Skip to main content

Tribology of Wood Polymer Composites

  • Chapter
  • First Online:
Wood Polymer Composites

Abstract

Wood is a solid material, and it is derived from shrubs and trees. The wood is composed of cellulose (40% to 50%), hemicellulose (15% to 25%), and lignin (15% to 30%). It can be classified as (i) softwood or (ii) hardwood, and some of the advantages include biodegradable nature, non-corrosive, high load-bearing capacity, etc. Though the wood has many benefits, it has a significant disadvantage of porous nature, poor resistance against abrasion, and delamination. Furthermore, the wood is susceptible to (i) light, (ii) heat, and (iii) ultraviolet (UV) radiations. Thus, this chapter examines that the issues related to the tribological behavior of wood plastic-based composites. The term ‘tribology’ is dealt with the subject of (i) wear, (ii) friction, and (iii) lubrication characteristics. Furthermore, any tribomaterials are developed by analyzing their friction and wear characteristics by varying (i) applying a load, (ii) sliding velocity, (iii) sliding distance, and (iv) working temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achebe CH, Obika EN, Chukwuneke JL, Ani OE (2019) Optimisation of hybridised cane wood–palm fruit fibre frictional material. Proc Inst Mech Eng Part L J Mater Des Appl 233:2490–2497. https://doi.org/10.1177/1464420719863445

    Article  Google Scholar 

  • Araki K, Hamabe G, Sano Y et al (2016) Study of friction and abrasion properties of wood plastic composites. High Perform Optim Des Struct Mater II 166:403

    Article  Google Scholar 

  • Bahadur S (2000) The development of transfer layers and their role in polymer tribology. Wear 245:92–99. https://doi.org/10.1016/S0043-1648(00)00469-5

    Article  CAS  Google Scholar 

  • Beer P, Gogolewski P, Klimke J, Krell A (2007) Tribological Behaviour of Sub-micron Cutting-ceramics in Contact with Wood-based Materials. Tribol Lett 27:155–158. https://doi.org/10.1007/s11249-007-9212-2

    Article  CAS  Google Scholar 

  • Bledzki AK, Reihmane S, Gassan J (1998) Thermoplastics reinforced with wood fillers: a literature review. Polym-Plast Technol Eng 37:451–468

    Article  CAS  Google Scholar 

  • Borah JS, Kim DS (2016) Recent development in thermoplastic/wood composites and nanocomposites: a review. Korean J Chem Eng 33:3035–3049

    Article  CAS  Google Scholar 

  • Brostow W, Datashvili T, Jiang P, Miller H (2016) Recycled HDPE reinforced with sol–gel silica modified wood sawdust. Eur Polym J 76:28–39

    Article  CAS  Google Scholar 

  • Bunsell AR, Renard (2005) Fundamentals of Fibre Reinforced Composite Materials. CRC Press

    Google Scholar 

  • Dale Ellis W (2000) Wood-polymer composites: review of processes and properties. Mol Cryst Liq Cryst Sci Technol Sect A Mol Cryst Liq Cryst 353:75–84. https://doi.org/10.1080/10587250008025649

    Article  Google Scholar 

  • Dwivedi UK, Chand N (2008) Influence of wood flour loading on tribological behavior of epoxy composites. Polym Compos 29:1189–1192. https://doi.org/10.1002/pc.20548

    Article  CAS  Google Scholar 

  • Friedrich K (2018) Polymer composites for tribological applications. Adv Ind Eng Polym Res 1:3–39. https://doi.org/10.1016/j.aiepr.2018.05.001

  • Friedrich K, Zhang Z, Schlarb AK (2005) Effects of various fillers on the sliding wear of polymer composites. Compos Sci Technol 65:2329–2343. https://doi.org/10.1016/j.compscitech.2005.05.028

    Article  CAS  Google Scholar 

  • Ibrahim MA, Hirayama T, Khalaf D (2019) An investigation into the tribological properties of wood flour reinforced polypropylene composites. Mater Res Express 7. https://doi.org/10.1088/2053-1591/ab600c

  • Jeamtrakull S, Kositchaiyong A, Markpin T et al (2012) Effects of wood constituents and content, and glass fiber reinforcement on wear behavior of wood/PVC composites. Compos Part B Eng 43:2721–2729

