proteins in plant cells. Int Rev Cell Mol Biol 312:1–52

    Article  PubMed  Google Scholar 

  • Hammerschmidt R (1999) Phytoalexins: what have we learned after 60 year? Annu Rev Phytopathol 37:285–306

    Article  CAS  PubMed  Google Scholar 

  • Hammerschmidt R, Kuc J (1982) Lignification as a mechanism for induced systemic resistance in cucumber. Physiol Plant Pathol 20:61–71. https://doi.org/10.1016/0048-4059(82)90024-8

    Article  CAS  Google Scholar 

  • Hammerschmidt R, Lamport DTA, Muldoon EP (1984) Cell wall hydroxyproline enhancement and lignin deposition as an early event in the resistance of cucumber to Cladosporium cucumerinum. Physiol Plant Pathol 24:43–47

    Article  CAS  Google Scholar 

  • Hansen CH, Du L, Naur P, Olsen CE, Axelsen KB, Hick AJ, Pickett JA, Halkier BA (2001) CYP83b1 is the oxime-metabolizing enzyme in the glucosinolate pathway in Arabidopsis. J Biol Chem 276:24790–24796

    Article  CAS  PubMed  Google Scholar 

  • Hardham AR (2013) Microtubules and biotic interactions. Plant J 75:278–289

    Article  CAS  PubMed  Google Scholar 

  • Hardham AR, Jones DA, Takemoto D (2007) Cytoskeleton and cell wall function in penetration resistance. Curr Opin Plant Biol 10:342–348. https://doi.org/10.1016/j.pbi.2007.05.001

    Article  CAS  PubMed  Google Scholar 

  • Hardham AR, Takemoto D, White RG (2008) Rapid and dynamic sub-cellular reorganization following mechanical stimulation of Arabidopsis epidermal cells mimics responses to fungal and oomycete attack. BMC Plant Biol 8:63

    Article  PubMed  PubMed Central  Google Scholar 

  • Harel TM, Mehar ZHI, Rav-David D, Elad Y (2014) Systemic resistance to gray mold induced in tomato by Benzothiadiazole and Trichoderma harzianum T39. Phytopathology 104:150–157

    Article  CAS  PubMed  Google Scholar 

  • Hasan MJ, Rahman H (2016) Genetics and molecular mapping of resistance to Plasmodiophora brassicae pathotypes 2, 3, 5, 6, and 8 in rutabaga (Brassica napus var. napobrassica). Genome 59:805–815. https://doi.org/10.1139/gen-2016-0034

    Article  CAS  PubMed  Google Scholar 

  • Hatakeyama K, Suwabe K, Tomita RN, Kato T, Nunome T, Fukuoka H, Matsumoto S (2013) Identification and characterization of Crr1a, a gene for resistance to clubroot disease (Plasmodiophora brassicae Worn.) in Brassica rapa L. PLoS One 8:e54745. https://doi.org/10.1371/journal.pone.0054745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heath MC (2000) Non-host resistance and nonspecific plant defences. Curr Opin Plant Biol 3:315–319

    Article  CAS  PubMed  Google Scholar 

  • Hejna O, Havlickova L, He Z, Bancroft I, Curn V (2019) Analysing the genetic architecture of clubroot resistance variation in Brassica napus by associative transcriptomics. Mol Breed 39:112. https://doi.org/10.1007/s11032-019-1021-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Hemm MR, Ruegger MO, Chapple C (2003) The Arabidopsis ref2 mutant is defective in the gene encoding CYP83A1 and shows both phenylpropanoid and glucosinolate phenotypes. Plant Cell 15:179–194. https://doi.org/10.1105/tpc.006544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hepworth SR, Zhang Y, McKim S, Li X, Haughn GW (2005) BLADE-ON-PETIOLE-dependent signaling controls leaf and floral patterning in Arabidopsis. Plant Cell 17:1434–1448. https://doi.org/10.1105/tpc.104.030536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herbers K, Takahata Y, Melzer M, Mock H-P, Hajirezaei M, Sonnewald U (2000) Regulation of carbohydrate partitioning during the interaction of potato virus Y with tobacco. Mol Plant Pathol 1:51–59

    Article  CAS  PubMed  Google Scholar 

  • Hermosa R, Viterbo A, Chet I, Monte E (2012) Plant-beneficial effects of Trichoderma and of its genes. Microbiology 158:17–25

    Article  CAS  PubMed  Google Scholar 

  • Hijwegen T (1963) Lignification, a possible mechanism of active response against pathogens. Neth J Plant Pathol 69:314–317

    Article  CAS  Google Scholar 

  • Ho CMK, Hotta T, Guo F, Roberson RW, Lee YRJ, Liu B (2011) Interaction of antiparallel microtubules in the phragmoplast is mediated by the microtubule-associated protein MAP65-3 in Arabidopsis. Plant Cell 23:2909–2923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoefle C, Huesmann C, Schultheiss H, Bornke F, Hensel G, Kumlehn J, Huckelhoven R (2011) A barley ROP GTPase ACTIVATING PROTEIN associates with microtubules and regulates entry of the barley powdery mildew fungus into leaf epidermal cells. Plant Cell 23:2422–2439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hossain MY, Jasmine S, Ibrahim AHM, Ahmed ZF, Rahman MM, Ohtomi J (2008) Length-weight and length-length relationships of ten small fish species from the Ganges (Bangladesh). J Appl Ichthyol 25:117–119

    Article  Google Scholar 

  • Hou CT, Forman RJ (2000) Growth inhibition of plant pathogenic fungi by hydroxy fatty acids. J Ind Microbial Biochem 24:275–276

    Article  CAS  Google Scholar 

  • Huang R, Hippauf F, Rohrbeck D, Haustein M, Wenke K, Feike J, Sorelle N, Piechulla B, Barkman TJ (2012) Enzyme functional evolution through improved catalysis of ancestrally nonpreferred substrates. Proc Natl Acad Sci U S A 109:2966–2971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huckelhoven R (2005) Powdery mildew susceptibility and biotrophic infection strategies. FEMS Microbiol Lett 245:9–17

    Article  PubMed  Google Scholar 

  • Huckelhoven R (2007) Cell wall-associated mechanisms of disease resistance and susceptibility. Annu Rev Phytopathol 45:101–127

    Article  PubMed  Google Scholar 

  • Hückelhoven R, Panstruga R (2011) Cell biology of the plant powdery mildew interaction. Curr Opin Plant Biol 14:738–746

    Article  PubMed  Google Scholar 

  • Huckelhoven R, Fodor J, Preis C, Kogel KH (1999) Hypersensitive cell death and papilla formation in barley attacked by the powdery mildew fungus are associated with hydrogen peroxide but not with salicylic acid accumulation. Plant Physiol 119:1251–1260. https://doi.org/10.1104/pp.119.4.1251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huckelhoven R, Eichmann R, Weis C, Hoefle C, Proels RK (2013) Genetic loss of susceptibility: a costly route to disease resistance? Plant Pathol 62(Suppl 1):56–62

    Article  Google Scholar 

  • Huesmann C, Hoefle C, Huckelhoven R (2011) ROPGAPs of Arabidopsis limit susceptibility to powdery mildew. Plant Signal Behav 6:1691–1694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huesmann C, Reiner T, Hoefle C, Preuss J, Jurca ME, Domoki M, Feher A, Huckelhoven R (2012) Barley ROP binding kinase1 is involved in microtubule organization and in basal penetration resistance to the barley powdery mildew fungus. Plant Physiol 159:311–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hull AK, Vij R, Celenza JL (2000) Arabidopsis cytochrome P450s that catalyze the first step of tryptophan-dependent indole-3-acetic acid biosynthesis. Proc Natl Acad Sci U S A 97:2379–2384. https://doi.org/10.1073/pnas.040569997

  • Humphry M, Consonni C, Panstruga R (2006) mlo-based powdery mildew immunity: silver bullet or simply non-host resistance? Mol Plant Pathol 7:605–610. https://doi.org/10.1111/j.1364-3703.2006.00362.x

    Article  PubMed  Google Scholar 

  • Humphry M, Bednarek P, Kemmerling B, Koh S, Stein M, Gobel U, Stuber K, Pislewska-Bednarek M, Loraine A, Schulze-Lefert P, Somerville S, Panstruga R (2010) A regulon conserved in monocot and dicot plants defines a functional module in antifungal plant immunity. Proc Natl Acad Sci U S A 107:21896–21901. https://doi.org/10.1073/pnas.1003619107

    Article  PubMed  PubMed Central  Google Scholar 

  • Hussain A, Noman A, Khan MI, Zaynab M, Aqeel M, Anwar M, Ashraf MF, Liu Z, Raza A, Mahpara S (2019) Molecular regulation of pepper innate immunity and stress tolerance: an overview of WRKY TFs. Microb Pathog 135:103610. https://doi.org/10.1016/j.micpath.2019.103610

    Article  CAS  PubMed  Google Scholar 

  • Hussey PJ, Hawkins TJ, Igarashi H, Kaloriti D, Smertenko A (2002) The plant cytoskeleton: recent advances in the study of the plant microtubule-associated proteins MAP-65, MAP-190 and the Xenopus MAP215-like protein, MOR1. Plant Mol Biol 50:915–924

    Article  CAS  PubMed  Google Scholar 

  • Innes R (2018) The positives and negatives of NPR: a unifying model for salicylic acid signaling in plants. Cell 173:1314–1315

    Article  CAS  PubMed  Google Scholar 

  • Irani S, Trost B, Waldner M, Nayidu N, Tu J, Kusalik AJ, Todd CD, Wei Y, Bonham-Smith PC (2018) Transcriptome analysis of response to Plasmodiophora brassicae infection in the Arabidopsis shoot and root. BMC Genomics 19:23. https://doi.org/10.1186/s12864-017-4426-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobs AK, Lipka V, Burton RA, Panstruga R, Strizhov N, Schulze-Lefert P, Fincher GB (2003) An Arabidopsis callose synthase, GSL5, is required for wound and papillary callose formation. Plant Cell 15:2503–2513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobs S, Zechmann B, Molitor A, Trujillo M, Petutschnig E, Lipka V, Kogel KH, Schcafer P (2011) Broad-spectrum suppression of innate immunity is required for colonization of Arabidopsis roots by the fungus Piriformospora indica. Plant Physiol 156:726–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jahn L, Mucha S, Bergmann S, Horn C, Staswick P, Steffens B, Siemens J, Ludwig-Muller J (2013) The clubroot pathogen (Plasmodiophora brassicae) influences auxin signaling to regulate auxin homeostasis in Arabidopsis. Plants 1:726–749. https://doi.org/10.3390/plants2040726

    Article  CAS  Google Scholar 

  • Jain D, Khurana JP (2018) Molecular aspects of plant–pathogen interaction. In: Role of pathogenesis-related (PR) proteins in plant defense mechanism. Springer, Singapore, pp 265–281

    Google Scholar 

  • Jensen MK, Rung JH, Gregersen PL, Gjetting T, Fuglsang AT, Hansen M, Joehnk N, Lyngkjaer MF, Collinge DB (2007) The HvNAC6 transcription factor: a positive regulator of penetration resistance in barley and Arabidopsis. Plant Mol Biol 65:137–150

    Article  CAS  PubMed  Google Scholar 

  • Jensen MK, Hagedorn PH, de Torres-Zabala M, Grant MR, Rung JH, Collinge DB, Lyngkjaer MF (2008) Transcriptional regulation by an NAC (NAM-ATAF1, 2-CUC2) transcription factor attenuates ABA signalling for efficient basal defence towards Blumeria graminis f. sp. hordei in Arabidopsis. Plant J 56:867–880

    Article  CAS  PubMed  Google Scholar 

  • Jia H, Wei X, Yang Y, Yuan Y, Wei Y, Zhao F, Yang Y, Yao S, Wang Q, Tian Z, Zhang B, Wei X (2017) Root RNA-seq analysis reveals a distinct transcriptome landscape between clubroot susceptible and clubroot-resistant Chinese cabbage lines after Plasmodiophora brassicae infection. Plant Soil 421:93–105. https://doi.org/10.1007/s11104-017-3432-5

    Article  CAS  Google Scholar 

  • Jiang Z, Dong X, Zhang Z (2016) Network-based comparative analysis of Arabidopsis immune responses to Golovinomyces orontii and Botrytis cinerea infections. Sci Rep 6:19149. https://doi.org/10.1038/srep19149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jirage D, Tootle TL, Reuber TL, Frost LN, Feys BJ, Parker JE, Ausubel FM, Glazebrook J (1999) Arabidopsis thaliana PAD4 encodes a lipase-like gene that is important for salicylic acid signaling. Proc Natl Acad Sci U S A 96:13583–13588

    Google Scholar 

  • Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  CAS  PubMed  Google Scholar 

  • de Jong CF, Laxalt AM, Bargmann BO, de Wit PJ, Joosten MH, Munnik T (2004) Phosphatidic acid accumulation is an early response in the Cf-4/Avr4 interaction. Plant J 39:1–12

    Article  PubMed  Google Scholar 

  • Jorgensen JH (1992) Discovery, characterization and exploitation of Mlo powdery mildew resistance in barley. Euphytica 63:141–152

