Skip to main content

Thermal Degradation of a Phenolic Resin, Vegetable Fibers, and Derived Composites

  • Chapter
  • First Online:
Vegetable Fiber Composites and their Technological Applications

Part of the book series: Composites Science and Technology ((CST))

  • 476 Accesses

Abstract

Vegetable fiber- bolstered polymer composites are locating their role extensively in structural engineering ranging from civil structures to automobile fabricating because of the properties, like easy availability, low density, biocompatibility, bio decomposability and ease to handle. Over past few decades these products had been evaluated for their mechanical and chemical resistance strength and were contrasted with those of artificial fibers bolstered composite materials. In addition to above properties, evaluation of thermal characteristics of vegetable fibers and their composites have been also a topic of count because they decide the overall performance of the resulted products. Impact of temperature on adhesion of fiber with matrix, on matrix curing, on matrix cross linking and fire damage during fabrication have been also a part of thermal study. No doubt, there are numerous works have been mentioned in literature on thermal stability of natural fibers and these fibers reinforced thermoplastic/thermosetting matrix based composites. However, in present chapter we will very well take a look at thermal behaviour of different raw vegetable fibers, phenolic matrix and vegetable fibers reinforced phenolic matrix composites. In addition, impacts of fiber’s surface functionalization on thermal behaviour of fibers and fibers reinforced phenolic composites will be also a part of our study in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mohammed L, Ansari MNM, Pua G, Jawaid M, Islam MS (2015) A review on natural fiber reinforced polymer composite and its applications. Int J Polym Sci 243947-1-15

    Google Scholar 

  2. Gholampour A, Ozbakkaloglu T (2020) A review of natural fiber composites: properties, modification and processing techniques, characterization, applications. J Mater Sci 55:829–892

    Article  CAS  Google Scholar 

  3. Bio Based News, Global natural fiber composite market 2015–2020: trends, forecast, and opportunity analysis, Dec 2015

    Google Scholar 

  4. Lau KT, Hung PY, Zhu MH, Hui D (2018) Properties of natural fiber composites for structural engineering applications. Compos B 136:222–233

    Article  CAS  Google Scholar 

  5. Singha AS, Rana AK, Jarial RK (2013) Mechanical, dielectric and thermal properties of Grewia optiva fibers reinforced unsaturated polyester matrix based composites. Mater Design 51:924–934

    Article  CAS  Google Scholar 

  6. Siakeng R, Jawaid M, Ariffin H, Sapuan S, Asim M, Saba N (2019) Natural fiber reinforced polylactic acid composites: a review. Polym Compos 40:446–463

    Article  CAS  Google Scholar 

  7. Norhidayah MH, Hambali A, Mohd Yuhazri Y, Zolkarnain M, Taufik SHY (2014) A review of current development in natural fiber composites in automotive applications. Appl Mechan Mater 564:3–7

    Article  Google Scholar 

  8. Asim M, Jawaid M, Saba N, Nasir M, Sultan MTH (2017) Processing of hybrid polymer composites—a review. Hybrid Polym Compos Mater 2:1–22

    Google Scholar 

  9. Asim M, Jawaid M, Paridah MT, Saba N, Nasir M, Shahroze RM (2018) Dynamic and thermo-mechanical properties of hybridized kenaf/PALF reinforced phenolic composites. Polym Compos 6:38–46

    CAS  Google Scholar 

  10. Athijayamani A, Chrispin Das M, Sekar S, Ramanathan S (2017) Mechanical Properties of phenol formaldehyde hybrid composites reinforced with natural fibers. BioResources 12:1960–1967

    Article  CAS  Google Scholar 

  11. Rogers EM (1995) Diffusion of Innovations. In: Davidson MW (ed) Plant cell wall, molecular expressions website, 4th edn. The Free Press, New York. Available at http://micro.magnet.fsu.edu/cells/plants/cellwall.html

  12. Costa Da CR, Boueri JJ, Baruque Ramos J, Sanches RA (2013) Chemical composition and mechanical properties of fiber Cocus nucifera L. In: Proceedings of the 13th AUTEX world textile conference, Dresden, Germany

