Skip to main content

Set Order Relations, Set Optimization, and Ekeland’s Variational Principle

  • Conference paper
  • First Online:
Optimization, Variational Analysis and Applications (IFSOVAA 2020)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 355))

Abstract

This chapter provides a brief survey on different kinds of set order relations which are used to compare the objective values of set-valued maps and play a key role to study set optimization problems. The solution concepts of set optimization problems and their relationships with respect to different kinds of set order relations are provided. The nonlinear scalarization functions for vector-valued maps as well as for set-valued maps are very useful to study the optimality solutions of vector optimization/set optimization problems. A survey of such nonlinear scalarization functions for vector-valued maps/set-valued maps is given. We give some new results on the existence of optimal solutions of set optimization problems. In the end, we gather some recent results, namely, Ekeland’s variational principle and some equivalent variational principle for set-valued maps with respect to different kinds of set order relations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alonso, M., Rodríguez-Marín, L.: Set-relations and optimality conditions in set-valued maps. Nonlinear Anal. 63, 1167–1179 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alonso, M., Rodríguez-Marín, L.: Optimality conditions for a nonconvex set-valued optimization problem. Comput. Math. Appl. 56, 82–89 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ansari, Q.H.: Metric Spaces—Including Fixed Point Theory and Set-Valued Maps. Narosa Publishing House, New Delhi (2010). Also Published by Alpha Science International Ltd. Oxford, U.K. (2010)

    Google Scholar 

  4. Ansari, Q.H.: Ekeland’s variational principle and its extensions with applications. In: Almezel, S., Ansari, Q.H., Khamsi, M.A. (eds.) Topics in Fixed Point Theory, pp. 65–100. Springer, New York (2014)

    Chapter  Google Scholar 

  5. Ansari, Q.H., Eshghinezhad, S., Fakhar, M.: Ekeland’s variational principle for set-valued maps with applications to vector optimization in uniform spaces. Taiwan. J. Math. 18(6), 1999–2020 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ansari, Q.H., Hamel, A.H., Sharma, P.K.: Ekeland’s variational principle with weighted set order relations. Math. Methods Oper. Res. 91(1), 117–136 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ansari, Q.H., Köbis, E., Sharma, P.K.: Characterizations of set relations with respect to variable domination structures via oriented distance function. Optimization 67(9), 1389–1407 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ansari, Q.H., Köbis, E., Sharma, P.K.: Characterizations of multiobjective robustness via oriented distance function and image space analysis. J. Optim. Theory Appl. 181(3), 817–839 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ansari, Q.H., Köbis, E., Yao, J.-C.: Vector Variational Inequalities and Vector Optimization - Theory and Applications. Springer, New York (2018)

    Book  MATH  Google Scholar 

  10. Ansari, Q.H., Sharma, P.K.: Ekeland type variational principle for set-valued maps in quasi-metric spaces with applications. J. Nonlinear Convex Anal. 20(8), 1683–1700 (2019)

    MathSciNet  Google Scholar 

  11. Ansari, Q.H., Sharma, P.K., Qin, X.: Characterizations of robust optimality conditions via image space analysis. Optimization 69(9), 2063–2083 (2020)

    Google Scholar 

  12. Ansari, Q.H., Sharma, P.K., Yao, J.-C.: Minimal elements theorems and Ekeland’s variational principle with new set order relations. J. Nonlinear Convex Anal. 19(7), 1127–1139 (2018)

    MathSciNet  MATH  Google Scholar 

  13. Araya, Y.: Four types of nonlinear scalarizations and some applications in set optimization. Nonlinear Anal. 75, 3821–3835 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Araya, Y.: New types of nonlinear scalarizations in set optimization. In: Proceedings of the 3th Asian Conference on Nonlinear Analysis and Optimization, Matsue, Japan, pp. 1–15. Yakohama Publishers, Yakohama, Japan (2012)

    Google Scholar 

  15. Bao, T.Q., Mordukhovich, B.S.: Variational principles for set-valued maps with applications to multiobjective optimization. Control Cybern. 36, 531–562 (2007)

    MATH  Google Scholar 

  16. Bao, T.Q., Mordukhovich, B.S.: Set-valued optimization in welfare economics. In: Kusuoka, S., Maruyama, T. (eds.) Advances in Mathematical Economics, vol. 13, pp. 113–153. Springer Japan, Tokyo (2010)