    Article  CAS  Google Scholar 

  • Jena H (2019) Study of Tribo-Performance and Application of Polymer Composite BT - Automotive Tribology. In: Bhattacharya S, Patel VK, Kumar V (eds) Katiyar JK. Springer Singapore, Singapore, pp 65–99

    Google Scholar 

  • Jeong B, Park B-D (2019) Effect of molecular weight of urea–formaldehyde resins on their cure kinetics, interphase, penetration into wood, and adhesion in bonding wood. Wood Sci Technol 53:665–685. https://doi.org/10.1007/s00226-019-01092-1

    Article  CAS  Google Scholar 

  • Jintang G (2000) Tribochemical effects in formation of polymer transfer film. Wear 245:100–106. https://doi.org/10.1016/S0043-1648(00)00470-1

    Article  Google Scholar 

  • Joseph J, Munda PR, Kumar M et al (2020) Sustainable conducting polymer composites: study of mechanical and tribological properties of natural fiber reinforced PVA composites with carbon nanofillers. Polym Technol Mater 59:1088–1099

    CAS  Google Scholar 

  • Karthik Babu NB, Ramesh T, Muthukumaran S (2020) Physical, tribological and viscoelastic behavior of machining wear debris powder reinforced epoxy composites. J Clean Prod 272:122786. https://doi.org/10.1016/j.jclepro.2020.122786

  • Karthikeyan S, Rajini N, Jawaid M et al (2017) A review on tribological properties of natural fiber based sustainable hybrid composite. Proc Inst Mech Eng Part J J Eng Tribol 231:1616–1634

    Article  CAS  Google Scholar 

  • Kim JK, Pal K (2010) Overview of wood-plastic composites and uses. In: recent advances in the processing of wood-plastic composites. Springer, pp 1–22

    Google Scholar 

  • Kokta BV, Raj RG, Daneault C (1989) Use of wood flour as filler in polypropylene: studies on mechanical properties. Polym Plast Technol Eng 28:247–259

    Article  CAS  Google Scholar 

  • Koohestani B, Ganetri I, Yilmaz E (2017) Effects of silane modified minerals on mechanical, microstructural, thermal, and rheological properties of wood plastic composites. Compos Part B Eng 111:103–111. https://doi.org/10.1016/j.compositesb.2016.12.021

  • Kranthi G, Satapathy A (2010) Evaluation and prediction of wear response of pine wood dust filled epoxy composites using neural computation. Comput Mater Sci 49:609–614. https://doi.org/10.1016/j.commatsci.2010.06.001

    Article  CAS  Google Scholar 

  • Kumar S, Singh KK (2020) Tribological behaviour of fibre-reinforced thermoset polymer composites: A review. Proc Inst Mech Eng Part L J Mater Des Appl 1464420720941554. https://doi.org/10.1177/1464420720941554

  • Kumar S, Vedrtnam A, Pawar SJ (2019) Effect of wood dust type on mechanical properties, wear behavior, biodegradability, and resistance to natural weathering of wood-plastic composites. Front Struct Civ Eng 13:1446–1462. https://doi.org/10.1007/s11709-019-0568-9

    Article  Google Scholar 

  • Kumar TSM, Senthilkumar K, Chandrasekar M, et al (2020) Influence of fillers on the thermal and mechanical properties of biocomposites: an overview. In: Biofibers and biopolymers for biocomposites. Springer, pp 111–133

    Google Scholar 

  • Milosevic M, Valášek P, Ruggiero A (2020) Tribology of natural fibers composite materials: an overview. Lubricants 8:42

    Article  Google Scholar 

  • Mogaji PB, Ayodeji SP, Olatise AD, Oladele IO (2017) Investigation of the properties and production of sawdust ceiling tile using polystyrene as a binder. African J Sci Technol Innov Dev 9:655–659. https://doi.org/10.1080/20421338.2017.1352158

    Article  Google Scholar 

  • Mysiukiewicz O, Sterzyński T (2017) Influence of water on tribological properties of wood-polymer composites. Arch Mech Technol Mater 37:79–84. https://doi.org/10.1515/amtm-2017-0013