    Google Scholar 

  13. Davidson MW (2020) Plant cell wall, Molecular Expressions website, Available at http://micro.magnet.fsu.edu/cells/plants/cellwall.html

  14. Silva R, Haraguchi SK, Muniz EC, Rubira AF (2009) Aplicações de fibras lignocelulósicas na química de polímeros e em compósitos. Quim Nova 32:661–671

    Article  CAS  Google Scholar 

  15. Pereira PHF, Rosa MDF, Cioffi MOH, de Carvalho Benini KCC, Milanese AC, Voorwald HCC, Mulinari DR (2015) Vegetal fibers in polymeric composites: a review. Polímeros 25:9–22

    Article  CAS  Google Scholar 

  16. Pietak A, Korte S, Tan E, Downard A, Staiger MP (2007) Atomic force microscopy characterization of the surface wettability of natural fibres. Appl Surf Sci 253:3627–3635

    Article  CAS  Google Scholar 

  17. Zimniewska M, Mańkowski J, Władyka-Przybylak M, Rozdział (2012) Włókna naturalne, rodzaje, właściwości, kierunki zastosowań, Monografia: Biokompozyty z surowców odnawialnych, praca zbiorowa pod red. S Kuciela i H. Rydarowskiego, str. 15–34

    Google Scholar 

  18. Faruk O, Bledzki H-P, Sain M (2012) Biocomposites reinforced with natural fibers: 2000–2010. Progr Polym Sci 37:1552–1596

    Article  CAS  Google Scholar 

  19. Jawaid M, Abdul Khalil HPS (2011) Cellulosic/synthetic fibre reinforced polymer hybrid composites: a review. Carbohyd Polym 86:1–18

    Article  CAS  Google Scholar 

  20. Li X, Tabil LG (2007) Satyanarayan panigrah, chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J Polym Environ 15:25–33

    Article  CAS  Google Scholar 

  21. Adekunle KF (2015) Surface treatments of natural fibres—a review: part 1. Open J Polym Chem 5:41–46

    Article  CAS  Google Scholar 

  22. Cruz J, Fangueiro R (2016) Surface modification of natural fibers: a review. Procedia Eng 155:285–288

    Article  CAS  Google Scholar 

  23. Nahar S (2014) Thesis submitted on “Modification and characterization of technical bamboo fibers and their polypropylene based composites. 2014, Bangladesh University of Engineering and Technology Dhaka, Bangladesh. http://lib.buet.ac.bd:8080/xmlui/handle/123456789/3587

  24. Kandola BK, Horrocks AR, Price D, Coleman GV (1996) Flame-retardant treatments of cellulose and their influence on the mechanism of cellulose pyrolysis. Polym Rev 36:721–794

    Google Scholar 

  25. Zhang X, Wang F, Leon M (2015) Keer, influence of surface modification on the microstructure and thermo-mechanical properties of bamboo fibers, Materials 8:6597–6608

    Google Scholar 

  26. Chen H, Zhang W, Wang X, Wang H, Wu Y, Zhong T, Fei B (2018) Effect of alkali treatment on wettability and thermal stability of individual bamboo fibers. J Wood Sci 64:398–405

    Article  CAS  Google Scholar 

  27. Wan Z, Xiong Z, Ren H, Huang Y, Liu H, Xiong H, Wu Y, Han J (2011) Graft copolymerization of methyl methacrylate onto bamboo cellulose under microwave irradiation. Carbo Polym 83:264–269

    Article  CAS  Google Scholar 

  28. Indira KN, Jyotishkumar P, Thomas S (2012) Thermal stability and degradation of banana fibre/PF composites fabricated by RTM. Fibers Polym 13:1319–1325

    Article  CAS  Google Scholar 

  29. George J, Ivens J, Verpoest I (1999) Angew Makromol Chemie 272:41

    Article  CAS  Google Scholar 

  30. Van De Velde K, Baetens E (1999) Thermal and mechanical properties of flax fibres for composites reinforcement. In: 3rd International wood and natural fibre composites symposium, Germany