    Google Scholar 

  17. Bao, T.Q., Mordukhovich, B.S., Soubeyran, A.: Fixed points and variational principles with applications to capability theory of wellbeing via variational rationality. Set-Valued Var. Anal. 23, 375–398 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Bao, T.Q., Mordukhovich, B.S., Soubeyran, A.: Variational analysis in psychological modeling. J. Optim. Theory Appl. 164, 290–315 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Bao, T.Q., Mordukhovich, B.S., Soubeyran, A.: Minimal points, variational principles and variable preferences in set optimization. J. Nonlinear Convex Anal. 16(8), 1511–1537 (2015)

    MathSciNet  MATH  Google Scholar 

  20. Bao, T.Q., Soubeyran, A.: Variational principles in set optimization with domination structures and application to changing jobs. J. Appl. Numer. Optim. 1(3), 217–241 (2019)

    Google Scholar 

  21. Brézis, B., Browder, F.E.: A general principle on ordered sets in nonlinear functional analysis. Adv. Math. 21, 355–364 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  22. Brink, C.: Power structures. Algebr. Univers. 30, 177–216 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  23. Caristi, J.: Fixed point theorems for mappings satisfying inwardness conditions. Trans. Am. Math. Soc. 215, 241–251 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  24. Caristi, J., Kirk, W.A.: Geometric fixed point theory and inwardness conditions. In: The Geometry of Metric and Linear Spaces. Lecture Notes in Mathematics, vol. 490, pp. 74–83. Springer, New York (1975)

    Google Scholar 

  25. Chen, J., Ansari, Q.H., Yao, J.-C.: Characterizations of set order relations and constrained set optimization problems via oriented distance function. Optimization 66(11), 1741–1754 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Chen, G.Y., Huang, X.X.: Ekeland’s \(\epsilon \)-variational principle for set-valued mappings. Math. Methods Oper. Res. 48(2), 181–186 (1998)

    Article  MathSciNet  Google Scholar 

  27. Chen, G.Y., Huang, X.X.: A unified approach to the existing three types of variational principles for vector-valued functions. Math. Methods Oper. Res. 48(2), 349–357 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  28. Chen, G.Y., Huang, X.X., Hou, S.H.: General Ekeland’s variational principle for set-valued mappings. J. Optim. Theory Appl. 106(1), 151–164 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  29. Chen, G.Y., Jahn, J.: Optimality conditions for set-valued optimization problems. Math. Methods Oper. Res. 48(2), 187–200 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  30. Chen, J., Köbis, E., Köbis, M.A., Yao, J.-C.: A new set order relation in set-optimization. J. Nonlinear Convex Anal. 18(4), 637–649 (2017)

    MathSciNet  MATH  Google Scholar 

  31. Chiriaev, D., Walster, G.W.: Interval arithmetic specification. Available from: http://www.mscs.mu.edu/~globsol/walster-papers. html.[69] (1998)

  32. Cobzaş, Ş.: Functional Analysis in Asymmetric Normed Spaces. Birkhäuser, Basel (2013)

    Book  MATH  Google Scholar 

  33. Corley, H.W.: Existence and Lagrangian duality for maximization of set-valued functions. J. Optim. Theory Appl. 54, 489–501 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  34. Corley, H.W.: Optimality conditions for maximization of set-valued functions. J. Optim. Theory Appl. 58(1), 1–10 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  35. Crespi, G.P., Ginchev, I., Rocca, M.: First-order optimality conditions in set valued optimization. Math. Methods Oper. Res. 63, 87–106 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  36. Crespi, C.P., Mastrogiacomo, E.: Qualitative robustness of set-valued value-at-risk. Math. Methods Oper. Res. 91, 25–54 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  37. Dancs, S., Hegegedüs, M., Medvegyev, P.: A general ordering and fixed-point principle in complete metric space. Acta Sci. Math. 46, 381–388 (1983)

    MathSciNet  MATH  Google Scholar 

  38. Day, M.M.: Normed Linear Spaces. Springer, New York (1973)

    Book  MATH  Google Scholar 

  39. De Figueiredo, D.G.: The Ekeland Variational Principle with Applications and Detours. Tata Institute of Fundamental Research, Bombay (1989)