    Article  Google Scholar 

  • Nabinejad O, Liew WYH, Debnath S et al (2019) Tribological behavior of unsaturated polyester hybrid composites containing wood flour and carbon nanotubes. SN Appl Sci 1:1–9. https://doi.org/10.1007/s42452-019-0792-x

    Article  CAS  Google Scholar 

  • Omrani E, Menezes PL, Rohatgi PK (2016) State of the art on tribological behavior of polymer matrix composites reinforced with natural fibers in the green materials world. Eng Sci Technol an Int J 19:717–736

    Article  Google Scholar 

  • Parikh HH, Gohil PP (2015) Tribology of fiber reinforced polymer matrix composites - a review. J Reinf Plast Compos 34:1340–1346. https://doi.org/10.1177/0731684415591199

    Article  CAS  Google Scholar 

  • Ranakoti L, Gupta MK, Rakesh PK (2019) Analysis of mechanical and tribological behavior of wood flour filled glass fiber reinforced epoxy composite. Mater Res Express 6: https://doi.org/10.1088/2053-1591/ab2375

  • Samyn P, Zsidai L (2017) Temperature effects on friction and wear of thermoset polyester fabric composites. Polym Plast Technol Eng 56:1003–1016. https://doi.org/10.1080/03602559.2016.1247281

    Article  CAS  Google Scholar 

  • Shakuntala O, Raghavendra G, Samir Kumar A (2014) Effect of filler loading on mechanical and tribological properties of wood apple shell reinforced epoxy composite. Adv Mater Sci Eng 2014. https://doi.org/10.1155/2014/538651

  • Singh AK, Siddhartha GP, Singh PK (2018) Evaluation of mechanical and erosive wear characteristics of TiO2 and ZnO filled bi-directional e-glass fiber based vinyl ester composites. SILICON 10:309–327. https://doi.org/10.1007/s12633-016-9447-3

    Article  CAS  Google Scholar 

  • Tasdemir M (2017) Polypropylene/olive pit & almond shell polymer composites: Wear and friction. IOP Conf Ser Mater Sci Eng 204. https://doi.org/10.1088/1757-899X/204/1/012015

  • Thiagamani SMK, Krishnasamy S, Siengchin S (2019) Challenges of biodegradable polymers: an environmental perspective. Appl Sci Eng Prog x:1. https://doi.org/10.14416/j.asep.2019.03.002

  • Tuntsev D V, Sattarova ZG, Galiev IM (2017) Multi-layer wood-polymer composite. In: Materials engineering and technologies for production and processing III. Trans Tech Publications Ltd, pp 47–52

    Google Scholar 

  • Waßmann O, Ahmed SIU (2020) Slippery wood: low friction and low wear of modified beech wood. Tribol Lett 68

    Google Scholar 

  • Xiang XH, Xiang DH, Fang W, Ma JL (2012) Friction and wear behavior of POM composites filled with LDPE and wood fibers. In: Advanced materials research. Trans Tech Publ, pp 293–296

    Google Scholar 

  • Yin W, Liu Z, Tian P et al (2016) Tribological properties of wood as a cellular fiber-reinforced composite. Biotribology 5:67–73

    Article  Google Scholar 

Download references

Acknowledgements

We hereby acknowledge and sincerely appreciate unalloyed supports from the management of the Kalasalingam Academy of Research and Education, Krishnankoil 626126, Tamilnadu, India. This research was also, supported by King Mongkut’s University of Technology North Bangkok (KMUTNB), Thailand through Grant No. KMUTNB-64-KNOW-007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Senthilkumar Krishnasamy .

Editor information

Editors and Affiliations

Ethics declarations

None declared.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Subramanian, K., Krishnasamy, S., Muthukumar, C., Siengchin, S., Gnaniar, K., Kanagaraj, A. (2021). Tribology of Wood Polymer Composites. In: Mavinkere Rangappa, S., Parameswaranpillai, J., Kumar, M.H., Siengchin, S. (eds) Wood Polymer Composites. Composites Science and Technology . Springer, Singapore. https://doi.org/10.1007/978-981-16-1606-8_9

Download citation

Publish with us

Policies and ethics