    Article  Google Scholar 

  • Jubault M, Hamon C, Gravot A, Lariagon C, Delourme R, Bouchereau A, Manzanares-Dauleux MJ (2008) Differential regulation of root arginine catabolism and polyamine metabolism in clubroot-susceptible and partially resistant Arabidopsis genotypes. Plant Physiol 146:2008–2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jubault M, Lariagon C, Gravot A, Delourme R, Manzanares-dauleux MJ (2013) Partial resistance to clubroot in Arabidopsis is based on changes in the host primary metabolism and targeted cell division and expansion capacity. Funct Integr Genomics 13:191–205. https://doi.org/10.1007/s10142-013-0312-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung JSEC (2008) Genetic mapping of clubroot resistance genes in oilseed rape. Theor Appl Genet 116:363–372. https://doi.org/10.1007/s00122-007-0674-2

    Article  CAS  PubMed  Google Scholar 

  • Jurca ME, Bottka S, Feher A (2008) Characterization of a family ofArabidopsis receptor-like cytoplasmic kinases (RLCK class VI). Plant Cell Rep 27:739–748

    Article  CAS  PubMed  Google Scholar 

  • Kachroo A, Kachroo P (2009) Fatty acid-derived signals in plant defense. Annu Rev Phytopathol 47:153–176

    Article  CAS  PubMed  Google Scholar 

  • Kawano Y, Kaneko-Kawano T, Shimamoto K (2014) Rho family GTPase-dependent immunity in plants and animals. Front Plant Sci 5:522

    Article  PubMed  PubMed Central  Google Scholar 

  • Kehr J (2003) Single cell technology. Curr Opin Plant Biol 66(1):617–621

    Article  Google Scholar 

  • Kemen E, Kemen AC, Rafiqi M, Hempel U, Mendgen K, Hahn M, Voegele RT (2005) Identification of a protein from rust fungi transferred from haustoria into infected plant cells. Mol Plant Microbe Interact 18:1130–1139

    Article  CAS  PubMed  Google Scholar 

  • Kirik A, Mudgett MB (2009) SOBER1 phospholipase activity suppresses phosphatidic acid accumulation and plant immunity in response to bacterial effector AvrBsT. Proc Natl Acad Sci U S A 106:20532–20537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kliebenstein DJ, Rowe HC, Denby KJ (2005) Secondary metabolites influence Arabidopsis/Botrytis interactions: variation in host production and pathogen sensitivity. Plant J 44:25–36. https://doi.org/10.1111/j.1365-313X.2005.02508.x

    Article  CAS  PubMed  Google Scholar 

  • Kluczewski SM, Lucas JA (1982) Development and physiology of infection by the downy mildew fungus Peronospora parasitica (Pers. ex Fr.) Fr. in susceptible and resistant Brassica species. Plant Pathol 31:373–389

    Article  CAS  Google Scholar 

  • Knaust A, Ludwig-Muller J (2013) The ethylene signalling pathway is needed to restrict root gall growth in Arabidopsis after infection with the obligate biotrophic protist Plasmodiophora brassicae. J Plant Growth Regul 32:9–21

    Article  CAS  Google Scholar 

  • Kobayashi I, Kobayashi Y, Hardham AR (1994) Dynamic reorganization of microtubules and microfilaments in flax cells during the resistance response to flax rust infection. Planta 61:237–247

    Google Scholar 

  • Kobayashi Y, Kobayashi I, Funaki Y, Fujimoto S, Takemoto T, Kunoh H (1997a) Dynamic reorganization of microfilaments and microtubules is necessary for the expression of non-host resistance in barley coleoptile cells. Plant J 116(1):525–537

    Article  Google Scholar 

  • Kobayashi Y, Yamada M, Kobayashi I, Kunoh H (1997b) Actin microfilaments are required for the expression of nonhost resistance in higher plants. Plant Cell Physiol 386(1):725–733

    Article  Google Scholar 

  • Koch E, Slusarenko AJ (1990) Fungal pathogens of Arabidopsis thaliana (L.) Heyhn. Bot Helvet 100:257–268

    Google Scholar 

  • Koh S, Andre A, Edwards H, Ehrhardt D, Somerville S (2005) Arabidopsis thaliana subcellular responses to compatible Erysiphe cichoracearum infections. Plant J 446(1):516–529

    Google Scholar 

  • Kolattukudy PE (1974) Biosynthesis of a hydroxy fatty acid polymer, cutin. Identification and biosynthesis of 16-oxo-9- or 10-hydroxypalmitic acid, a novel compound in Vicia faba. Biochemistry 13:1354–1363

    Article  CAS  PubMed  Google Scholar 

  • Kolattukudy PE (1980) Biopolyester membranes of plants: cutin and suberin. Science 208:990–1000

    Article  CAS  PubMed  Google Scholar 

  • Koo YJ, Kim MA, Kim EH, Song JT, Jung C, Moon JK, Kim JH, Seo HS, Song SI, Kim JK, Lee JS, Cheong JJ, Choi YD (2007) Overexpression of salicylic acid carboxyl methyltransferase reduces salicylic acid-mediated pathogen resistance in Arabidopsis thaliana. Plant Mol Biol 64:1–15

    Article  CAS  PubMed  Google Scholar 

  • Korolev N, David DR, Elad Y (2008) The role of phytohormones in basal resistance and Trichoderma-induced systemic resistance to Botrytis cinerea in Arabidopsis thaliana. BioControl 53:667–683

    Article  CAS  Google Scholar 

  • Kragler F, Curin M, Trutnyeva K, Gansch A, Waigmann E (2003) MPB2C, a microtubule-associated plant protein binds to and interferes with cell-to-cell transport of tobacco mosaic virus movement protein. Plant Physiol 132:1870–1883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuhn H, Kwaaitaal M, Kusch S, Acevedo-Garcia J, Wu H, Panstruga R (2016) Biotrophy at its best: novel findings and unsolved mysteries of the Arabidopsis-powdery mildew pathosystem. Arabidopsis Book 14:e0184. https://doi.org/10.1199/tab.0184

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuhn H, Lorek J, Kwaaitaal M, Consonni C, Becker K, Micali C, Ver Loren van Themaat E, Bednarek P, Raaymakers TM, Appiano M, Bai Y, Meldau D, Baum S, Conrath U, Feussner I, Panstruga R (2017) Key components of different plant defense pathways are dispensable for powdery mildew resistance of the Arabidopsis mlo2 mlo6 mlo12 triple mutant. Front Plant Sci 8:1006. https://doi.org/10.3389/fpls.2017.01006

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar D (2014) Salicylic acid signaling in disease resistance. Plant Sci 228:127–134

    Article  CAS  PubMed  Google Scholar 

  • Kusch S, Panstruga R (2017) mlo-based resistance: an apparently universal “weapon” to defeat powdery mildew disease. Mol Plant Microbe Interact 30:179–189. https://doi.org/10.1094/mpmi-12-16-0255-cr

    Article  CAS  PubMed  Google Scholar 

  • Kusch S, Pesch L, Panstruga R (2016) Comprehensive phylogenetic analysis sheds light on the diversity and origin of the MLO family of integral membrane proteins. Genome Biol Evol 8:878–895

    Article  PubMed  PubMed Central  Google Scholar 

  • Kwaaitaal M, Keinath NF, Pajonk S, Biskup C, Panstruga R (2010) Combined bimolecular fluorescence complementation and förster resonance energy transfer reveals ternary SNARE complex formation in living plant cells. Plant Physiol 152:1135–1147. https://doi.org/10.1104/pp.109.151142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwon C, Panstruga R, Schulze-Lefert P (2008) Les liaisons dangereuses: immunological synapse formation in animals and plants. Trends Immunol 29(1):159–166

    Article  CAS  PubMed  Google Scholar 

  • Laluk K, Luo H, Chai M, Dhawan R, Lai Z, Mengiste T (2011) Biochemical and genetic requirements for function of the immune response regulator BOTRYTIS-INDUCED KINASE1 in plant growth, ethylene signaling, and PAMP-triggered immunity in Arabidopsis. Plant Cell 23:2831–2849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lammens T, Boudolf V, Kheibarshekan L, Zalmas LP, Gaamouche T, Maes S, Vanstraelen M, Kondorosi E, La Thangue NB, Govaerts W, Inze D, De Veylder L (2008) Atypical E2F activity restrains APC/CCCS52A2 function obligatory for endocycle onset. Proc Natl Acad Sci U S A 105:14721–14726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lapin D, Van den Ackerveken G (2013) Susceptibility to plant disease: more than a failure of host immunity. Trends Plant Sci 18:546–554

    Article  CAS  PubMed  Google Scholar 

  • Lapin D, Kovacova V, Sun X, Dongus J, Bhandari DD, Born PV, Bautor J, Guarneri N, Stuttmann J, Beyer A, Parker JE (2019) A coevolved EDS1-SAG101-NRG1 module mediates cell death signaling by TIR-domain immune receptors. bioRxiv: 572826.

    Google Scholar 

  • Lebel E, Heifetz P, Thorne L, Uknes S, Ryals J, Ward E (1998) Functional analysis of regulatory sequences controlling PR-1 gene expression in Arabidopsis. Plant J 16:223–233

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Izzah NK, Choi BS, Joh HJ, Lee SC, Perumal S, Seo J, Ahn K, Jo EJ, Choi GJ, Nou IS, Yu Y, Yang TJ (2016) Genotyping-by-sequencing map permits identification of clubroot resistance QTLs and revision of the reference genome assembly in cabbage (Brassica oleracea L.). DNA Res 23:29–41. https://doi.org/10.1093/dnares/dsv034

    Article  CAS  PubMed  Google Scholar 

  • Lemarie S, Robert-Seilaniantz A, Lariagon C, Lemoine J, Marnet N, Jubault M, Manzanares-Dauleux MJ, Gravot A (2015) Both the jasmonic acid and the salicylic acid pathways contribute to resistance to the biotrophic clubroot agent Plasmodiophora brassicae in Arabidopsis. Plant Cell Physiol 56:2158–2168

    CAS  PubMed  Google Scholar 

  • Li J, Ou-Lee TM, Raba R, Amundson RG, Last RL(1993) Arabidopsis flavonoid mutants are hypersensitive to UV-B irradiation. Plant Cell 5:171–179

    Google Scholar 

  • Li H, Shen JJ, Zheng ZL, Lin Y, Yang Z (2001) The Rop GTPase switch controls multiple developmental processes in Arabidopsis. Plant Physiol 126:670–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li R, Rimmer R, Buchwaldt L, Sharpe AG, Seguinswartz G, Coutu C, Hegedus DD (2004) Interaction of Sclerotinia sclerotiorum with a resistant Brassica napus cultivar: expressed Sequence Tag Analysis identifies genes associated with fungal pathogenesis. Fungal Genet Biol 41:735–753

    Article  CAS  PubMed  Google Scholar 

  • Li J, Brader G, Kariola T, Palva ET (2006) WRKY70 modulates the selection of signaling pathways in plant defense. Plant J 46(3):477–491

    Article  CAS  PubMed  Google Scholar 

  • Li J, Zhao Z, Hayward A, Cheng H, Fu D (2015) Integration analysis of quantitative trait loci for resistance to Sclerotinia sclerotiorum in Brassica napus. Euphytica 205:483–489. https://doi.org/10.1007/s10681-015-1417-0

    Article  CAS  Google Scholar 

  • Li GL, Qian W, Zhang SJ, Zhang SF, Li F, Zhang H, Wu J, Wang ZW, Sun RF (2016) Development of gene-basedmarkers for the Turnip mosaic virus resistance gene retr02 in Brassica rapa. Plant Breed 135:466–470

    Article  CAS  Google Scholar 

  • Liang YS, Choi YH, Kim HK, Linthorst HJM, Verpoorte R (2006a) Metabolomic analysis of methyl jasmonate treated Brassica rapa leaves by 2-dimensional NMR spectroscopy. Phytochemistry 67(22):2503–2511

    Article  CAS  PubMed  Google Scholar 

  • Liang YS, Kim HK, Lefeber AWM, Erkelens C, Choi YH, Verpoorte R (2006b) Identification of phenylpropanoids in methyl jasmonate treated Brassica rapa leaves using two dimensional nuclear magnetic resonance spectroscopy. J Chromatogr A 1112:148–155

    Article  CAS  PubMed  Google Scholar 

  • Lin W, Ma X, Shan L, He P (2013) Big roles of small kinases: thecomplex functions of receptor-like cytoplasmic kinases in plant immunity and development. J Integr Plant Biol 55:1188–1197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lipka V, Dittgen J, Bednarek P, Bhat R, Wiermer M, Stein M, Landtag J, Brandt W, Rosahl S, Scheel D, Llorente F, Molina A, Parker J, Somerville S, Lefert PS (2005) Pre- and post-invasion defenses both contribute to non-host resistance in Arabidopsis. Science 310:1180–1183

    Article  CAS  PubMed  Google Scholar 

  • Lipka V, Kwon C, Panstruga R (2007) SNARE-ware: the role of SNARE-domain proteins in plant biology. Annu Rev Cell Dev Biol 23:147–174

    Article  CAS  PubMed  Google Scholar 

  • Lipka U, Fuchs R, Lipka V (2008) Arabidopsis non-host resistance to powdery mildews. Curr Opin Plant Biol 11:404–411

    Google Scholar 

  • Liu Y, Bassham DC (2012) Autophagy: pathways for self-eating in plant cells. Annu Rev Plant Biol 63:215–237