    MATH  Google Scholar 

  40. Eichfelder, G.: Variable Ordering Structures in Vector Optimization. Springer, Heidelberg (2014)

    Book  MATH  Google Scholar 

  41. Eichfelder, G., Jahn, J.: Vector and set optimization. In: Greco, S., Ehrgott, M., Figueira, J. (eds.) Multiple Criteria Decision Analysis: State of the Art Surveys, vol. 233, pp. 695–737. Springer, New York (2016)

    Chapter  Google Scholar 

  42. Eichfelder, G., Pilecka, M.: Set approach for set optimization with variable ordering structures part I : set relations and relationship to vector approach. J. Optim. Theory Appl. 171(3), 931–946 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  43. Eichfelder, G., Pilecka, M.: Ordering structures and their applications. In: Rassias, T.M. (ed.) Applications of Nonlinear Analysis, vol. 134, pp. 265–304. Springer, Cham (2018)

    Google Scholar 

  44. Eichfelder, G., Pilecka, M.: Set approach for set optimization with variable ordering structures part II : scalarization approaches. J. Optim. Theory Appl. 171(3), 947–963 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  45. Ekeland, I.: Sur les problémes variationnels. C. R. Acad. Sci. Paris 275, 1057–1059 (1972)

    MathSciNet  MATH  Google Scholar 

  46. Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 47, 324–354 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  47. Ekeland, I.: Nonconvex minimization problems. Bull. Am. Math. Soc. 1(3), 443–474 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  48. Fel’dman, M.M.: Sublinear operators defined on a cone. Sib. Math. J. 16, 1005–1015 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  49. Flores-Bazán, F., Gutiérrez, C., Novo, V.: A Brézis–Browder principle on partially ordered spaces and related ordering theorems. J. Math. Anal. Appl. 375, 245–260 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  50. Georgiev, P.G.: The strong Ekeland variational principle, the strong drop theorem and applications. J. Math. Anal. Appl. 131, 1–21 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  51. Georgiev, P.G., Tanaka, T.: Vector-valued set-valued variants of Ky Fan’s inequality. J. Nonlinear Convex Anal. 1, 245–254 (2000)

    MathSciNet  MATH  Google Scholar 

  52. Gerth (Tammer), C.: Nichtkonvexe dualität in der vektoroptimierung (in German). Wiss. Z. TH Leuna-Merseburg 25, 357–364 (1983)

    Google Scholar 

  53. Gerth (Tammer), C., Iwanow, I.: Dualität für nichtkonvexe vektoroptimierungs probleme (in German). Wiss. Z. Tech. Hochsch Ilmenau 2, 61–81 (1985)

    Google Scholar 

  54. Gerth (Tammer), C., Weidner, P.: Nonconvex separation theorems and some applications in vector optimization. J. Optim. Theory Appl. 67, 297–320 (1990)

    Google Scholar 

  55. Götz, A., Jahn, J.: The Lagrange multiplier rule in set-valued optimization. SIAM J. Optim. 10(2), 331–344 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  56. Göpfert, A., Riahi, A., Tammer, C., Zălinescu, C.: Variational Methods in Partially Ordered Spaces. Springer, New York (2003)

    MATH  Google Scholar 

  57. Göpfert, A., Tammer, C.: A new maximal point theorem. J. Anal. Appl. 14(2), 379–390 (1995)

    MathSciNet  MATH  Google Scholar 

  58. Göpfert, A., Tammer, C., Zălinescu, C.: A new minimal point theorem in product spaces. J. Anal. Appl. 18(3), 767–770 (1999)

    MathSciNet  MATH  Google Scholar 

  59. Göpfert, A., Tammer, C., Zălinescu, C.: On the vectorial Ekeland’s Variational principle and minimal points in product spaces. Nonlinear Anal. 39, 909–922 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  60. Gutiérrez, C., Jiménez, B., Miglierina, E., Molho, E.: Scalarization in set optimization with solid and nonsolid ordering cones. J. Glob. Optim. 61, 525–552 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  61. Gutiérrez, C., Jiménez, B., Novo, V., Thibault, L.: Strict approximate solutions in set-valued optimization with applications to the approximate Ekeland variational principle. Nonlinear Anal. 73, 3842–3855 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  62. Gutiérrez, C., Miglierina, E., Molho, E., Novo, V.: Pointwise well-posedness in set optimization with cone proper sets. Nonlinear Anal. 75, 1822–1833 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  63. Ha, T.X.D.: Some variants of the Ekeland’s variational principle for a set valued map. J. Optim. Theory Appl. 124(1), 187–206 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  64. Ha, T.X.D.: Optimality conditions for several types of efficient solutions of set-valued optimization problems. In: Pardalos, P., Rassias, T.M, Khan, A.A. (eds.) Nonlinear Analysis and Variational Problems, pp. 305–324. Springer, Heidelberg (2010)