    Google Scholar 

  31. Joseph S, Sreekala MS, Thomas S (2008) Effect of Chemical modifications on the thermal stability and degradation of banana fiber and banana fiber-reinforced phenol formaldehyde composites. J Appl Polym Sci 110:2305–2314

    Article  CAS  Google Scholar 

  32. Ronald Aseer J, Sankaranarayanasamy K, Jayabalan P, Natarajan R, Priya Dasan K (2013) Morphological, physical, and thermal properties of chemically treated banana fiber. J Natur Fiber 10:365–380

    Article  CAS  Google Scholar 

  33. Selambakkannu S, Othman NAF, Mohamad SF (2016) Optimization of process parameter for graft copolymerization of glycidyl methacrylate onto delignified banana fibers, research and development seminar 2016. Bangi (Malaysia) 48:86

    Google Scholar 

  34. Salamun N, Triwahyono S, Jalil AA, Majid ZA, Ghazali Z, Othman NAF, Prasetyoko D (2016) Surface modification of banana stem fibers via radiation induced grafting of poly(methacrylic acid) as effective cation exchanger for Hg(II). RSC Adv 06:34411–34421

    Article  CAS  Google Scholar 

  35. Oliveira FR, Erkens L, Fangueiro R, Souto AP (2012) Surface modification of banana fibers by DBD plasma, treatment. Plasma Chem Plasma Process 32:259–273

    Article  CAS  Google Scholar 

  36. Selambakkannu S, Othman NAF, Abu Bakar K, Shukor SA, Karim ZA (2018) A kinetic and mechanistic study of adsorptive removal of metal ions by Imidazole-functionalized polymer graft Banana fiber. Radiat Phys Chem 153:58–69

    Article  CAS  Google Scholar 

  37. Zaharescu T, Jipa S, Setnescu R, Wurm D, Brites M, Esteves M, Gigante B (2000) Effects of some secondary amines on the oxidation of ethylene–propylene elastomers. Polym Degrad Stabil 68:83–86

    Article  CAS  Google Scholar 

  38. Saw SK, Sarkhel G, Choudhury A (2011) Surface modification of coir fibre involving oxidation of lignins followed by reaction with furfuryl alcohol: characterization and stability. Appl Surf Sci 257:3763–3769

    Article  CAS  Google Scholar 

  39. Wang B, Panigrahi S, Tabil L, Crerar W, Sokansanj S (2003) Modification of flax fibers by chemical treatment, Written for presentation at the CSAE/SCGR 2003 Meeting Montréal, Québec July 6–9, 2003 Paper No 03-337

    Google Scholar 

  40. Van de Velde K, Baetens E (2001) Thermal and mechanical properties of flax fibres as potential composite reinforcement. Macromol Mater Eng 286:342–349

    Article  Google Scholar 

  41. Seghini MC, Tirillò J, Bracciale MP, Touchard F, Chocinski-Arnault L, Zuorro A, Lavecchia R, Sarasini F (2020) Surface modification of flax yarns by enzymatic treatment and their interfacial adhesion with thermoset matrices. Appl Sci 10:2910–2927

    Article  CAS  Google Scholar 

  42. Seghini MC, Touchard F, Chocinski-Arnault L, Placet V, François C, Plasseraud L, Bracciale MP, Tirillò J, Sarasini F (2020) Environmentally friendly surface modification treatment of flax fibers by supercritical carbon dioxide. Molecules 25:438–454

    Article  CAS  Google Scholar 

  43. Kaith BS, Kalia S (2008) Graft copolymerization of MMA onto flax under different reaction conditions: a comparative study. eXPRESS Polym Lett 2:93–100

    Google Scholar 

  44. Kalia S, Kaith BS (2009) Synthesis of Flax-G-Copolymers under pressure for use in phenolic composites as reinforcement. J Chil Chem So 54:2