    Article  CAS  PubMed  Google Scholar 

  • Liu G, Holub EB, Alonso JM, Ecker JR, Fobert PR (2005) An Arabidopsis NPR1-like gene, NPR4, is required for disease resistance. Plant J 41:304–318. https://doi.org/10.1111/j.1365-313X.2004.02296x

    Article  CAS  PubMed  Google Scholar 

  • Liu LJ, Zhang YY, Tang SY, Zhao QZ, Zhang ZH, Zhang HW, Dong L, Guo H, Xie Q (2010) An efficient system to detect protein ubiquitination by agroinfiltration in Nicotiana benthamiana. Plant J 61:893–903. https://doi.org/10.1111/j.1365-313X.2009.04109.x

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Huang X, Li M, He P, Zhang Y (2016) Loss-of-function of Arabidopsis receptor-like kinase BIR1 activates cell death and defense responses mediated by BAK1 and SOBIR1. New Phytol 212:637–645

    Article  CAS  PubMed  Google Scholar 

  • Loake G, Grant M (2007) Salicylic acid in plant defence—the players and protagonists. Curr Opin Plant Biol 10(5):466–472

    Article  CAS  PubMed  Google Scholar 

  • Lorek J, Griebel T, Jones AM, Kuhn H, Panstruga R (2013) The role of Arabidopsis heterotrimeric G-protein subunits in MLO2 function and MAMP-triggered immunity. Mol Plant Microbe Interact 26:991–1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lovelock DA, Sola I, Marschollek S, Donald CE, Rusak G, van Pée KH, Ludwig-Müller J, Cahill DM (2016) Analysis of salicylic acid-dependent pathways in Arabidopsis thaliana following infection with Plasmodiophora brassicae and the influence of salicylic acid on disease. Mol Plant Pathol 17:1237–1251. https://doi.org/10.1111/mpp.12361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu D, Wu S, Gao X, Zhang Y, Shan L, He P (2010) A receptor-like cytoplasmic kinase, BIK1, associates with a flagellin receptor complex to initiate plant innate immunity. Proc Natl Acad Sci U S A 107:496–501

    Article  CAS  PubMed  Google Scholar 

  • Lu X, Dittgen J, Pislewska-Bednarek M, Molina A, Schneider B, Svatos A, Doubsky J, Schneeberger K, Weigel D, Bednarek P, Schulze-Lefert P (2015) Mutant allele-specific uncoupling of PENETRATION3 functions reveals engagement of the ATP-binding cassette transporter in distinct tryptophan metabolic pathways. Plant Physiol 168:814–827. https://doi.org/10.1104/pp.15.00182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ludwig-Muller J (2009a) Glucosinolates and the clubroot disease: defense compounds or auxin precursors? Phytochem Rev 8:135–148

    Article  Google Scholar 

  • Ludwig-Muller J (2009b) Plant defence—what can we learn from clubroots? Austral Plant Pathol 38:318–324

    Article  Google Scholar 

  • Ludwig-Muller J, Julke S, Geiß K, Richter F, Mithofer A, Sola I, Rusak G, Keenan S, Bulman S (2015) A novel methyltransferase from the intracellular pathogen Plasmodiophora brassicae methylates salicylic acid. Mol Plant Pathol 16(4):349–364

    Article  PubMed  Google Scholar 

  • Luna E, Pastor V, Robert J, Flors V, Mauch-Mani B, Ton J (2011) Callose deposition: a multifaceted plant defense response. Mol Plant Microbe Interact 24:183–193

    Article  CAS  PubMed  Google Scholar 

  • Maekawa T, Kufer TA, Schulze-Lefert P (2011) NLR functions in plant and animal immune systems: so far and yet so close. Nat Immun 12:817–826

    Article  CAS  Google Scholar 

  • Maekawa T, Kracher B, Vernaldi S, Ver Loren van Themaat E, Schulze-Lefert P (2012) Conservation of NLR-triggered immunity across plant lineages. Proc Natl Acad Sci U S A 109:20119–20123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maekawa S, Inada N, Yasuda S, Fukao Y, Fujiwara M, Sato T, Yamaguchi J (2014) The carbon/nitrogen regulator ARABIDOPSIS TOXICOS EN LEVADURA31 controls papilla formation in response to powdery mildew fungi penetration by interacting with SYNTAXIN OF PLANTS121 in Arabidopsis. Plant Physiol 164:879–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makandar R, Essig JS, Schapaugh MA, Trick HN, Shah J (2006) Genetically engineered resistance to Fusarium head blight in wheat by expression of Arabidopsis NPR1. Mol Plant Microbe Interact 19:123–129. https://doi.org/10.1094/MPMI-19-0123

    Article  CAS  PubMed  Google Scholar 

  • Maksimov V, Abizgil’dina RR, Pusenkova LI (2011) Plant growth promoting rhizobacteria as alternative to chemical crop protectors from pathogens (review). Appl Biochem Microbiol 47(4):373–385

    Article  CAS  Google Scholar 

  • Malamy J, Klessig DF (1992) Salicylic acid and plant disease resistance. Plant J 2:643–654. https://doi.org/10.1111/j.1365-313X.1992.tb00133.x

    Article  CAS  Google Scholar 

  • Malinovsky FG, Fangel JU, Willats WGT (2014) The role of the cell wall in plant immunity. Front Plant Sci 5:178. https://doi.org/10.3389/fpls.2014.00178

    Article  PubMed  PubMed Central  Google Scholar 

  • Malinowski R, Novak O, Borhan MH, Spichal L, Strnad M, Rolfe SA (2016) The role of cytokinins in clubroot disease. Eur J Plant Pathol 145:543–557. https://doi.org/10.1007/s10658-015-0845-y

    Article  CAS  Google Scholar 

  • Manoharan RK, Shanmugam A, Hwang I, Park JI, Nou IS (2016) Expression of salicylic acid-related genes in Brassica oleracea var. capitata during Plasmodiophora brassicae infection. Genome 59:379–391. https://doi.org/10.1139/gen-2016-0018

    Article  CAS  PubMed  Google Scholar 

  • Mansfield JW (2000) Antimicrobial compounds and resistance. The role of phytoalexins and phytoanticipins. In: Slusarenko A, Fraser RSS, van Loon LC (eds) Mechanisms of resistance to plant diseases. Kluwer Academic Publishers, Dordrecht, pp 325–370

    Chapter  Google Scholar 

  • Manzanares-Dauleux MJ, Delourne R, Baron F, Thomas G (2000) Mapping of one major gene and of QTLs involved in resistance to clubroot in Brassica napus. Theor Appl Genet 101:885–891. https://doi.org/10.1007/s001220051557

    Article  CAS  Google Scholar 

  • Mao G, Meng X, Liu Y, Zheng Z, Chen Z, Zhang S (2011) Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKs drives phytoalexin biosynthesis in Arabidopsis. Plant Cell 23:1639–1653. https://doi.org/10.1105/tpc.111.084996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martiniere A, Gargani D, Uzest M, Lautredou N, Blanc S, Drucker M (2009) A role for plant microtubules in the formation of transmission specific inclusion bodies of cauliflower mosaic virus. Plant J 58:135–146

    Article  CAS  PubMed  Google Scholar 

  • Mathesius U (2001) Flavonoids induced in cells undergoing nodule organogenesis in white clover are regulators of auxin breakdown by peroxidase. J Exp Bot 52:419–426

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto I (1994) Lignin induction in the root tissues of Japanese radish infected with downy mildew fungus. Mem Coll Agric Ehime University, Ehime

    Google Scholar 

  • Matsumoto I, Asada Y (1984) A role of lignification-inducing factor in resistance induction demonstrated in Japanese radish downy mildew and cucumber anthracnose. Ann Phytopathol Soc Japan 50:483–490

    Article  Google Scholar 

  • Matsumoto I, Ohguchi T, Inoue M, Asada Y (1978) Lignin induction in roots of Japanese radish by an homogenate of downy mildew-infected root tissue. Ann Phytopathol Soc Japan 44:22–27

    Article  Google Scholar 

  • Matsumoto E, Yasui C, Ohi M, Tsukada M (1998) Linkage analysis of RFLP markers for clubroot resistance and pigmentation in Chinese cabbage (Brassica rapa ssp. pekinensis). Euphytica 104:79–86

    Article  CAS  Google Scholar 

  • Mauch-Mani B, Slusarenko AJ (1996) Production of salicylic acid precursors is a major function of phenylalanine ammonia-lyase in the resistance of Arabidopsis to Peronospora parasitica. Plant Cell 8:203–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mauch-Mani B, Croft KPC, Slusarenko AJ (1993) The genetic basis of resistance of Arabidopsis thaliana L. Heyhn. to Peronospora parasitica. In: Davis KR, Hammerschmidt R (eds) Arabidopsis thaliana as a model for plant–pathogen interactions. APS Press, St Paul, pp 5–20

    Google Scholar 

  • McDowell JM, Cuzick A, Can C, Beynon J, Dangl JL, Holub EB (2000) Downy mildew (Peronospora parasitica) resistance genes in Arabidopsis vary in functional requirements for NDR1, EDS1, NPR1, and salicylic acid accumulation. Plant J 22:523–530

    Article  CAS  PubMed  Google Scholar 

  • Mei J, Guo Z, Wang J, Feng Y, Ma G, Zhang C, Qian W, Chen G (2019) Understanding the resistance mechanism in Brassica napus to clubroot caused by Plasmodiophora brassicae. Phytopathology 109:810–818. https://doi.org/10.1094/PHYTO-06-18-0213-R

    Article  CAS  PubMed  Google Scholar 

  • Melan MA, Dong X, Endara ME, Davis KR, Ausubel FM, Peterman TK (1993) An Arabidopsis thaliana lipoxygenase gene can be induced by pathogens, abscisic acid, and methyl jasmonate. Plant Physiol 101:441–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menard R, Larue JP, Silue D, Thouvenot D (1999) Glucosinolates in cauliflower as biochemical markers for resistance against downy mildew. Phytochemistry 52:29–35

    Article  CAS  Google Scholar 

  • Mendgen K, Hahn M (2002) Plant infection and the establishment of fungal biotrophy. Trends Plant Sci 7:352–356

    Article  CAS  PubMed  Google Scholar 

  • Meng X, Zhang S (2013) MAPK cascades in plant disease resistance signalling. Annu Rev Phytopathol 51:245–266

    Article  CAS  PubMed  Google Scholar 

  • Meyer D, Pajonk S, Micali C, O’Connell R, Schulze-Lefert P (2009) Extracellular transport and integration of plant secretory proteins into pathogen-induced cell wall compartments. Plant J 57:986–999

    Article  CAS  PubMed  Google Scholar 

  • Micali C, Gollner K, Humphry M, Consonni C, Panstruga R (2008) The powdery mildew disease of Arabidopsis: a paradigm for the interaction between plants and biotrophic fungi. Arabidopsis Book 6:e0115. https://doi.org/10.1199/tab.0115

    Article  PubMed  PubMed Central  Google Scholar 

  • Mikkelsen MD, Hansen CH, Wittstock U, Halkier BA (2000) Cytochrome P450 CYP79B2 from Arabidopsis catalyzes the conversion of tryptophan to Indole-3-acetaldoxime, a precursor of indole glucosinolates and Indole-3-acetic acid. J Biol Chem 275:33712–33717. https://doi.org/10.1074/jbc.M001667200

    Article  CAS  PubMed  Google Scholar 

  • Miklis M, Consonni C, Bhat RA, Lipka V, Schulze-Lefert P, Panstruga R (2007) Barley mlo modulates actin-dependent and actin-independent antifungal defense pathways at the cell periphery. Plant Physiol 144(2):1132–1143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miya A, Albert P, Shinya T, Desaki Y, Ichimura K, Shirasu K, Narusaka Y, Kawakami N, Kaku H, Shibuya N (2007) CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proc Natl Acad Sci U S A 104:19613–19618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molendijk AJ, Ruperti B, Singh MK, Dovzhenko A, Ditengou FA, Milia M, Westphal L, Rosahl S, Soellick T-R, Uhrig J, Weingarten L, Huber M, Palme K (2008) A cysteine-richreceptor-like kinase NCRK and a pathogen-induced proteinkinase RBK1 are Rop GTPase interactors. Plant J 53:909–923

    Article  CAS  PubMed  Google Scholar 

  • Mou Z, Fan W, Dong X (2003) Inducers of plant systemic acquired resistance regulates NPR function through redox changes. Cell 113:935–944. https://doi.org/10.1016/S0092-8674(03)00429-X

    Article  CAS  PubMed  Google Scholar 

  • Mucha E, Fricke I, Schaefer A, Wittinghofer A, Berken A (2011) Rho proteins of plants—functional cycle and regulation of cytoskeletal dynamics. Eur J Cell Biol 90:934–943

    Article  CAS  PubMed  Google Scholar 

  • Muller S, Smertenko A, Wagner V, Heinrich M, Hussey PJ, Hauser MT (2004) The plant microtubule-associated protein AtMAP65-3/PLE is essential for cytokinetic phragmoplast function. Curr Biol 14:412–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mur LAJ, Kenton P, Atzorn R, Miersch O, Wasternack C (2006) The outcomes of concentration-specific interactions between salicylate and jasmonate signaling include synergy, antagonism, and oxidative stress leading to cell death. Plant Physiol 140:249–262. https://doi.org/10.1104/pp.105.072348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murase K, Shiba H, Iwano M, Che FS, Watanabe M, Isogai A, Takayama S (2004) A membrane-anchored protein kinase involved in Brassica self-incompatibility signaling. Science 303:1516–1519