    Google Scholar 

  65. Hamel, A.H.: Equivalents to Ekeland’s variational principle in uniform spaces. Nonlinear Anal. 62(5), 913–924 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  66. Hamel, A.H.: Translative sets and functions and their applications to risk measure theory and nonlinear separation. IMPA preprint D 21/2006 (2006)

    Google Scholar 

  67. Hamel, A.H., Heyde, F., Löhne, A., Rudloff, B., Schrage, C.: Set optimization–a rather short introduction. In: Hamel, A.H., Heyde, F., Löhne, A., Rudloff, B., Schrage, C. (eds.) Set Optimization and Applications – The State of the Art, From Set Relations to Set-valued Risk Measures, pp. 65–141. Springer (2015)

    Google Scholar 

  68. Hamel, A.H., Heyde, F., Löhne, A., Rudloff, B., Schrage, C.: Set Optimization and Applications - The State of the Art: From Set Relations to Set-valued Risk Measures. Springer, Berlin (2015)

    Book  MATH  Google Scholar 

  69. Hamel, A.H., Heyde, F., Rudloff, B.: Set-valued risk measures conical market models. Math. Financ. Econ. 5(1), 1–28 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  70. Hamel, A.H., Kostner, D.: Cone distribution functions and quantiles for multivariate random variable. J. Multivar. Anal. 167, 97–113 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  71. Hamel, A.H., Löhne, A.: A minimal point theorem in uniform spaces. In: Agarwal, R.P., O’Regan, D. (eds.) Nonlinear Analysis and Applications: To V. Lakshmikantham on His 80th Birthday, vol. 1, pp. 577–593. Kluwer Academic Publisher, Dordrecht (2003)

    Google Scholar 

  72. Hamel, A.H., Löhne, A.: Minimal elements theorems and Ekeland’s variational principle with set relations. J. Nonlinear Convex Anal. 7, 19–37 (2006)

    MathSciNet  MATH  Google Scholar 

  73. Hamel, A.H., Löhne, A.: A set optimization approach to zero-sum matrix games with multi-dimensional payoffs. Math. Methods Oper. Res. 88, 369–397 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  74. Hamel, A.H., Tammer, C.: Minimal elements for product orders. Optimization 57(2), 263–275 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  75. Hamel, A.H., Visetti, D.: The value functions approach and Hopf-Lax formula for multiobjective costs via set optimization. J. Math. Anal. Appl. 483(1), Article 123605 (2020)

    Google Scholar 

  76. Hamel, A.H., Zălinescu, C.: Minimal elements theorem revisited. J. Math. Anal. Appl. 486(2), Article 123935?? (2020)

    Google Scholar 

  77. Han, Y., Huang, N.J.: Well-posedness and stability of solutions for set optimization problems. Optimization 66(1), 17–33 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  78. Han, Y., Wang, S.H., Huang, N.J.: Arcwise connectedness of the solution sets for set optimization problems. Oper. Res. Lett. 47, 168–172 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  79. Hernández, E.: A survey of set optimization problems with set solutions. In: Hamel, A.H., Heyde, F., Löhne, A., Rudloff, B., Schrage, C. (eds.) Set Optimization and Applications – The State of the Art. From Set Relations to Set-valued Risk Measures, pp. 142–158. Springer (2015)

    Google Scholar 

  80. Hernández, E., Rodríguez-Marín, L.: Nonconvex scalarization in set optimization with set-valued maps. J. Math. Anal. Appl. 325, 1–18 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  81. Hernández, E., Rodríguez-Marín, L.: Existence theorems for set optimization problems. Nonlinear Anal. 67, 1726–1736 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  82. Hernández, E., Rodríguez-Marín, L.: Lagrangian duality in set-valued optimization. J. Optim. Theory Appl. 134, 119–134 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  83. Hernández, E., Rodríguez-Marín, L.: Weak and strong subgradients of set-valued maps. J. Optim. Theory Appl. 149, 352–365 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  84. Hernández, E., Rodríguez-Marín, L., Sama, M.: On solutions of set-valued optimization problems. Comput. Math. Appl. 60, 1401–1408 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  85. Heyde, F.: Coherent risk measures and vector optimization. In: Küfer, K.-H. et al. (eds.) Multicriteria Decision Making and Fuzzy Systems. Theory, Methods and Applications. Shaker Verlag, Aachen (2006)