    Google Scholar 

  45. Kaith BS, Singha AS, Kumar S, Kalia S (2008) mercerization of flax fiber improves the mechanical properties of fiber-reinforced composites. Int J Polym Mater 57:54–72

    Article  CAS  Google Scholar 

  46. Singha AS, Rana AK (2013) Effect of Aminopropyltriethoxysilane (APS) treatment on properties of mercerized lignocellulosic Grewia optiva fiber. J of Polym and Environ 21:141–150

    Article  CAS  Google Scholar 

  47. Singha AS, Rana AK (2012) Effect of surface modification of Grewia optiva fibers on their physico-chemical and thermal properties. Bull of Mate Sci 35:1099–1110

    Article  CAS  Google Scholar 

  48. Singha AS, Rana AK (2012) Effect of graft copolymerization on mechanical, thermal, and chemical properties of grewia optiva/unsaturated polyester biocomposites. Polym Compos 33:1403–1414

    Article  CAS  Google Scholar 

  49. Singha AS, Rana AK (2012) A comparative study on functionalization of cellulose bio-fiber by graft copolymerization of acrylic acid in air and under microwave radiation. BioResources 7:2019–2037

    Article  CAS  Google Scholar 

  50. George JB, Thomas S (1996) Thermogravimetric and dynamic mechanical thermal analysis of pineapple fiber reinforced polyethylene composites. J Therm Anal 47:1121–1140

    Article  CAS  Google Scholar 

  51. McGaugh MC, Kottle S (1967) The thermal degradation of poly(acrylic acid). J Polym Sci Part B Polym Lett 5:817–820

    Article  CAS  Google Scholar 

  52. Singha AS, Thakur BP, Pathania D (2014) Analysis and characterization of microwave irradiation–induced graft copolymerization of methyl methacrylate onto delignified Grewia optiva fiber. Int J Polym Analy Charact 19:115–123

    Article  CAS  Google Scholar 

  53. Gupta VK, Pathania D, Priya B, Singha AS, Sharma G (2014) Microwave induced synthesis of graft copolymer of binary vinyl monomer mixtures onto delignified Grewia optiva fiber: application in dye removal. Front In Chem 2:1–9

    Article  CAS  Google Scholar 

  54. Beall F, Eickner H (2013) Thermal degradartion of wood components: a review of the literature. 1970 [cited 2013 2 Jan]; U.S.D.A. Forest service research paper Available from: http://www.fpl.fs.fed.us/documnts/fplrp/fplrp130.pdf

  55. Lu N, Oza S (2013) Thermal stability and thermo-mechanical properties of hemp-high density polyethylene composites: Effect of two different chemical modifications. Compos Part B: Engin 44:484–490

    Article  CAS  Google Scholar 

  56. Oza S, Ning H, Ferguson I, Lu N (2014) Effect of surface treatment on thermal stability of the hemp-PLA composites: correlation of activation energy with thermal degradation. Compos Part B: Engin 67:227–232

    Article  CAS  Google Scholar 

  57. Panaitescu DM, Vuluga Z, Ghiurea M, Iorga M, Nicolae C, Gabor R (2014) Influence of compatibilizing system on morphology, thermal and mechanical properties of high flow polypropylene reinforced with short hemp fibers. Compos Part B 69:286–295

    Google Scholar 

  58. Kalia S, Kumar A, Kaith BS (2011) Sunn hemp cellulose graft copolymers polyhydroxybutyrate composites: morphological and mechanical studies. Adv Mat Lett 2:17–25

    Article  CAS  Google Scholar 

  59. Singha AS, Rana AK (2012) Effect of silane treatment on physicochemical properties of lignocellulosic C. indica fiber. J Appl Polym Sci 124:2473–2484

    Article  CAS  Google Scholar 

  60. Kaloustian J, EI-Moselhy TF and Portugal H (2003) Chemical and thermal analysis of the biopolymers in thyme (Thymus vulgaris). Thermochim Acta 401:77-86

    Google Scholar 

  61. Albano C, Gonzalez J, Ichazo M, Kaiser D (1999) Thermal stability of blends of polyolefins and sisal fibers. Polym Degrad Stab 66:179–190