    Article  CAS  PubMed  Google Scholar 

  • Mysore KS, Ryu CM (2004) Non-host resistance how much do we know? Trends Plant Sci 9:97–104

    Article  CAS  PubMed  Google Scholar 

  • Nafisi M, Goregaoker S, Botanga CJ, Glawischnig E, Olsen CE, Halkier BA, Glazebrook J (2007) Arabidopsis cytochrome P450 mono-oxygenase 71A13 catalyzes the conversion of indole-3-acetaldoxime in camalexin synthesis. Plant Cell 19:2039–2052

    Google Scholar 

  • Nashaat NI, Rawlinson CJ (1994) The response of oilseed rape (Brassica napus ssp. oleifera) accessions with different gluconsinolate and erucic acid contents to four isolates of Peronospora parasitica (downy mildew) and the identification of new sources of resistance. Plant Pathol 43:278–285

    Article  CAS  Google Scholar 

  • Naumann M, Somerville S, Voigt C (2013) Differences in early callose deposition during adapted and non-adapted powdery mildew infection of resistant Arabidopsis lines. Plant Signal Behav 8:e24408. https://doi.org/10.4161/psb.24408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naur P, Petersen BL, Mikkelsen MD, Bak S, Rasmussen H, Olsen CE, Halkier BA (2003) CYP83A1 and CYP83B1, two non-redundant cytochrome P450 enzymes metabolizing oximes in the biosynthesis of glucosinolates in Arabidopsis. Plant Physiol 133:63–72. https://doi.org/10.1104/pp.102.019240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neik TX, Amas J, Barbetti M, Edwards D, Batley J (2020) Understanding host-pathogen interactions in Brassica napus in the omics era. Plants 9:1336. https://doi.org/10.3390/plants9101336

    Article  CAS  PubMed Central  Google Scholar 

  • Nibau C, Wu HM, Cheung AY (2006) RAC/ROP GTPases: ‘hubs’ forsignal integration and diversification in plants. Trends Plant Sci 11:309–315

    Article  CAS  PubMed  Google Scholar 

  • Nie H, Zhao C, Wu G, Wu Y, Chen Y, Tang D (2012) SR1, a calmodulin-binding transcription factor, modulates plant defense and ethylene-induced senescence by directly regulating NDR1 and EIN3. Plant Physiol 158:1847–1859. https://doi.org/10.1104/pp.111.192310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen ME, Feechan A, Bohlenius H, Ueda T, Thordal-Christensen H (2012) Arabidopsis ARF-GTP exchange factor, GNOM, mediates transport required for innate immunity and focal accumulation of syntaxin PEN1. Proc Natl Acad Sci U S A 109:11443– 11448

    Google Scholar 

  • Nishimura MT, Stein M, Hou BH, Vogel JP, Edwards H, Somerville SC (2003) Loss of a callose synthase results in salicylic acid-dependent disease resistance. Science 3016(1):969–972

    Article  Google Scholar 

  • Noel LD, Cagna G, Stuttmann J, Wirthmuller L, Betsuyaku S, Witte CP, Bhat R, Pochon N, Colby T, Parker JE (2007) Interaction between SGT1 and cytosolic/nuclear HSC70 chaperones regulates Arabidopsis immune responses. Plant Cell 19:4061–4076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nongbri PL, Johnson JM, Sherameti I, Glawischnig E, Halkier BA, Oelmculler R (2012) Indole-3-acetaldoxime-derived compounds restrict root colonization in the beneficial interaction between Arabidopsis roots and the endophyte Piriformospora indica. Mol Plant-Microbe Interact 25:1186–1197

    Article  CAS  PubMed  Google Scholar 

  • Nozu Y (1967) Studies on the biosynthesis of lignin. IIL Dehydrogenative polymerization of coniferyl alcohol by peroxidase. J Biodiem 62:519–530

    CAS  Google Scholar 

  • Nurnberger T, Lipka V (2005) Non-host resistance in plants: new insights into an old phenomenon. Mol Plant Pathol 6:335–345

    Article  PubMed  Google Scholar 

  • Nykyri J, Niemi O, Koskinen P, Nokso-Koivisto J, Pasanen M, Broberg M, Plyusnin I, Toronen P, Holm L, Pirhonen M, Palva ET (2012) Revised phylogeny and novel horizontally acquired virulence determinants of the model soft rot phytopathogen Pectobacterium wasabiae SCC3193. PLoS Pathog 8:e1003013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Connell RJ, Panstruga R (2006) Tete a tete inside a plant cell: establishing compatibility between plants and biotrophic fungi and oomycetes. New Phytol 171:699–718

    Article  PubMed  Google Scholar 

  • Ohguchi T, Asada Y (1975) Dehydrogenation polymerization products of phydroxycinnamyl alcohols by isoperoxidases obtained from downy mildew infected roots of Japanese radish (Raphanus sativus). Physiol Plant Pathol 5:183–192

    Article  CAS  Google Scholar 

  • Ohguchi T, Yamashita Y, Asada Y (1974) Isoperoxidases of Japanese radish root infected by downy mildew fungus. Ann Phytopathol Soc Japan 40:419–426

    Article  Google Scholar 

  • Opalski KS, Schultheiss H, Kogel KH, Huckelhoven R (2005) The receptor-like MLO protein and the RAC/ROP family G-protein RACB modulate actin reorganization in barley attacked by the biotrophic powdery mildew fungus Blumeria graminis f.sp. hordei. Plant J 41:291–303

    Article  CAS  PubMed  Google Scholar 

  • Ouko MO, Sambade A, Brandner K, Niehl A, Pena E, Ahad A, Heinlein M, Nick P (2010) Tobacco mutants with reduced microtubule dynamics are less susceptible to TMV. Plant J 62:829–839

    Article  CAS  PubMed  Google Scholar 

  • Pajerowska-Mukhtar KM, Emerine DK, Mukhtar MS (2013) Tell me more: roles of NPRs in plant immunity. Trends Plant Sci 18:402–411

    Article  CAS  PubMed  Google Scholar 

  • Pandey SP, Roccaro M, Schon M, Logemann E, Somssich IE (2010) Transcriptional reprogramming regulated by WRKY18 and WRKY40 facilitates powdery mildew infection of Arabidopsis. Plant J 64:912–923. https://doi.org/10.1111/j.1365-313X.2010.04387.x

    Article  CAS  PubMed  Google Scholar 

  • Panstruga R (2005) Serpentine plant MLO proteins as entry portals for powdery mildew fungi. Biochem Soc Trans 33:389–392. https://doi.org/10.1042/BST0330389

    Article  CAS  PubMed  Google Scholar 

  • Park SW, Kaimoyo E, Kumar D, Mosher S, Klessig DF (2007) Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science 318:113–116

    Article  CAS  PubMed  Google Scholar 

  • Parker JE (2000) Signalling in plant disease resistance. In: Dickinson M, Beynon J (eds) Molecular plant pathology. Annual plant reviews, vol 4. Sheffield Academic Press, Sheffield, pp 144–174

    Google Scholar 

  • Parker JE, Holub EB, Frost LN, Falk A, Gunn ND, Daniels MJ (1996) Characterization of eds1, a mutation in Arabidopsis suppressing resistance to Peronospora parasitica specified by several different RPP genes. Plant Cell 8:2033–2046

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parkhi V, Kumar V, Campbell LM, Bell AA, Shah J, Rathore KS (2010) Resistance against various fungal pathogens and reniform nematode in transgenic cotton plants expressing Arabidopsis NPR1. Transgenic Res 19:959–975. https://doi.org/10.1007/s11248-010-9374-9

    Article  CAS  PubMed  Google Scholar 

  • Pavan S, Jacobsen E, Visser RG, Bai Y (2010) Loss of susceptibility as a novel breeding strategy for durable and broad-spectrum resistance. Mol Breed 25:1–12

    Article  PubMed  Google Scholar 

  • Pedras MSC, Adio AM (2008) Phytoalexins and phytoanticipins from the wild crucifers Thellungiella halophila and Arabidopsis thaliana: rapalexin A, wasalexins and camalexin. Phytochemistry 69:889–893. https://doi.org/10.1016/j.phytochem.2007.10.032

    Article  CAS  PubMed  Google Scholar 

  • Pedras MSC, Ahiahonu WK (2005) Metabolism and detoxification of phytoalexins and analogs by phytopathogenic fungi. Phytochemistry 66(4):391–411

    Article  CAS  PubMed  Google Scholar 

  • Pedras MSC, Gadagi RS, Jha M, Srma-Mamillapalle VK (2007) Detoxification of the phytoalexin brassinin by isolates of Leptosphaeria maculans pathogenic on brown mustard involves an inducible hydrolase. Phytochemistry 68:1572–1578

    Article  CAS  PubMed  Google Scholar 

  • Pedras MSC, Zheng QA, Gadagi RS, Rimmer SR (2008) Phytoalexins and polar metabolites from the oilseeds canola and rapeseed: differential metabolic responses to the biotroph Albugocandida and to abiotic stress. Phytochemistry 69:894–910

    Article  CAS  PubMed  Google Scholar 

  • Pedras MSC, Yaya EE, Glawischnig E (2011) The phytoalexins from cultivated and wild crucifers: chemistry and biology. Nat Prod Rep 28:1381–1405. https://doi.org/10.1039/C1np00020a

    Article  CAS  PubMed  Google Scholar 

  • Penaud A (1999) Chemical control and yield losses caused by Erysiphe cruciferarum on oilseed rape in France. In: Wratten N, Salisbury PA (eds) Proceedings of the 10th international rapeseed congress. The Regional Institute Ltd, Canberra, pp 1–8. CD-ROM, Doc. No. 327

    Google Scholar 

  • Perrin RM, Jia X, Wagner TA, O’Neill MA, Sarria R, York WS, Raikhel NV, Keegstra K (2003) Analysis of xyloglucan fucosylation in Arabidopsis. Plant Physiol 132:768–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petkova M, Dimova M, Dimova D, Bistrichanov S (2014) Effect of gamma-irradiation on the fatty acid composition and susceptibility to powdery mildew (Erysiphe cruciferarum) of oilseed rape plants. Agric Sci Technol 6(4):413–416

    Google Scholar 

  • Pieterse CM, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SC (2012) Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol 28:489–521. https://doi.org/10.1146/annurev-cellbio-092910-154055

    Article  CAS  PubMed  Google Scholar 

  • Pinosa F, Buhot N, Kwaaitaal M, Fahlberg P, Thordal-Christensen H, Ellerstrom M, Andersson MX (2013) Arabidopsis phospholipdase is involved in basal defense and nonhost resistance to powdery mildew fungi. Plant Physiol 163:896–906

    Google Scholar 

  • Pinot F, Benveniste IJ, Salau P, Loreau O, Noe J, Schreiber L, Durst F (1999) Production in vitro by the cytochrome P450 CYP94A1 of major C18 cutin monomers and potential messengers in plant–pathogen interactions: enantioselectivity studies. Biochem J 342:27–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pleines S, Friendt W (1989) Genetic control of linolenic acid concentrations in seed oil of rapeseed (Brassica napus L.). Theor Appl Genet 78:793–797

    Article  CAS  PubMed  Google Scholar 

  • Plotnikova JM, Reuber TL, Ausubel FM, Pfister DH (1998) Powdery mildew pathogenesis of Arabidopsis thaliana. Mycologia 90:1009–1016

    Article  Google Scholar 

  • Poraty-Gavra L, Zimmermann P, Haigis S, Bednarek P, Hazak O, Stelmakh OR, Sadot E, Schulze-Lefert P, Gruissem W, Yalovsky S (2013) The Arabidopsis Rho of plants GTPase AtROP6functions in developmental and pathogen response pathways. Plant Physiol 161:1172–1188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prerostova S, Dobrev P, Konradyova V, Knirsch V, Gaudinova A, Kramna B, Kazda J, Ludwig-Muller J, Vankova R (2018) Hormonal responses to Plasmodiophora brassicae infection in Brassica napus cultivars differing in their pathogen resistance. Int J Mol Sci 19:4024. https://doi.org/10.3390/ijms19124024

    Article  PubMed Central  Google Scholar 

  • Qiu JL, Fiil BK, Petersen K, Nielsen HB, Botanga CJ, Thorgrimsen S, Palma K, Suarez-Rodriguez MC, Sandbech-Clausen S, Lichota J, Brodersen P, Grasser KD, Mattsson O, Glazebrook J, Mundy J, Petersen M (2008) Arabidopsis MAP kinase 4 regulates gene expression through transcription factor release in the nucleus. EMBO J 27:2214–2221

    Google Scholar 

  • Quentin M, Baures I, Hoefle C, Caillaud MC, Allasia V, Panabieres F, Abad P, Huckelhoven R, Keller H, Favery B (2016) The Arabidopsis microtubule-associated protein MAP65-3 supports infection by filamentous biotrophic pathogens by down-regulating salicylic acid-dependent defences. J Exp Bot 67(6):1731–1743

    Article  CAS  PubMed  Google Scholar 

  • Quilis J, Penas G, Messeguer J, Brugidou C, Segundo BS (2008) The Arabidopsis AtNPR1 inversely modulates defense responses against fungal, bacterial, or viral pathogens while conferring hypersensitivity to abiotic stresses in transgenic rice. Mol Plant Microbe Interact 21:1215–1231. https://doi.org/10.1094/MPMI-21-9-1215