    Google Scholar 

  86. Hiriart-Urruty, J.-B.: Tangent cones, generalized gradients and mathematical programming in Banach spaces. Math. Oper. Res. 4(1), 79–97 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  87. Huang, X.X.: A new variant of Ekeland’s variational principle for set-valued maps. Optimization 52(1), 53–63 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  88. Ide, J., Köbis, E.: Concepts of efficiency for uncertain multi-objective optimization problems based on set order relations. Math. Methods Oper. Res. 80(1), 99–127 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  89. Isac, G.: The Ekeland’s principle and the Pareto \(\epsilon \)-efficiency. In: Tamiz, M. (ed.) Multi-Objective Programming and Goal Programming, Theory and Applications, vol. 432. Springer (1996)

    Google Scholar 

  90. Jahn, J.: Vector Optimization: Theory Applications and Extensions. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  91. Jahn, J.: Vectorization in set optimization. J. Optim. Theory Appl. 167, 783–795 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  92. Jahn, J., Ha, T.X.D.: New order relations in set optimization. J. Optim. Theory Appl. 148, 209–236 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  93. Jahn, J., Rauh, R.: Contingent epiderivatives and set-valued optimization. Math. Methods Oper. Res. 46(2), 193–211 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  94. Karaman, E., Güvenç, İ.A., Soyertem, M.: Optimality conditions in set-valued optimization problems with respect to a partial order relation by using subdifferentials. Optimization (2020). https://doi.org/10.1080/02331934.2020.1728270

  95. Karaman, E., Soyertem, M., Güvenç, İ.A.: Optimality conditions in set-valued optimization problem with respect to a partial order relation via directional derivative. Taiwan. J. Math. 24(3), 709–722 (2020)

    Google Scholar 

  96. Karaman, E., Soyertem, M., Güvenç, İ.A., Tozkan, D., Küçük, M., Küçük, Y.: Partial order relations on family of sets and scalarizations for set optimization. Positivity 22(3), 783–802 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  97. Khan, A.A., Tammer, C., Zălinescu, C.: Set-Valued Optimization - An Introduction with Applications. Springer, Berlin (2015)

    Book  MATH  Google Scholar 

  98. Khoshkhabar-Amiranloo, S., Khorram, E., Soleimani-Damaneh, M.: Nonlinear scalarization functions and polar cone in set optimization. Optim. Lett. 11, 521–535 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  99. Khushboo, Lalitha, C.: Scalarizations for a set optimization problem using generalized oriented distance function. Positivity 23(5), 1195–1213 (2019)

    Google Scholar 

  100. Klamroth, K., Köbis, E., Schöbel, A., Tammer, C.: A unified approach for different concepts of robustness and stochastic programming via nonlinear scalarizing functionals. Optimization 62(5), 649–671 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  101. Köbis, E.: Variable ordering structures in set optimization. J. Nonlinear Convex Anal. 18, 1571–1589 (2017)

    MathSciNet  Google Scholar 

  102. Köbis, E.: Set optimization by means of variable order relations. Optimization 66, 1991–2005 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  103. Köbis, E., Köbis, M.A.: Treatment of set order relations by means of a nonlinear scalarization functional: a full characterization. Optimization 65(10), 1805–1827 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  104. Köbis, E., Le, T.T., Tammer, C.: A generalized scalarization method in set optimization with respect to variable domination structure. Vietnam J. Math. 46, 95–125 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  105. Köbis, E., Le, T.T., Tammer, C., Yao, J.-C.: A new scalarizing functional in set optimization with respect to variable domination structures. Appl. Anal. Optim. 1(2), 301–326 (2017)

    MathSciNet  Google Scholar 

  106. Kostner, D.: Multi-criteria decision making via multivariate quantiles. Math. Methods Oper. Res. 91, 73–88 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  107. Krasnosel’skij, M.A.: Positive Solutions of Operator Equations. P. Noordhoff Ltd., Groningen (1964)

    Google Scholar 

  108. Kuklys, W.: Amartya Sen’s Capability Approach: Theoretical Insights and Empirical Applications. Springer, Berlin (2005)