    Article  CAS  Google Scholar 

  62. Singha AS, Rana AK (2012) A study on benzoylation and graft copolymerization of lignocellulosic Cannabis indica Fiber. J of Polym Environ 20:361–371

    Article  CAS  Google Scholar 

  63. Singha AS, Rana AK (2012) Ce(IV) ion–initiated and microwave radiation–induced graft copolymerization of acrylic acid. Int J of Polym Analy and Character 17:72–84

    Article  CAS  Google Scholar 

  64. Singha AS, Rana AK (2011) Kinetic study on acrylic acid (AAc) graft copolymerized Cannabis indica fiber. Iran Polym J 20:913–919

    CAS  Google Scholar 

  65. Singha AS, Rana AK (2012) Preparation and characterization of graft copolymerized cannabis indica L. fiber reinforced unsaturated polyester matrix based bio-composites. J of Reinf Plast Compos 31:1538–1553

    Article  CAS  Google Scholar 

  66. Macedo MJP, Silva GS, Feitor MC, Costa THC, Ito EN, Melo JDD (2020) Surface modification of kapok fibers by cold plasma surface treatment. J Mater Technol 9:2467–2476

    CAS  Google Scholar 

  67. Jamat MD, Asik J (2019) Performance of Kapok fiber reinforced polyvinyl alcohol bicomposite by alkali treated. Borneo Sci 40(1)

    Google Scholar 

  68. Draman SF, Daik R, Latif FA, El-Sheikh SM (2013) Characterization and thermal decomposition kinetics of kapok (Ceiba pentandra L.)–based cellulose. BioResources 9:8–23

    Google Scholar 

  69. Brebu M, Vasile C (2010) Thermal degradation of lignin—a review. Cellulose Chem Technol 44:353–363

    CAS  Google Scholar 

  70. Draman SFS, Daik R, Latif FA, El-Sheikh SM (2014) Charcaterization and thermal decomposition kinetics (ceiba pentandra L.)-based cellulose. BioResources 9:8–23

    Google Scholar 

  71. Chung TJ, Park JW, Lee HJ, Kwon HJ, Kim HJ, Lee YK, ID Tze WTY (2018) The improvement of mechanical properties, thermal stability, and water absorption resistance of an eco-friendly PLA/Kenaf biocomposite using acetylation. Appl Sci 8:376

    Google Scholar 

  72. Azwa ZN, Yousif BN (2013) Characteristics of kenaf fibre/epoxy composites subjected to thermal degradation. Polym Degrada and Stab 98:2752–2759

    Article  CAS  Google Scholar 

  73. De Rosa IM, Kenny JM, Maniruzzaman M, Moniruzzaman M, Monti M, Puglia D, Santulli C, Sarasini F (2011) Effect of chemical treatments on the mechanical and thermal behaviour of okra (abelmoschus esculentus) fibres. Compos Sci Technol 71:246–254

    Article  CAS  Google Scholar 

  74. Stawski D, Çaliskan E, Yilmaz ND, Krucinska I (2020) Thermal and mechanical characteristics of okra (abelmoschus esculentus) fibers obtained via water- and dew-retting. Appl Sci 10:5113

    Article  CAS  Google Scholar 

  75. De Rosa IM, Kenny JM, Puglia D, Santulli C, Sarasini F (2010) Morphological, thermal and mechanical characterization of okra (Abelmoschus esculentus) fibers as potential reinforcement in polymer composites. Composite Sci Technol 70:116–122

    Article  CAS  Google Scholar 

  76. Singha AS, Guleria A, Rana RK, RanaAK (2013) Characterization and evaluation of thermal, morphological, and physicochemical properties of chemically modified lignocellulosic biomass. Int J of Polym Anal Charact 18:377–389

    Google Scholar 

  77. Guleria A, Kumari G, Lima EC (2020) Cellulose-g-poly-(acrylamide-co-acrylic acid) polymeric bioadsorbent for the removal of toxic inorganic pollutants from wastewaters. Carbohyd polym 228:115396