    Article  CAS  PubMed  Google Scholar 

  • Rahimi M, Bahrani A (2011) Effect of gamma irradiation on qualitative and quantitative characteristics of canola. Middle East J Sci Res 8:519–525

    Google Scholar 

  • Rajniak J, Barco B, Clay NK, Sattely ES (2015) A new cyanogenic metabolite in Arabidopsis required for inducible pathogen defence. Nature 525:376–379. https://doi.org/10.1038/nature14907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramonell KM, Zhang B, Ewing RM, Chen Y, Xu D, Stacey G, Somerville S (2002) Microarray analysis of chitin elicitation in Arabidopsis thaliana. Mol Plant Pathol 3:301–311

    Article  CAS  PubMed  Google Scholar 

  • Ramonell K, Berrocal-Lobo M, Koh S, Wan J, Edwards H, Stacey G, Somerville S (2005) Loss-of-function mutations in chitin responsive genes show increased susceptibility to the powdery mildew pathogen Erysiphe cichoracearum. Plant Physiol 138:1027–1036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rauhut T, Glawischnig E (2009) Evolution of camalexin and structurally related indolic compounds. Phytochemistry 70:1638–1644

    Article  CAS  PubMed  Google Scholar 

  • Rawlinson CJ, Doughty KJ, Bock CH, Church VJ, Milford GFJ, Fieldsend JK (1989) Diseases and responses to disease and pest control on single- and double-low cultivars of winter oilseed rape. Aspects Appl Biol 23:393–400

    Google Scholar 

  • Reiner T, Hoefle C, Huesmann C, Menesi D, Feher A, Huckelhoven R (2014) The Arabidopsis ROP-activated receptor-like cytoplasmic kinase RLCK VI_A3 is involved in control of basal resistance to powdery mildew and trichome branching. Plant Cell Rep 34(3):457–468. https://doi.org/10.1007/s00299-014-1725-1

    Article  CAS  PubMed  Google Scholar 

  • Rekhter D, Mohnike L, Feussner K, Zienkiewicz K, Zhang Y, Feussner I (2019) Enhanced disease susceptibility 5 (EDS5) is required for N-hydroxy pipecolic acid formation. bioRxiv: 630723.

    Google Scholar 

  • Reuber TL, Plotnikova JM, Dewdney J, Rogers EE, Wood W, Ausubel FM (1998) Correlation of defense gene induction defects with powdery mildew susceptibility in Arabidopsis enhanced disease susceptibility mutants. Plant J 16:473–485

    Article  CAS  PubMed  Google Scholar 

  • Ride JP (1983) Cell walls and other structural barriers in defense. In: Callow JA (ed) Biochemical plant pathology. Wiley, Chichester, pp 215–236

    Google Scholar 

  • Rietz S, Stamm A, Malonek S, Wagner S, Becker D, Medina-Escobar N, Vlot AC, Feys BJ, Niefind K, Parker JE (2011) Different roles of enhanced disease susceptibility1 (EDS1) bound to and dissociated from phytoalexin Deficient4 (PAD4) in Arabidopsis immunity. New Phytol 191:107–119. https://doi.org/10.1111/j.1469-8137.2011.03675.x

    Article  CAS  PubMed  Google Scholar 

  • Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol 57:675–709

    Article  CAS  PubMed  Google Scholar 

  • Roux F, Voisin D, Badet T, Balague C, Barlet X, Huard-Chauveau C, Roby D, Raffaele S (2014) Resistance to phytopathogens e tutti quanti: placing plant quantitative disease resistance on the map. Mol Plant Pathol 15(5):427–432. https://doi.org/10.1111/mpp.12138

    Article  PubMed  PubMed Central  Google Scholar 

  • Rouxel T, Kollmann A, Boulidard L, Mithen R (1991) Abiotic elicitation of indole phytoalexins and resistance to Leptosphaeria maculans within Brassiceae. Planta 184(2):271–278. https://www.jstor.org/stable/23380984

    Article  CAS  PubMed  Google Scholar 

  • Rushton PJ, Somssich IE (1998) Transcriptional control of plant genes responsive to pathogens. Curr Opin Plant Biol 1:311–315

    Article  CAS  PubMed  Google Scholar 

  • Russo VM, Bushnell WR (1989) Responses of barley cells to puncture by micro needles and to attempted penetration by Erysiphe graminis f. sp. hordei. Can J Bot 67:2912–2921

    Article  Google Scholar 

  • Rusterucci C, Aviv DH, Holt BF, Dangl JL, Parker JE (2001) The disease resistance signaling components EDS1 and PAD4 are essential regulators of the cell death pathway controlled by LSD1 in Arabidopsis. Plant Cell 13:2211–2224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryder TB, Hedrick SA, Bell JN, Liang X, Clouse SD, Lamb CJ (1987) Organization and differential activation of a gene family encoding the plant defense enzyme chalcone synthase in Phaseolus vulgaris. Mol Genet Genomics 210:219–233

    Article  CAS  Google Scholar 

  • Saenz GS, Taylor JW (1999) Phylogeny of the Erysiphales (powdery mildews) inferred from internal transcribed spacer (ITS) ribosomal DNA sequences. Can J Bot 77:150–169

    CAS  Google Scholar 

  • Sagi M, Fluhr R (2001) Superoxide production by plant homologues of the gp91phox NADPH oxidase. Modulation of activity by calcium and by tobacco mosaic virus infection. Plant Physiol 126:1281–1290. https://doi.org/10.1104/pp.126.3.1281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saharan GS, Naresh M, Sangwan MS (2005) Development of disease resistance in rapeseed-mustard. In: Saharan GS, Naresh M, Sangwan MS (eds) Diseases of oilseed crops. Indus Publishing Co., New Delhi, pp 561–617

    Google Scholar 

  • Saharan GS, Verma PR, Meena PD, Kumar A (2014) White rust of crucifers: Biology, ecology and disease management. Springer Verlag, Frankfurt, p 244, ISBN 978-81-322-1791-6

    Book  Google Scholar 

  • Saharan GS, Naresh M, Meena PD (2016) Alternaria blight of crucifers: Biology, ecology and disease management, vol 326. Springer Verlag, Singapore, ISBN 978-981-10-0019-5

    Book  Google Scholar 

  • Saharan GS, Naresh M, Meena PD (2017) Downy mildew disease of crucifers: biology, ecology and disease management. Springer Verlag, Singapore, LVI, 357, ISBN 978-981-10-7499-8

    Book  Google Scholar 

  • Saharan GS, Naresh M, Meena PD (2019) Powdery mildew disease of crucifers: Biology, ecology and disease management. Springer Verlag, Singapore, p 362, ISBN 978-981-13-9852-0

    Book  Google Scholar 

  • von Schaewen A, Stitt M, Schmidt R, Sonnewald U, Willmitzer L (1990) Expression of a yeast-derived invertase in the cell wall of tobacco and Arabidopsis plants leads to accumulation of carbohydrate and inhibition of photosynthesis and strongly influences growth and phenotype of transgenic tobacco plants. EMBO J 9:3033–3044

    Article  Google Scholar 

  • Scheideler M, Schlaich NL, Fellenberg K, Beissbarth T, Hauser NC, Vingron M, Slusarenko AJ, Hoheisel JD (2002) Monitoring the switch from housekeeping to pathogen defense metabolism in Arabidopsis thaliana using cDNA arrays. J Biol Chem 277:10555–10561

    Article  CAS  PubMed  Google Scholar 

  • Scheler B, Schnepf V, Galgenmuller C, Ranf S, Huckelhoven R (2016) Barley disease susceptibility factor RACB acts in epidermal cell polarity and positioning of the nucleus. J Exp Bot 67(11):3263–3275. https://doi.org/10.1093/jxb/erw141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schenk PM, Kazan K, Wilson I, Anderson JP, Richmond T, Somerville SC, Manners JM (2000) Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc Natl Acad Sci U S A 97(11):655–660. https://doi.org/10.1073/pnas.97.21.11655

    Article  Google Scholar 

  • Schlaeppi K, Abou-Mansour E, Buchala A, Mauch F (2010) Disease resistance of Arabidopsis to Phytophthora brassicae is established by the sequential action of indole glucosinolates and camalexin. Plant J 62:840–851. https://doi.org/10.1111/j.1365-313X.2010.04197.x

    Article  CAS  PubMed  Google Scholar 

  • Schmelzer E (2002) Cell polarization, a crucial process in fungal defence. Trends Plant Sci 7:411–415

    Article  CAS  PubMed  Google Scholar 

  • Schmidt SM, Panstruga R (2008) Cytoskeleton functions in plant-microbe interactions. Physiol Mol Plant Pathol 716(1):135–148. https://doi.org/10.1016/j.pmpp.2008.01.001

    Article  CAS  Google Scholar 

  • Schon M, Toller A, Diezel C, Roth C, Westphal L, Wiermer M, Somssich IE (2013) Analyses of wrky18 wrky40 plants reveal critical roles of SA/EDS1 signaling and indole-glucosinolate biosynthesis for Golovinomyces orontii resistance and a loss-of resistance towards Pseudomonas syringae pv. tomato AvrRPS4. Mol Plant Microbe Interact 26:758–767

    Article  PubMed  Google Scholar 

  • Schuhegger R, Nafisi M, Mansourova M, Petersen BL, Olsen CE, Svatos A, Halkier BA, Glawischnig E (2006) CYP71B15 (PAD3) catalyzes the final step in camalexin biosynthesis. Plant Physiol 141:1248–1254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuhegger R, Nafisi M, Mansourova M, Petersen BL, Olsen CE, Svatos A, Halkier BA, Glawischnig E (2007a) CYP71 B15 (PAD3) catalyzes the final step in camalexin biosynthesis-correction. Plant Physiol 145:1086–1086

    CAS  Google Scholar 

  • Schuhegger R, Rauhut T, Glawischnig E (2007b) Regulatory variability of camalexin biosynthesis. J Plant Physiol 164:636–644. https://doi.org/10.1016/j.jplph.2006.04.012

    Article  CAS  PubMed  Google Scholar 

  • Schuller A, Kehr J, Ludwig-Muller J (2013) Laser microdissection coupled to transcriptional profiling of Arabidopsis roots inoculated by Plasmodiophora brassicae indicates a role for brassinosteroids in clubroot formation. Plant Cell Physiol 55:392–411. https://doi.org/10.1093/pcp/pct174

    Article  CAS  PubMed  Google Scholar 

  • Schuller A, Kehr J, Ludwig-Muller J (2014) Laser microdissection coupled to transcriptional profiling of Arabidopsis roots inoculated by Plasmodiophora brassicae indicates a role for brassinosteroids in clubroot formation. Plant Cell Physiol 55:392–411. https://doi.org/10.1093/pcp/pct174

    Article  CAS  PubMed  Google Scholar 

  • Schultheiss H, Dechert C, Kogel KH, Huckelhoven R (2002) A small GTP-binding host protein is required for entry of powdery mildew fungus into epidermal cells of barley. Plant Physiol 128:1447–1454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schultheiss H, Dechert C, Kogel KH, Huckelhoven R (2003) Functional analysis of barley RAC/ROP G-protein family members in susceptibility to the powdery mildew fungus. Plant J 36(5):589–601

    Article  CAS  PubMed  Google Scholar 

  • Schuster A, Schmoll M (2010) Biology and biotechnology of Trichoderma. Appl Microbiol Biotechnol 87:787–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schweizer P (2007) Non-host resistance of plants to powdery mildew-new opportunities to unravel the mystery. Physiol Mol Plant Pathol 70:3–7

    Article  CAS  Google Scholar 

  • Schweizer P, Kmecl A, Carpita N, Dudler R (2000) A soluble carbohydrate elicitor from Blumeria graminis f. sp tritici is recognized by a broad range of cereals. Physiol Mol Plant Pathol 56:157–167

    Article  CAS  Google Scholar 

  • Seskar M, Shulaev V, Raskin I (1998) Endogenous methyl salicylate in pathogen-inoculated tobacco plants. Plant Physiol 116:387–392

    Article  CAS  PubMed Central  Google Scholar 

  • Seyfferth C, Tsuda K (2014) Salicylic acid signal transduction: the initiation of biosynthesis, perception and transcriptional reprogramming. Front Plant Sci 5:697. https://doi.org/10.3389/fpls.2014.00697

    Article  PubMed  PubMed Central  Google Scholar 

  • Shah N, Sun J, Yu S, Yang Z, Wang Z, Huang F, Dun B, Gong J, Liu Y, Li Y, Li Q, Yuan L, Baloch A, Li G, Li S, Zhang C (2019) Genetic variation analysis of field isolates of clubroot and their responses to Brassica napus lines containing resistant gene CRb, PbBa8.1 and their combination in homozygous and heterozygous state. Mol Breed 39:153. https://doi.org/10.1007/s11032-019-1075-3

    Article  CAS  Google Scholar 

  • Shah N, Li Q, Xu Q, Liu J, Huang F, Zhan Z, Qin P, Zhou X, Yu W, Zhu L, Zhang C (2020)CRb and PbBa8.1 synergically increases resistant genes expression upon infection of Plasmodiophora brassicae in Brassica napus. Genes (Basel) 11(2):202. https://doi.org/10.3390/genes11020202