    Google Scholar 

  109. Kuroiwa, D.: Some criteria in set-valued optimization. Sūrikaisekikenkyūsho K\(\bar{o}\)kyūroku 985, 171–176 (1997)

    Google Scholar 

  110. Kuroiwa, D.: Lagrange duality of set-valued optimization with natural criteria. Sūrikaisekikenkyūsho K\(\bar{o}\)kyūroku 1068 (1998)

    Google Scholar 

  111. Kuroiwa, D.: The natural criteria in set-valued optimization. Sūrikaisekikenkyūsho K\(\bar{o}\)kyūroku 1031, 85–90 (1998)

    Google Scholar 

  112. Kuroiwa, D.: On set-valued optimization. Nonlinear Anal. 47(2), 1395–1400 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  113. Kuroiwa, D.: Existence theorems of set optimization with set-valued maps. J. Inf. Optim. Sci. 24(1), 73–84 (2003)

    MathSciNet  MATH  Google Scholar 

  114. Kuroiwa, D., Nuriya, T.: A generalized embedding vector space in set optimization. In: Proceedings of the Fourth International Conference on Nonlinear Analysis and Convex Analysis, pp. 297–304. Yakohama Publishers, Yakohama (2006)

    Google Scholar 

  115. Kuroiwa, D., Tanaka, T., Ha, T.X.D.: On cone convexity of set-valued maps. Nonlinear Anal. 30, 1487–1496 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  116. Kuwano, I.: Some minimax theorems for set-valued maps and their applications. Nonlinear Anal. 109, 85–102 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  117. Kuwano, I., Tanaka, T.: Continuity of cone-convex functions. Optim. Lett. 6, 1847–1853 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  118. Kuwano, I., Tanaka, T., Yamada, S.: Characterization of nonlinear scalarizing functions for set valued maps. In: Takahashi, W., Tanaka, T. (eds.) Nonlinear Analysis and Convex Analysis, pp. 193–204. Yokohama Publishers, Yokohama (2009)

    Google Scholar 

  119. Le, T.T.: Set optimization with respect to variable domination structure. Ph.D. thesis, Martin-Luther-University Halle-Wittenberg (2018)

    Google Scholar 

  120. Le, T.T.: Multiobjective approaches based on variable ordering structures for intensity problems in radiotherapy treatment. Rev. Investig. Oper. 39(3), 426–448 (2018)

    MathSciNet  Google Scholar 

  121. Lee, I.-K., Kim, M.-S., Elber, E.: Polynomial/rational approximation of Minkowski sum boundary curves. Graph. Model. Image Process. 60(2), 136–165 (1998)

    Article  Google Scholar 

  122. Li, J.: The optimality conditions for vector optimization of set-valued maps. J. Math. Anal. Appl. 237, 413–424 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  123. Lin, L.-J.: Optimization of set-valued functions. J. Math. Anal. Appl. 186, 30–51 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  124. Lozano-Pérez, T.: Spatial planning: a configuration space approach. IEEE Trans. Comput. 32(2), 108–120 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  125. Luc, D.T.: On scalarizing method in vector optimization. In: Fandel, G., Grauer, M., Kurzhanski, A., Wierzbicki, A.P. (eds.) Large-Scale Modelling and Interactive Decision Analysis. Lecture Notes in Economics and Mathematical Systems, vol 273. Springer, Berlin (1986)

    Google Scholar 

  126. Luc, D.T.: Scalarization of vector optimization problems. J. Optim. Theory Appl. 55, 85–102 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  127. Luc, D.T.: Theory of Vector Optimization. Springer, Berlin (1989)

    Book  Google Scholar 

  128. Luc, D.T.: Contingent derivative of set-valued maps and applications to vector optimization. Math. Program. Ser. A 50(1), 99–111 (1991)

    Google Scholar 

  129. Maeda, T.: On optimization problems with set-valued objective maps. Appl. Math. Comput. 217, 1150–1157 (2010)

    MathSciNet  MATH  Google Scholar 

  130. Maeda, T.: On optimization problems with set-valued objective maps: existence and optimality. J. Optim. Theory Appl. 153, 263–279 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  131. Németh, A.B.: A nonconvex vector minimization problem. Nonlinear Anal. 10(7), 669–678 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  132. Neukel, N.: Order relations of sets and its application in socio-economics. Appl. Math. Sci. 7, 5711–5739 (2013)