    Article  CAS  Google Scholar 

  78. Grumo JC, Jabber LJY, Patricio JN, Magdadaro MRD, Lubguban AA, Alguno AC (2017) Alkali and bleach treatment of the extracted cellulose from pineapple (ananas comosus) leaves. J Fundam Appl Sci 9:124–133

    CAS  Google Scholar 

  79. Mohanty AK, Tripathy PC, Misra M, Parija S, Sahoo S (2000) Chemical modification of pineapple leaf fiber: Graft copolymerization of acrylonitrile onto defatted pineapple leaf fibers. J Appl Polym Sci 77:3035–3043

    Article  CAS  Google Scholar 

  80. Maniruzzaman M, Rahman MA, Gafur MA, Fabritius H, Raabe D (2011) Modification of pineapple leaf fibers and graft copolymerization of acrylonitrile onto modified fibers. J of Compos Mater 46:79–90

    Article  CAS  Google Scholar 

  81. Singha AS, Rana RK (2011) Effect of functionalization of lignocellulosic fibers on their physico-chemical and thermal properties. Int J of Polym Mater 60:729–741

    Article  CAS  Google Scholar 

  82. Singha AS, Rana RK (2010) Graft copolymerization of methyl methacrylate (MMA) onto agave americana fibers and evaluation of their physicochemical properties. Int J of Polym Anal Charact 15:27–42

    Article  CAS  Google Scholar 

  83. Singha AS, Rana RK (2010) Microwave induced graft copolymerization of methyl methacrylate onto lignocellulosic fibers. Int Jof Polym Anal Charact 15:370–386

    Article  Google Scholar 

  84. Singha AS, Rana RK (2012) Chemically induced graft copolymerization of acrylonitrile onto lignocellulosic fibers. J of Appl Polym Sci 124:1891–1898

    Article  CAS  Google Scholar 

  85. Singha AS, Rana RK (2012) Functionalization of cellulosic fibers by graft copolymerization of acrylonitrile and ethyl acrylate from their binary mixtures. Carbohyd Polym 87:500–511

    Article  CAS  Google Scholar 

  86. Singha AS, Rana RK, Guleria A (2012) Functional polymers from graft copolymerization of binary monomer mixtures onto lignocellulosic biomass: synthesis, characterization, and properties evaluation. Lignocellulose 1:129–152

    Google Scholar 

  87. Kaith BS, Chauhan A, Singha AS, Pathania D (2009) Induction of morphological changes in hibiscus sabdariffa fiber on graft copolymerization with binary vinyl monomer mixtures. Int J of Polym Anal Charact 14:246–258

    Article  CAS  Google Scholar 

  88. Chauhan A, Kaith BS (2012) Synthesis, characterization, and evaluation of novel hibiscus sabdariffa-g-poly(EA) copolymer. J of Appl Polym Sci 123:448–454

    Article  CAS  Google Scholar 

  89. Chauhan A, Kaith BS (2011) The potential use of roselle as a novel graft copolymer. J of Nat Fibers 8:308–321

    Article  CAS  Google Scholar 

  90. Singha AS, Thakur VK, Mehta IK, Shama A, Khanna AJ, Rana RK, Rana AK (2009) Surface-modified hibiscus sabdariffa fibers: physicochemical, thermal, and morphological properties evaluation. Int J of Polym Anal Charact 14:695–711

    Article  CAS  Google Scholar 

  91. Liu ZT, Yang Y, Zhang L, Sun P, Liu ZW, Lu J, Xiong H, Peng Y, Tang S (2008) Study on the performance of ramie fiber modified with ethylenediamine. Carbohyd Polym 71:18–25

    Article  CAS  Google Scholar 

  92. Kalia S, Renu S (2011) Modification of ramie fibers using microwave-assisted grafting and cellulase enzyme-assisted biopolishing: a comparative study of morphology, thermal stability, and crystallinity. Int J of Polym Anal Charact 16:307–318