  • Shapiro AD, Zhang C (2001) The role of NDR1 in avirulence gene-directed signaling and control of programmed cell death in Arabidopsis. Plant Physiol 127:1089–1101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma P, Sain SK (2004) Induction of systemic resistance in tomato and cauliflower by Trichoderma spp. against stalk rot pathogen, Sclerotinia sclerotiorum Lib de Bary. J Biol Control 18(1):21–27

    Google Scholar 

  • Shen QH, Saijo Y, Mauch S, Biskup C, Bieri S, Keller B, Seki H, Ulker B, Somssich IE, Schulze-Lefert P (2007) Nuclear activity of MLA immune receptors links isolate-specific and basal disease-resistance responses. Science 315:1098–1103

    Article  CAS  PubMed  Google Scholar 

  • Shirasu K, Nakajima H, Rajasekhar VK, Dixon RA, Lamb C (1997) Salicylic acid potentiates an agonist-dependent gain control that amplifies pathogen signals in the activation of defense mechanisms. Plant Cell 9:261–270

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shirasu K, Nakajima H, Rajasekhar VK, Dixon RA, Lamb C (1999) Salicylic acid potentiates an agonist-dependent gain control that amplifies pathogen signals in the activation of defense mechanisms. Plant Cell 9:261–270

    Google Scholar 

  • Shiu SH, Karlowski WM, Pan R, Tzeng YH, Mayer KF, Li WH (2004) Comparative analysis of the receptor-like kinase family in Arabidopsis and rice. Plant Cell 16:1220–1234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shoresh M, Harman GE, Mastouri F (2010) Induced systemic resistance and plant responses to fungal biocontrol agents. Annu Rev Phytopathol 48:21–43

    Article  CAS  PubMed  Google Scholar 

  • Siemens J, Nagel W, Ludwig-Muller J, Sarcristán MD (2002) The interaction of Plasmodiophora brassicae and Arabidopsis thaliana: parameters for disease quantification and screening mutant lines. J Phytopathol 150:592–605

    Article  Google Scholar 

  • Siemens J, Keller I, Sarx J, Kunz S, Schuller A, Nagel W, Schmulling T, Parniske M, Ludwig-Muller J (2006) Transcriptome analysis of Arabidopsis clubroots indicate a key role for cytokinins in disease development. Mol Plant Microbe Interact 19:480–494. https://doi.org/10.1094/MPMI-19-0480

    Article  CAS  PubMed  Google Scholar 

  • Siemens J, Bulman S, Rehn F, Sundelin T (2009a) Molecular biology of Plasmodiophora brassicae. J Plant Growth Regul 28:245–251

    Article  CAS  Google Scholar 

  • Siemens J, Graf H, Bulman S, In O, Ludwig-Muller J (2009b) Monitoring expression of selected Plasmodiophora brassicae genes during clubroot development in Arabidopsis thaliana. Plant Pathol 58:130–136

    Article  CAS  Google Scholar 

  • Singh A (2017) Glucosinolates and plant defense. In: Mérillon JM, Ramawat KG (eds) Glucosinolates. Springer International Publishing, Cham, pp 237–246

    Chapter  Google Scholar 

  • Singh SB, Singh DV, Bains BS (1980) In vivo cellulase and pectinase production by Albugo candida and Peronospora parasitica. Indian Phytopathol 33:370–371

    Google Scholar 

  • Skoric D, Jocic S, Sakac Z, Lecic N (2008) Genetic possibilities for altering sunflower oil quality to obtain novel oils. Can J Physiol Pharmacol 86:215–221

    CAS  PubMed  Google Scholar 

  • Slusarenko AJ (1996) The role of lipoxygenase in plant resistance to infection. In: Piazza GJ (ed) Lipoxygenase and lipoxygenase pathway enzymes. American Oil Chemists Society Press, Champaign, pp 176–197

    Chapter  Google Scholar 

  • Slusarenko AJ, Mauch-Mani B (1991) Downy mildew of Arabidopsis thaliana caused by Peronospora parasitica: a model system for the investigation of the molecular biology of host-pathogen interactions. In: Hennecke H (ed) Advances in the molecular genetics of plant–microbe interactions, vol 1. Kluwer Academic, Dordrecht, pp 280–283

    Chapter  Google Scholar 

  • Slusarenko AJ, Schlaich NL (2003) Downy mildew of Arabidopsis thaliana caused by Hyaloperonospora parasitica (formerly Peronospora parasitica). Mol Plant Pathol 4:159–170

    Article  PubMed  Google Scholar 

  • Sonderby IE, Geu-Flores F, Halkier BA (2010) Biosynthesis of glucosinolates—gene discovery and beyond. Trends Plant Sci 15:283–290. https://doi.org/10.1016/j.tplants.2010.02.005

    Article  CAS  PubMed  Google Scholar 

  • Song T, Chu M, Lahlali R, Yu F, Peng G (2016) Shotgun label-free proteomic analysis of clubroot (Plasmodiophora brassicae) resistance conferred by the gene Rcr1 in Brassica rapa. Front Plant Sci 7:1013. https://doi.org/10.3389/fpls.2016.01013

    Article  PubMed  PubMed Central  Google Scholar 

  • Spencer-Phillips PTN, Gay JL (1981) Domains of ATPase in plasma membrane and transport through infected plant cells. New Phytol 896(1):393–400

    Article  Google Scholar 

  • Speth EB, Lee YN, He SY (2007) Pathogen virulence factors as molecular probes of basic plant cellular functions. Curr Opin Plant Biol 10:580–586

    Article  PubMed  PubMed Central  Google Scholar 

  • Spoel SH, Koornneef A, Claessens SM, Korzelius JP, Van-Pelt JA, Mueller MJ, Buchala AJ, Métraux JP, Brown R, Kazan K, Van Loon LC, Dong X, Pieterse CMJ (2003) NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell 15:760–770. https://doi.org/10.1105/tpc.009159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sreeramulu S, Mostizky Y, Sunitha S, Shani E, Nahum H, Salomon D, Hayun LB, Gruetter C, Rauh D, Ori N, Sessa G (2013) BSKs are partially redundant positive regulators of brassinosteroid signaling in Arabidopsis. Plant J 74:905–919

    Article  CAS  PubMed  Google Scholar 

  • Stein M, Dittgen J, Sanchez-Rodriguez C, Hou BH, Molina A, Schulze-Lefert P (2006) Arabidopsis PEN3/PDR8, an ATP binding cassette transporter, contributes to nonhost resistance to inappropriate pathogens that enter by direct penetration. Plant Cell 18:731–746. https://doi.org/10.1105/tpc.105.038372

  • Stein E, Molitor A, Kogel KH, Waller F (2008) Systemic resistance in Arabidopsis conferred by the mycorrhizal fungus Piriformospora indica requires jasmonic acid signaling and the cytoplasmic function of NPR1. Plant Cell Physiol 49:1747–1751. https://doi.org/10.1093/pcp/pcn147

    Article  PubMed  Google Scholar 

  • Stitt M, von Schaewen A, Willmitzer L (1990) “Sink” regulation of photosynthetic metabolism in transgenic tobacco plants expressing yeast invertase in their cell wall involves a decrease of the Calvin-cycle enzymes and an increase in glycolytic enzymes. Planta 183:40–50

    Article  Google Scholar 

  • Stotz HU, Sawada Y, Shimada Y, Hirai MY, Sasaki E, Krischke M, Brown PD, Saito K, Kamiya Y (2011) Role of camalexin, indole glucosinolates, and side chain modification of glucosinolate-derived isothiocyanates in defense of Arabidopsisagainst Sclerotinia sclerotiorum. Plant J 67:81–93

    Article  CAS  PubMed  Google Scholar 

  • Strack D, Vogt T, Schliemann W (2003) Recent advances in betalain research. Phytochemistry 62:247–269

    Article  CAS  PubMed  Google Scholar 

  • Strawn MA, Marr SK, Inoue K, Inada N, Zubieta C, Wildermuth MC (2007) Arabidopsis isochorismate synthase functional in pathogen-induced salicylate biosynthesis exhibits properties consistent with a role in diverse stress responses. J Biol Chem 282:5919–5933

    Google Scholar 

  • Strelkov SE, Hwang SF, Manolii VP, Cao T, Feindel D (2016) Emergence of new virulence phenotypes of Plasmodiophora brassicae on canola (Brassica napus) in Alberta, Canada. Eur J Plant Pathol 145:517–529. https://doi.org/10.1007/s10658-016-0888-8

    Article  Google Scholar 

  • Strelkov SE, Hwang SF, Manolii VP, Cao T, Fredua-Agyeman R, Harding MW, Peng G, Gossen BD, McDonald MR, Feindel D (2018) Virulence and pathotype classification of Plasmodiophora brassicae populations collected from clubroot resistant canola (Brassica napus) in Canada. Can J Plant Pathol 40:284–298

    Article  Google Scholar 

  • Sun J, Zhang J, Fang H, Peng L, Wei S, Li C, Zheng S, Lu J (2019) Comparative transcriptome analysis reveals resistance-related genes and pathways in Musa acuminata banana ‘Guijiao 9’ in response to Fusarium wilt. Plant Physiol Biochem 141:83–94. https://doi.org/10.1016/j.plaphy.2019.05.022

    Article  CAS  PubMed  Google Scholar 

  • Sundaresha S, Rohini S, Appanna VK, Arthikala MK, Shanmugam NB, Shashibhushan NB, Hari Kishore CM, Pannerselvam R, Kirti PB, Udayakumar M (2016) Co-overexpression of Brassica juncea NPR1 (BjNPR1) and Trigonella foenum-graecum defensin (Tfgd) in transgenic peanut provides comprehensive but varied protection against Aspergillus flavus and Cercospora arachidicola. Plant Cell Rep 35:1189–1203. https://doi.org/10.1007/s00299-016-1945-7

    Article  CAS  PubMed  Google Scholar 

  • Suwabe K, Tsukazaki H, Iketani H, Hatakeyama K, Fujimura M, Nunome T, Fukuoka H, Matsumoto S, Hirai M (2003) Identification of two loci for resistance to clubroot (Plasmodiophora brassicae Woronin) in Brassica rapa L. Theor Appl Genet 107:997–1002

    Article  CAS  PubMed  Google Scholar 

  • Swarbrick PJ, Schulze-Lefert P, Scholes JD (2006) Metabolic consequences of susceptibility and resistance (race-specific and broad-spectrum) in barley leaves challenged with powdery mildew. Plant Cell Environ 29:1061–1076

    Article  CAS  PubMed  Google Scholar 

  • Swiderski MR, Innes RW (2001) The Arabidopsis PBS1 resistance gene encodes a member of a novel protein kinase subfamily. Plant J 26:101–112

    Article  CAS  PubMed  Google Scholar 

  • Szadkowski E, Eber F, Huteau V, Lode M, Coriton O, Jenczewski E, Chevre AM (2011) Polyploid formation pathways have an impact on genetic rearrangements in resynthesized Brassicanapus. New Phytol 191:884–894. https://doi.org/10.1111/j.1469-8137.2011.03729.x

    Article  CAS  PubMed  Google Scholar 

  • Tada Y, Spoel SH, Pajerowska-Mukhtar K, Mou Z, Song J, Wang C, Zou J, Dong X (2008) Plant immunity requires conformational charges of NPR1 via S-nitrosylation and thioredoxins. Science 321:952–956. https://doi.org/10.1126/science.1156970

    Article  CAS  PubMed  Google Scholar 

  • Takemoto D, Jones DA, Hardham AR (2003) GFP-tagging of cell components reveals the dynamics of sub-cellular re-organization in response to infection of Arabidopsis by oomycete pathogens. Plant J 33:775–792

    Article  CAS  PubMed  Google Scholar 

  • Takemoto D, Jones D, Hardham A (2006) Re-organisation of the cytoskeleton and endoplasmic reticulum in the Arabidopsis pen1-1 mutant inoculated with the non-adapted powdery mildew Blumeria graminis f. sp. hordei. Mol Plant Pathol 76(1):553–563

    Article  Google Scholar 

  • Tan ZY, Wada Y, Chen JS, Ohshima K (2004) Inter- and intralineage recombinants are common in natural populations of Turnip mosaic virus. J Gen Virol 85:2683–2696

    Article  CAS  PubMed  Google Scholar 

  • Tang XY, Xie MT, Kim YJ, Zhou JM, Klessig DF, Martin GB (1999) Overexpression of Pto activates defense responses and confers broad resistance. Plant Cell 11:15–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang D, Ade J, Frye CA, Innes RW (2005a) Regulation of plant defense responses in Arabidopsis by EDR2, a PH and START domain-containing protein. Plant J 446(1):245–257

    Article  Google Scholar 

  • Tang D, Christiansen KM, Innes RW (2005b) Regulation of plant disease resistance, stress responses, cell death and ethylene signaling in Arabidopsis by the EDR1 protein kinase. Plant Physiol 1386(1):1018–1026

    Article  Google Scholar 

  • Tang H, Wang X, Bowers JE, Ming R, Alam M, Paterson AH (2008) Unraveling ancient hexaploidy through multiply-aligned angiosperm gene maps. Genome Res 18(12):1944–1954. https://doi.org/10.1101/gr.080978.108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thaler JS, Humphrey PT, Whiteman NK (2012) Evolution of jasmonate and salicylate signal crosstalk. Trends Plant Sci 17:260–270. https://doi.org/10.1016/j.tplants.2012.02.010