    MathSciNet  Google Scholar 

  133. Neukel, N.: Order relations for the cryptanalysis of substitution ciphers on the basis of linguistic data structures as an optimal strategy (2019). http://www.m-hikari.com/fbooks.html

  134. Nishnianidze, M.N.: Fixed points of monotone multivalued operators. Bull. Georg. Acad. Sci. 114(3), 489–491 (1984)

    MathSciNet  MATH  Google Scholar 

  135. Nishizawa, S., Onodsuka, M., Tanaka, T.: Alternative theorems for set-valued maps based on a nonlinear scalarization. Pac. J. Optim. 1(1), 147–159 (2005)

    MathSciNet  MATH  Google Scholar 

  136. Pallaschke, D., Urban̆ski, R.: Pairs of Compact Convex Sets. Kluwer Academic Publishers, Dordrecht (2002)

    Book  Google Scholar 

  137. Phelps, R.R.: Convex Functions, Monotone Operators and Differentiability. Springer, Berlin (1989)

    Book  MATH  Google Scholar 

  138. Phelps, R.R.: Convex Functions, Monotone Operators and Differentiability, 2nd edn. Springer, Berlin (1993)

    MATH  Google Scholar 

  139. Preechasilp, P., Wangkeeree, R.: A note on semicontinuity of the solution mapping for parametric set optimization problems. Optim. Lett. 13, 1085–1094 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  140. Rubinov, A.M.: Sublinear operators and their applications. Russ. Math. Surv. 32(4), 115–175 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  141. Sach, P.H.: New nonlinear scalarization functions and applications. Nonlinear Anal. 75(4), 2281–2292 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  142. Sen, A.: Commodities and Capabilities. Oxford University Press, Oxford (1985)

    Google Scholar 

  143. Serra, J. (ed.): Image Analysis and Mathematical Morphology. Academic Press, London (1982)

    Google Scholar 

  144. Soubeyran, A.: Variational rationality, a theory of individual stability and change, worthwhile and ambidextry behaviors. Preprint, GREQAM, Aix-Marseille University (2009)

    Google Scholar 

  145. Soubeyran, A.: Variational rationality and the unsatisfied man: routines and the course pursuit between aspirations, capabilities and beliefs. Preprint, GREQAM, Aix-Marseille University (2010)

    Google Scholar 

  146. Sun Microsystems: Interval Arithmetic Programming Reference. Palo Alto, USA (2000)

    Google Scholar 

  147. Takahashi, W.: Existence theorems generalizing fixed point theorems for multivalued mappings. In: Baillon, J.-B., Théra, M. (eds.) Fixed Point Theory and Applications. Pitman Research Notes in Mathematics, vol. 252, pp. 397–406. Longman, Harlow (1991)

    Google Scholar 

  148. Tammer, C.: A generalization of Ekeland’s variational principle. Optimization 25(2), 129–141 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  149. Tammer, C., Zălinescu, C.: Vector variational principles for set-valued functions. Optimization 60, 839–857 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  150. Young, R.C.: The algebra of many-valued quantities. Math. Ann. 104(1), 260–290 (1931)

    Article  MathSciNet  MATH  Google Scholar 

  151. Xu, Y.D., Li, S.J.: A new nonlinear scalarization function and applications. Optimization 65(1), 207–231 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  152. Zaffaroni, A.: Degrees of efficiency and degrees of minimality. SIAM J. Control Optim. 42(3), 1071–1086 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  153. Zhang, C., Huang, N.: Set optimization problems of generalized semi-continuous set-valued maps with applications. Positivity 25, 353–367 (2021)

    Google Scholar 

Download references

Acknowledgements

In this research, the first author was supported by DST-SERB Project No. MTR/2017/000135 and the second author was supported by UGC-Dr. D.S. Kothari Post Doctoral Fellowship (DSKPDF) [F.4-2/2006 (BSR)/MA/19-20/0040]. All the authors acknowledge the constructive comments of the unknown referees which helped in bringing the chapter in the present form.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qamrul Hasan Ansari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ansari, Q.H., Sharma, P.K. (2021). Set Order Relations, Set Optimization, and Ekeland’s Variational Principle. In: Laha, V., Maréchal, P., Mishra, S.K. (eds) Optimization, Variational Analysis and Applications. IFSOVAA 2020. Springer Proceedings in Mathematics & Statistics, vol 355. Springer, Singapore. https://doi.org/10.1007/978-981-16-1819-2_6

Download citation

Publish with us

Policies and ethics