    Article  CAS  Google Scholar 

  93. Kalia S, Sheoran R, Mittal H, Kumar A (2013) Surface modification of ramie fibers using microwave assisted graft copolymerization followed by Brevibacillus parabrevis pretreatment. Adv Mat Lett 4:742–748

    Article  CAS  Google Scholar 

  94. Martina AR, Martins MA, da Silvac ORRF, Mattoso LHC (2010) Studies on the thermal properties of sisal fiber and its constituents. Thermochim Acta 506:14–19

    Article  CAS  Google Scholar 

  95. Kalia S, Vashistha S (2012) Surface modification of sisal fibers (agave sisalana) using bacterial cellulase and methyl methacrylate. J Polym Environ 20:142–151

    Article  CAS  Google Scholar 

  96. Orue A, Jauregi A, Pena-Rodriguez C, Labidi J, Eceiza A, Arbelaiz A (2015) The effect of surface modifications on sisal fiber properties and sisal/poly (lactic acid) interface adhesion. Compos Part B 73:132–138

    Google Scholar 

  97. Zhou F, Cheng G, Jiang B (2014) Effect of silane treatment on microstructure of sisal fibers. Appl Surf Sci 292:806–812

    Article  CAS  Google Scholar 

  98. Chand N, Bajpai SK, Joshi R, Mary G (2010) Thermomechanical behavior of sisal fibers grafted with poly(acrylamide-Co-N-vinyl-2-pyrrolidone) and loaded with silver ions or silver nanoparticles. BioResources 5:372–388

    CAS  Google Scholar 

  99. Kalia S, Kaushik VK, Sharma RK (2011) Effect of benzoylation and graft copolymerization on morphology, thermal stability, and crystallinity of sisal fibers. J of Nat Fibers 8:27–38

    Article  CAS  Google Scholar 

  100. Naguib HF (2002) Chemically induced graft copolymerization of itaconic acid onto sisal fibers. J of Polym Res 9:207–211

    Article  CAS  Google Scholar 

  101. Reluert J, Yazdani PM (1992) J Macromol Sci Chem A 29(1):31

    Article  Google Scholar 

  102. Kaushik VK, Goyal M (2014) Synthesis and characterization of graft co-polymers of sisal fiber with binary vinyl monomers. Open Access Library J 1

    Google Scholar 

  103. Asim M, Saba N, Jawaid M, Nasir M, Pervaiz M, Alothman OY (2018) A Review on phenolic resin and its composites. Curr Anal Chem 14:185–197

    Article  CAS  Google Scholar 

  104. Post W, Susa A, Blaauw R, Molenveld K, Knoop RJI (2019) A review on the potential and limitations of recyclable thermosets for structural applications. BBP Sustain Chem Technol 57:359–388

    Google Scholar 

  105. Opportunities in natural fibers composites, Lucintel. https://www.lucintel.com/

  106. Chen H, Chen Y, Liu H (2013) Study on thermal degradation of phenolic resin. Appl Mech and Mater 422:24–28

    Article  CAS  Google Scholar 

  107. Singha AS, Thakur VK (2008) Synthesis and characterization of grewia optiva fiberreinforced PF-based composites. Int J of Polym Mater 57:1059–1074

    Article  CAS  Google Scholar 

  108. Thakur VK, Singha AS, Kaur I, Pudukotai Nagarajarao RK, Liping Y (2011) Studies on analysis and characterization of phenolic composites fabricated from lignocellulosic fibres. Polym Polym Compos 19:505–512

    CAS  Google Scholar 

  109. Singha AS, Thakur VK (2009) Synthesis, characterisation and analysis of hibiscus Sabdariffa fibre reinforced polymer matrix based composites. Polym Polym Compos 17:189–194

    CAS  Google Scholar 

  110. Singha AS, Thakur VK (2008) Fabrication and study of lignocellulosic Hibiscus Sabdariffa fibre reinforced polymer composites. BioResources 3:1173–1186

    Google Scholar 

  111. Milanese AC, Hilário Cioffi MO, Voorwald HJC (2012) Thermal and mechanical behaviour of sisal/phenolic composites. Compos Part B 43:2843–2850