    Article  CAS  PubMed  Google Scholar 

  • Thomma BP, Eggermont K, Penninckx IA, Mauch-Mani B, Vogelsang R, Cammue BP, Broekaert WF (1998) Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc Natl Acad Sci U S A 95(25):15107–15111. https://doi.org/10.1073/pnas.95.25.15107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomma BP, Eggermont K, Tierens KF, Broekaert WF (1999) Requirement of functional ethylene-insensitive 2 gene for efficient resistance of Arabidopsis to infection by Botrytis cinerea. Plant Physiol 121:1093–1102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomma BP, Penninckx IA, Broekaert WF, Cammue BP (2001) The complexity of disease signaling in Arabidopsis. Curr Opin Immunol 13:63–68. https://doi.org/10.1016/S0952-7915(00)00183-7

    Article  CAS  PubMed  Google Scholar 

  • Thordal-Christensen H (2003) Fresh insights into processes of non-host resistance. Curr Opin Plant Biol 6:351–357

    Article  CAS  PubMed  Google Scholar 

  • Thornton JD, Cooke RC (1974) Changes in respiration, chlorophyll content and soluble carbohydrates of detached cabbage cotyledons following infection with Peronospora parasitica (Pers. ex. Fr.) Fr. Physiol Plant Pathol 4:117–125

    Article  CAS  Google Scholar 

  • Timonen KL, Vanninen E, de Hartog J, Ibald-Mulli A, Brunekreef B, Gold DR, Heinrich J, Hoek G, Lanki T, Peters A, Tarkiainen P, Kreyling W, Pekkanen J (2006) Effects of ultrafine and fine particulate and gaseous air pollution on cardiac autonomic control in subjects with coronary artery disease-the ULTRA study. J Expo Sci Environ Epidemiol 16(4):332–341

    Article  CAS  PubMed  Google Scholar 

  • Torrens-Spence MP, Bobokalonova A, Carballo V, Glinkerman CM, Pluskal T, Shen A, Weng JK (2019) PBS3 and EPS1 complete salicylic acid biosynthesis from isochorismate in Arabidopsis. bioRxiv: 601948

    Google Scholar 

  • Torres MA, Jones JDG, Dangl JL (2006) Reactive oxygen species signaling in response to pathogens. Plant Physiol 141:373–378. https://doi.org/10.1104/pp.106.079467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trujillo M, Troeger M, Niks RE, Kogel KH, Huckelhoven R (2004) Mechanistic and genetic overlap of barley host and non-host resistance to Blumeria graminis. Mol Plant Pathol 5:389–396. https://doi.org/10.1111/j.1364-3703.2004.00238.x

    Article  CAS  PubMed  Google Scholar 

  • Tsuda K, Somssich IE (2015) Transcriptional networks in plant immunity. New Phytol 206:932–947

    Article  CAS  PubMed  Google Scholar 

  • Tsuji J, Jackson EP, Gage DA, Hammerschmidt R, Sommerville SC (1992) Phytoalexin accumulation in Arabidopsis thaliana during the hypersensitive response to Pseudomonas syringae pv syringae. Plant Physiol 98:1304–1309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ueno H, Matsumoto E, Aruga D, Kitagawa S, Matsumura H, Hayashida N (2012) Molecular characterization of the CRa gene conferring clubroot resistance in Brassica rapa. Plant Mol Biol 80:621–629. https://doi.org/10.1007/s11103-012-9971-5

    Article  CAS  PubMed  Google Scholar 

  • Ulker B, Shahid Mukhtar M, Somssich IE (2007) The WRKY70 transcription factor of Arabidopsis influences both the plant senescence and defense signaling pathways. Planta 226:125–137

    Article  PubMed  Google Scholar 

  • Underwood W, Somerville SC (2008) Focal accumulation of defences at sites of fungal pathogen attack. J Exp Bot 59:3501–3508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Underwood W, Somerville SC (2013) Perception of conserved pathogen elicitors at the plasma membrane leads to relocalization of the Arabidopsis PEN3 transporter. Proc Natl Acad Sci U S A 110:12492–12497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van der Does D, Leon-Reyes A, Koornneef A, Van Verk MC, Rodenburg N, Pauwels L, Goossens A, Korbes AP, Memelink J, Ritsema T, Van Wees SCM, Pieterse CMJ (2013) Salicylic acid suppresses jasmonic acid signaling downstream of SCFCOI1-JAZ by targeting GCC promoter motifs via transcription factor ORA59. Plant Cell 25:744–761. https://doi.org/10.1105/tpc.112.108548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van der Luit AH, Piatti T, van Doom A, Musgrave A, Felix G, Boiler T, Munnik T (2000) Elicitation of suspension-cultured tomato cells triggers the formation of phosphatidic acid and diacylglycerol pyrophosphate. Plant Physiol 123:1507–1516

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Schie CC, Takken FL (2014) Susceptibility genes: how to be a good host. Annu Rev Phytopathol 52:551–581

    Article  PubMed  Google Scholar 

  • Vance CP, Kirk TK, Sherwood RT (1980) Lignification as a mechanism of disease resistance. Annu Rev Phytopathol 18:259–288. https://doi.org/10.1146/annurev.py.18.090180.001355

    Article  CAS  Google Scholar 

  • VanEtten HD, Mansfield JW, Bailey JA, Farmer EE (1994) Two classes of plant antibiotics: phytoalexins versus “phytoanticipins”. Plant Cell 6:1191–1192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vassileva VN, Kouchi H, Ridge RW (2005) Microtubule dynamics in living root hairs: transient slowing by lipochitin oligosaccharide nodulation signals. Plant Cell 17:1777–1787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verhagen BWM, Glazebrook J, Zhu T, Chang HS, van Loon LC, Pieterse CMJ (2004) The transcriptome of rhizobacteria-induced systemic resistance in Arabidopsis. Mol Plant Microbe Interact 17:895–908

    Article  CAS  PubMed  Google Scholar 

  • Veronese P, Chen X, Bluhm B, Salmeron J, Dietrich RA, Mengiste T (2004) The BOS loci of Arabidopsis are required for resistance to Botrytis cinerea infection. Plant J 40:558–574

    Article  CAS  PubMed  Google Scholar 

  • Veronese P, Nakagami H, Bluhm B, Abuqamar S, Chen X, Salmeron J, Dietrich RA, Hirt H, Mengiste T (2006) The membrane-anchored BOTRYTIS-INDUCED KINASE1 plays distinct roles in Arabidopsis resistance to necrotrophic and biotrophic pathogens. Plant Cell 18(1):257–273. https://doi.org/10.1105/tpc.105.035576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vivancos J, Labbe C, Menzies JG, Belanger RR (2015) Silicon-mediated resistance of Arabidopsis against powdery mildew involves mechanisms other than the salicylic acid (SA)-dependent defence pathway. Mol Plant Pathol 16:572–582

    Article  CAS  PubMed  Google Scholar 

  • Vlieghe K, Boudolf V, Beemster GTS, Maes S, Magyar Z, Atanassova A, de Almeida EJ, De Groodt R, Inze D, De Veylder L (2005) The DP-E2F-like gene DEL1 controls the Endocycle in Arabidopsis thaliana. Curr Biol 15:59–63

    Article  CAS  PubMed  Google Scholar 

  • Voegele RT, Stuck C, Hahn M, Mendgen K (2001) The role of haustoria in sugar supply during infection of broad bean by the rust fungus Uromyces fabae. Proc Natl Acad Sci U S A 98:8133–8138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vogel JP, Raab TK, Somerville CR, Somerville SC (2004) Mutations in PMR5 result in powdery mildew resistance and altered cell wall composition. Plant J 40(6):968–978

    Article  CAS  PubMed  Google Scholar 

  • Voit OE (2003) Biochemical and genomic regulation of the trehalose cycle in yeast: review of observations and canonical model analysis. J Theor Biol 223:55–78

    Article  CAS  PubMed  Google Scholar 

  • Vorwerk S, Somerville S, Somerville C (2004) The role of plant cell wall polysaccharide composition in disease resistance. Trends Plant Sci 9:203–209

    Article  CAS  PubMed  Google Scholar 

  • Vorwerk S, Schiff C, Santamaria M, Koh S, Nishimura M, Vogel J, Somerville C, Somerville S (2007) EDR2 negatively regulates salicylic acid-based defences and cell death during powdery mildew infections of Arabidopsis thaliana. BMC Plant Biol 7:35. https://doi.org/10.1186/1471-2229-7-35

  • Vos IA, Verhage A, Schuurink RC, Watt LG, Pieterse CMJ, Van Wees SCM (2013) Onset of herbivore-induced resistance in systemic tissue primed for jasmonate-dependent defenses is activated by abscisic acid. Front Plant Sci 4:539. https://doi.org/10.3389/fpls.2013.00539

    Article  PubMed  PubMed Central  Google Scholar 

  • Wagner S, Stuttmann J, Rietz S, Guerois R, Brunstein E, Bautor J, Niefind K, Parker JE (2013) Structural basis for signaling by exclusive EDS1 heteromeric complexes with SAG101 or PAD4 in plant innate immunity. Cell Host Microbe 14:619–630. https://doi.org/10.1016/j.chom.2013.11.006

    Article  CAS  PubMed  Google Scholar 

  • Wagner G, Laperche A, Lariagon C, Marnet N, Renault D, Guitton Y, Bouchereau A, Delourme R, Manzanares-Dauleux M, Gravot A (2019) Resolution of quantitative resistance to clubroot into QTL-specific metabolic modules. J Exp Bot 70:5375–5390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wally O, Jayaraj J, Punja ZK (2009) Comparative resistance to foliar fungal pathogens in transgenic carrot plants expressing genes encoding for chitinase, beta-1, 3-glucanase and peroxidase. Eur J Plant Pathol 123:331–342. https://doi.org/10.1007/s10658-008-9370-6

    Article  CAS  Google Scholar 

  • Walters DR, Ratsep J, Havis Neil D (2013) Controlling crop diseases using induced resistance: challenges for the future. J Exp Bot 64:1263–1280

    Article  CAS  PubMed  Google Scholar 

  • Wan JR, Zhang XC, Neece D, Ramonell KM, Clough S, Kim SY, Stacey MG, Stacey G (2008) A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis. Plant Cell 206(1):471–481

    Article  Google Scholar 

  • Wang X (2004) Lipid signaling. Curr Opin Plant Biol 7:329–336

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Amornsiripanitch N, Dong X (2006) A genomic approach to identify regulatory nodes in the transcriptional network of systemic acquired resistance in plants. PLOS Pathog 2:e123. https://doi.org/10.1371/journal.ppat.0020123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Tsuda K, Truman W, Sato M, Nguyen LV, Katagiri F, Glazebrook J (2011a) CBP60g and SARD1 play partially redundant critical roles in salicylic acid signaling. Plant J 3000:1029–1041. https://doi.org/10.1111/j.1365-313X.2011.04655.x

    Article  CAS  Google Scholar 

  • Wang YH, Gehring C, Irving HR (2011b) Plant natriuretic peptides are apoplastic and paracrine stress response molecules. Plant Cell Physiol 52:837–850. https://doi.org/10.1093/pcp/pcr036

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu JL (2014) Simultaneous editing of three homoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32:947–951

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Bao L-L, Zhao F-Y, Tang M-Q, Chen T, Li Y, Wang B-X, Fu B, Fang H, Li G-Y, Cao J, Ding L-N, Zhu K-M, Liu S-Y, Tan X-L (2019) BnaMPK3 Is a key regulator of defense responses to the devastating plant pathogen Sclerotinia sclerotiorum in Oilseed rape. Front Plant Sci 10:91. https://doi.org/10.3389/fpls.2019.00091

    Article  PubMed  PubMed Central  Google Scholar 

  • Wasson AP, Ramsay K, Jones MGK, Mathesius U (2009) Differing requirements for flavonoids during the formation of lateral roots, nodules and root knot nematode galls in Medicago truncatula. New Phytol 183:167–179

    Article  CAS  PubMed  Google Scholar 

  • Wasteneys GO (2004) Progress in understanding the role of microtubules in plant cells. Curr Opin Plant Biol 7:651–660

    Article  CAS  PubMed  Google Scholar 

  • Wasteneys GO, Galway ME (2003) Remodeling the cytoskeleton for growth and form: an overview with some new views. Annu Rev Plant Biol 54:691–722

    Article  CAS  PubMed  Google Scholar 

  • Wasternack C, Hause B (2013) Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann Bot 111:1021–1058. https://doi.org/10.1093/aob/mct067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wawrzynska A, Rodibaugh NL, Innes RW (2010) Synergistic activation of defense responses in Arabidopsis by simultaneous loss of the gsl5 callose synthase and the edr1 protein kinase. Mol Plant Microbe Interact 23:578–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weis C, Huckelhoven R, Eichmann R (2013) LIFEGUARD proteins support plant colonization by biotrophic powdery mildew fungi. J Exp Bot 64:3855–3867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weis C, Hildebrandt U, Hoffmann T, Hemetsberger C, Pfeilmeier S, Konig C, Schwab W, Eichmann R, Huckelhoven R (2014) CYP83A1 is required for metabolic compatibility of Arabidopsis with the adapted powdery mildew fungus Erysiphe cruciferarum. New Phytol 202:1310–1319

    Article  CAS  PubMed  Google Scholar 

  • Weymann K, Hunt M, Uknes S, Neuenschwander U, Lawton K, Steiner HY, Ryals J (1995) Suppression and restoration of lesion formation in Arabidopsis lsd mutants. Plant Cell 7:2013–2022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whetten R, Sederoff R (1995) Lignin biosynthesis. Plant Cell 7:1001–1013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Widarto HT, Van der Meijden E, Lefeber AWM, Erkelens C, Kim HK, Choi YH, Verpoorte R (2006) Metabolomic differentiation of Brassica rapa following herbivory by different insect instars using two-dimensional nuclear magnetic resonance spectroscopy. J Chem Ecol 32:2417–2428

    Article  CAS  PubMed  Google Scholar 

  • Wiermer M, Feys BJ, Parker JE (2005) Plant immunity: the EDS1 regulatory node. Curr Opin Plant Biol 8:383–389. https://doi.org/10.1016/j.pbi.2005.05.010

    Article  CAS  PubMed  Google Scholar 

  • Wildermuth MC, Dewdney J, Wu G, Ausubel FM (2001) Isochorismate synthase is required to synthesize salicylic acid for plant defense. Nature 414:562–565

    Article  CAS  PubMed  Google Scholar 

  • Winge P, Brembu T, Kristensen R, Bones AM (2000) Genetic structure and evolution of RAC-GTPases in Arabidopsis thaliana. Genetics 156:1959–1971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV, Provart NJ (2007) An “electronic fluorescent pictograph” browser for exploring and analyzing large-scale biological data sets. PLoS One 2:e718. https://doi.org/10.1371/journal.pone.0000718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wittstock U, Halkier BA (2002) Glucosinolate research in the Arabidopsis era. Trends Plant Sci 7:263–270

    Article  CAS  PubMed  Google Scholar 

  • Wright DP, Baldwin BC, Shephard MC, Scholes JD (1995a) Source-sink relationships in wheat leaves infected with powdery mildew. II. Changes in the regulation of the Calvin cycle. Physiol Mol Plant Pathol 47:255–267

    Article  CAS  Google Scholar 

  • Wright DP, Baldwin BC, Shephard MC, Scholes JD (1995b) Source-sink relationships in wheat leaves infected with powdery mildew. I. Alterations in carbohydrate metabolism. Physiol Mol Plant Pathol 47:237–253

    Article  CAS  Google Scholar 

  • Wu Y, Zhang D, Chu JY, Boyle P, Wang Y, Brindle ID, Luca VD, Despres C (2012) The Arabidopsis NPR1 protein is a receptor for the plant defense hormone salicylic acid. Cell Rep 1:639–647. https://doi.org/10.1016/j.celrep.2012.05.008

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Liu S, Zhao Y, Wang W, Kong Z, Tang D (2015) ENHANCED DISEASE RESISTANCE4 associates with CLATHRIN HEAVY CHAIN2 and modulates plant immunity by regulating relocation of edr1 in Arabidopsis. Plant Cell 27:857–873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao SY, Ellwood S, Calis O, Patrick E, Li TX, Coleman M, Turner JG (2001) Broad-spectrum mildew resistance in Arabidopsis thaliana mediated by RPW8. Science 2916(1):118–120

    Article  Google Scholar 

  • Xiao S, Brown S, Patrick E, Brearley C, Turner JG (2003) Enhanced transcription of the Arabidopsis disease resistance genes RPW8.1 and RPW8.2 via a salicylic acid-dependent amplification circuit is required for hypersensitive cell death. Plant Cell 15(1):33–45. https://doi.org/10.1105/tpc.006940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong X, Sun S, Li Y, Zhang X, Sun J, Xue F (2019) The cotton WRKY transcription factor GhWRKY70 negatively regulates the defense response against Verticillium dahliae. Crop J 7:393–402. https://doi.org/10.1016/j.cj.2018.10.005

    Article  CAS  Google Scholar 

  • Xu X, Kanbara K, Azakami H, Kato A (2004) Expression and characterization of Saccharomyces cerevisiae Cne1p, a calnexin homologue. J Biochem 135(5):615–618

    Article  CAS  PubMed  Google Scholar 

  • Xu T, Wen M, Nagawa S, Fu Y, Chen JG, Wu MJ, Perrot-Rechenmann C, Friml J, Jones AM, Yang Z (2010) Cell surface-and rho GTPase-based auxin signaling controls cellular inter-digitation in Arabidopsis. Cell 143:99–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu G, Guo C, Shan H, Kong H (2012) Divergence of duplicate genes in exon–intron structure. Proc Natl Acad Sci 109(4):1187–1192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan S, Dong X (2014) Perception of the plant immune signal salicylic acid. Curr Opin Plant Biol 20:64–68

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Shah J, Klessig DF (1997) Signal perception and transduction in plant defense responses. Genes Dev 11:1621–1639

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Qin L, Liu G, Peremyslov VV, Dolja VV, Wei Y (2014) Myosins XI modulates host cellular responses and penetration resistance to fungal pathogens. Proc Natl Acad Sci U S A 111:13996–14001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yedidia I, Benhamou N, Chet I (1999) Induction of defense responses in cucumber plants (Cucumis sativus L.) by the biocontrol agent Trichoderma harzianum. Appl Environ Microbiol 65:1061–1070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshimoto K, Jikumaru Y, Kamiya Y, Kusano M, Consonni C, Panstruga R, Ohsumi Y, Shirasu K (2009) Autophagy negatively regulates cell death by controlling npr1-dependent salicylic acid signaling during senescence and the innate immune response in Arabidopsis. Plant Cell 21:2914–2927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • You J, Chan Z (2015) ROS regulation during abiotic stress responses in crop plants. Front Plant Sci 6:1092. https://doi.org/10.3389/fpls.2015.01092

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu D, Chen C, Chen Z (2001) Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene expression. Plant Cell 13:1527–1540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu F, Zhang X, Huang Z, Chu M, Song T, Falk KC, Deora A, Chen Q, Zhang Y, McGregor L, Gossen BD, McDonald MR, Peng G (2016) Identification of genome-wide variants and discovery of variants associated with Brassica rapa clubroot resistance gene Rcr1 through bulked segregant RNA sequencing. PLoS One 11:e0153218. https://doi.org/10.1371/journal.pone.0153218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yun BW, Atkinson HA, Gaborit C, Greenland A, Read ND, Pallas JA, Loake GJ (2003) Loss of actin cytoskeletal function and EDS1 activity, in combination, severely compromises non-host resistance in Arabidopsis against wheat powdery mildew. Plant J 346(1):768–777

    Article  Google Scholar 

  • Zablackis E, Huang J, Muller B, Darvill AG, Albersheim P (1995) Characterization of the cell wall polysaccharides of Arabidopsis thaliana leaves. Plant Physiol 107:1129–1138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zander M, La Camera S, Lamotte O, Metraux JP, Gatz C (2010) Arabidopsis thaliana class-II TGA transcription factors are essential activators of jasmonic acid/ethylene-induced defense responses. Plant J 61:200–210. https://doi.org/10.1111/j.1365-313X.2009.04044.x

  • Zander M, Chen S, Imkampe J, Thurow C, Gatz C (2012) Repression of the Arabidopsis thaliana jasmonic acid/ethylene-induced defense pathway by TGA-interacting glutaredoxins depends on their C-terminal ALWL motif. Mol Plant 5:831–840. https://doi.org/10.1093/mp/ssr113

    Article  CAS  PubMed  Google Scholar 

  • Zander M, Thurow C, Gatz C (2014) TGA transcription factors activate the salicylic acid-suppressible branch of the ethylene-induced defense program by regulating ORA59 expression. Plant Physiol 165:1671–1683. https://doi.org/10.1104/pp.114.243360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeyen RJ, Kruger WM, Lyngkjær MF, Carver TLW (2002) Differential effects of D-mannose and 2-deoxym-D-glucose on attempted powdery mildew fungal infection of inappropriate and appropriate Gramineae. Physiol Mol Plant Pathol 61:315–323

    Article  CAS  Google Scholar 

  • Zhang C, Shapiro AD (2002) Two pathways act in an additive rather than obligatorily synergistic fashion to induce systemic acquired resistance and PR gene expression. BMC Plant Biol 2:9. https://doi.org/10.1186/1471-2229-2-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Tessaro MJ, Lassner M, Li X (2003) Knockout analysis of Arabidopsis transcription factors TGA2, TGA5, and TGA6 reveals their redundant and essential roles in systemic acquired resistance. Plant Cell 15:2647–2653. https://doi.org/10.1105/tpc.014894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Shao F, Li Y, Cui H, Chen L, Li H, Zou Y, Long C, Lan L, Chai J, Chen S, Tang X, Zhou JM (2007) A Pseudomonas syringae effector inactivates MAPKs to suppress PAMP-induced immunity in plants. Cell Host Microbe 1:175–185

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Francis MI, Dawson WO, Graham JH, Orbovic V (2010) Over-expression of the Arabidopsis NPR1 gene in citrus increases resistance to citrus canker. Eur J Plant Pathol 128:91–100. https://doi.org/10.1007/s10658-010-9633-x

    Article  CAS  Google Scholar 

  • Zhang H, Feng J, Zhang S, Zhang S, Li F, Strelkov SE, Sun R, Hwang SF (2015) Resistance to Plasmodiophora brassicae in Brassica rapa and Brassica juncea genotypes from China. Plant Dis 99:776–779. https://doi.org/10.1094/PDIS-08-14-0863-RE

    Article  PubMed  Google Scholar 

  • Zhang H, Feng J, Hwang SF, Strelkov SE, Falak I, Huang X, Sun R (2016) Mapping of clubroot (Plasmodiophora brassicae) resistance in canola (Brassica napus). Plant Pathol 65:435–440. https://doi.org/10.1111/ppa.12422

    Article  Google Scholar 

  • Zhao J, Last RL (1996) Coordinate regulation of the tryptophan biosynthetic pathway and indolic phytoalexin accumulation in Arabidopsis. Plant Cell 8:2235–2244

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Hull AK, Gupta NR, Goss KA, Alonso J, Ecker JR (2002) Trp-dependent auxin biosynthesis in Arabidopsis: involvement of cytochrome P450s CYP79B2 and CYP79B3. Genes Dev 16:3100–3112. https://doi.org/10.1101/gad.1035402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao N, Ferrer JL, Ross J, Guan J, Yang Y, Pichersky E, Noel JP, Chen F (2008) Structural, biochemical, and phylogenetic analyses suggest that indole-3-acetic acid methyltransferase is an evolutionarily ancient member of the SABATH family. Plant Physiol 146:455–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao C, Nie H, Shen Q, Zhang S, Lukowitz W, Tang D (2014) EDR1 physically interacts with MKK4/MKK5 and negatively regulates a MAP kinase cascade to modulate plant innate immunity. PLoS Genet 10:e1004389. https://doi.org/10.1371/journal.pgen.1004389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Bi K, Gao Z, Chen T, Liu H, Xie J, Cheng J, Fu Y, Jiang D (2017) Transcriptome analysis of Arabidopsis thaliana in response to Plasmodiophora brassicae during early infection. Front Microbiol 8:673

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng XY, Spivey NW, Zeng WQ, Liu PP, Fu ZQ, Klessig DF, He SY, Dong XN (2012) Coronatine promotes Pseudomonas syringae virulence in plants by activating a signaling cascade that inhibits salicylic acid accumulation. Cell Host Microbe 11:587–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng X, McLellan H, Fraiture M, Liu X, Boevink PC, Gilroy EM, Chen Y, Kandel K, Sessa G, Birch PR, Brunner F (2014) Functionally redundant RXLR effectors from Phytophthora infestans act at different steps to suppress early flg22-triggered immunity. PLoS Pathog 10:e1004057

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhong X, Xi L, Lian Q, Luo X, Wu Z, Seng S, Yuan X, Yi M (2015) The NPR1 homolog GhNPR1 plays an important role in the defense response of Gladiolus hybridus. Plant Cell Rep 34:1063–1074. https://doi.org/10.1007/s00299-015-1765-1

    Article  CAS  PubMed  Google Scholar 

  • Zhou N, Tootle TL, Tsui F, Klessig DF, Glazebrook J (1998) PAD4 functions upstream from salicylic acid to control defense responses in Arabidopsis. Plant Cell 10:1021–1030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zierold U, Scholz U, Schweizer P (2005) Transcriptome analysis of mlo-mediated resistance in the epidermis of barley. Mol Plant Pathol 6:139–151. https://doi.org/10.1111/j.1364-3703.2005.00271.x

    Article  CAS  PubMed  Google Scholar 

  • Zimmerli L, Stein M, Lipka V, Schulze-Lefert P, Somerville S (2004) Host and non-host pathogens elicit different jasmonate/ethylene responses in Arabidopsis. Plant J 40:633–646. https://doi.org/10.1111/j.1365-313X.2004.02236.x

    Article  CAS  PubMed  Google Scholar 

  • Zipfel C, Robatzek S, Navarro L, Oakeley EJ, Jones JDG, Felix G, Boller T (2004) Bacterial disease resistance in Arabidopsis through flagellin perception. Nat Int J Sci 428:764–767

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saharan, G.S., Mehta, N.K., Meena, P.D. (2021). Biometabolomics of Disease Resistance to Biotrophs. In: Molecular Mechanism of Crucifer’s Host-Resistance. Springer, Singapore. https://doi.org/10.1007/978-981-16-1974-8_4

Download citation

Publish with us

Policies and ethics