    Google Scholar 

  112. Khan GMA, Abdullah-Al-Mamun M, Abedin SMA, Choudhury MJ, Gafur MA, Alam MS (2014) Renewable okra bast fiber reinforced phenol formaldehyde resin composites: mechanical and thermal studies. Research And Reviews: J of Mater Sci 2:32–36

    Google Scholar 

  113. Asim M, Paridah M, Saba N, Jawaid M, Alothman OY, Nasir M, Almutairi Z (2018) Thermal, physical properties and fammability of silane treated kenaf/pineapple leaf fbers phenolic hybrid composites. Compos Struct 202:1330–1338

    Article  Google Scholar 

  114. Asim M, Jawaid M, Nasir M, Saba N (2018) Effect of fiber loadings and treatment on dynamic mechanical, thermal and flammability properties of pineapple leaf fiber and Kenaf phenolic composites. J Renew Mater 6:383–393

    Article  CAS  Google Scholar 

  115. Nagy B, Domán A, Menyhárd A, László K (2018) Influence of graphene oxide incorporation on resorcinol- formaldehyde polymer and carbon aerogels. Periodica Polytech Chem Eng 62:441–449

    Article  CAS  Google Scholar 

  116. Dwivedi C, Kumar A, Ajish JK, Singh KK, Kumar M, Kishen Wattal P, Bajaj PN (2012) Resorcinol-formaldehyde coated XAD resin beads for removal of cesium ions from radioactive waste: synthesis, sorption and kinetic studies. RSC Adv 2:5557–5564

    Article  CAS  Google Scholar 

  117. Singha AS, Thakur VK (2009) Fabrication and characterization of S. cilliare fibre reinforced polymer composites. Bull Mater Sci 32:49–58

    Article  CAS  Google Scholar 

  118. Singha AS, Thakur VK (2010) Mechanical, morphological, and thermal characterization of compression-molded polymer biocomposites. Int J of Polym Anal Charact 15:87–97

    Article  CAS  Google Scholar 

  119. Singha AS, Thakur VK (2009) Mechanical, thermal and morphological properties of grewia optiva fiber/polymer matrix composites. Polym-Plastics Technol and Engin 48:201–208

    Article  CAS  Google Scholar 

  120. Singha AS, Thakur VK (2008) Fabrication of hibiscus Sabdariffa fibre reinforced polymer composites. Iran Polym J 17:541–553

    CAS  Google Scholar 

  121. Hamou A, Devallencourt C, Burel F, Saiter JM, Belbachir M (1998) Thermal stability of a para-cresol Novolac resin. J of Thermal analysis 52:697–703

    Article  CAS  Google Scholar 

  122. Liu J, Xuan D, Chai J, Guo D, Huang Y, Liu S, Tong Chew Y, Li S, Zheng Z (2020) Synthesis and thermal properties of resorcinol-furfural thermosetting resin. ACS Omega 5:10011–10020

    Article  CAS  Google Scholar 

  123. Mohammad A, Paridah MT, Chandrasekar M, Shahroze RM, Jawaid M, Nasir M, Siakeng R (2020) Thermal stability of natural fibers and their polymer composites. Iran Polym J. https://doi.org/10.1007/s13726-020-00824-6

    Article  Google Scholar 

  124. Asim M, Jawaid M, Paridah MT, Saba N, Nasir M, Shahroze RM (2019) Dynamic and thermo-mechanical properties of hybridized Kenaf/PALF reinforced phenolic composites. Polym Composit 40:3814–3822

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rana, A.K., Thakur, V.K., Khan, A. (2021). Thermal Degradation of a Phenolic Resin, Vegetable Fibers, and Derived Composites. In: Jawaid, M., Khan, A. (eds) Vegetable Fiber Composites and their Technological Applications. Composites Science and Technology . Springer, Singapore. https://doi.org/10.1007/978-981-16-1854-3_8

Download citation

Publish with us

Policies and ethics