Skip to main content

Improvement of PID Controllers by Recurrent Fuzzy Neural Networks for Delta Robot

  • Conference paper
  • First Online:
Intelligent Communication, Control and Devices

Abstract

The objective of this study is to control rotational angles of a 3-degree freedom robot for tracking to the reference trajectories. That is a parallel robot, named Delta, with complex movements in shaping, processing with high efficiency, high load capacity, widely used in industry. The PID controller has been successfully developed for the Delta robot. However, when changing the robot’s parameters such as load, input coupling and friction, the PID controller is difficult to archive control criteria. This article proposes and tests a solution to improve the PID controller by combining it with a recurrent fuzzy neural network (RFNN) controller, so-called RFNN-PID controller. In the proposed solution, the PID controller plays the main role of controlling the Delta robot and the RFNN controller takes charge of a supplemental role to gain with the changes of control conditions. The RFNN-PID and PID controllers will be tested in the same conditions in MATLAB/Simulink. Simulations illustrate that the proposed controller is better than the traditional one, obtaining a response time of about 3.9 ± 0.1 (s) without steady-state error.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Merlet, J.: Parallel Robots. P.O. Box 17, 3300 AA Dordrecht. Kluwer Academic Publishers, The Netherlands (2000)

    Google Scholar 

  2. Fabian, J., Monterrey, C., Canahuire, R.: Trajectory tracking control of a 3 DOF delta robot: a PD and LQR comparison. In: 2016 IEEE XXIII International Congress on Electronics, Electrical Engineering and Computing (INTERCON), Piura, pp. 1–5 (2016)

    Google Scholar 

  3. Han, J.: From PID to active disturbance rejection control. IEEE Trans. Industr. Electron. 56(3), 900–906 (2009)

    Article  Google Scholar 

  4. Hernández, J.M.E., Aguilar-Sierra, H., Aguilar-Mejía, O., Chemori, A., Arroyo-Núñez, J.: An intelligent compensation through B-spline neural network for a delta parallel robot. In: 6th International Conference on Control, Decision and Information Technologies (CoDIT), Paris, France, pp. 361–366 (2019)

    Google Scholar 

  5. Chemori, A., Natal, G.S., Pierrot, F.: Control of parallel robots: towards very high accelerations. In: SSD: Systems, Signals and Devices, Mar 2013, Hammamet, Tunisia, p. 8, ffirmm-00809514 (2013)

    Google Scholar 

  6. Anoop, R., Achu, K.: Control technique for parallel manipulator using PID. Inter. J. Eng. Res. Technol. 5(7), 56–59 (2016)

    Google Scholar 

  7. Zhang, Y.-X., Cong, S., Shang, W.-W., Li, Z.-X., Jiang, S.-L.: Modeling, identification and control of a redundant planar 2-DOF parallel manipulator. Inter. J. Control, Autom. Syst. 5(5), 559–569 (2007)

    Google Scholar 

  8. Saied, H., Chemori, A., El Rafei, M., Francis, C., Pierrot, F.: From non-model-based to model-based control of PKMS: a comparative study. In: Proceedings of 1st International Congress for the Advancement of Mechanism, Machine, Robotics and Mechatronics Sciences, pp. 50–64, Beirut, Lebanon (2017)

    Google Scholar 

  9. Su, Y.X., Duan, B.Y., Zheng, C.H.: Nonlinear PID control of a six-DOF parallel manipulator. IEEE Proc. Control Theory Appl. 151(1), 95–102 (2004)

    Article  Google Scholar 

  10. Widhiada, W., Nindhia, T.G.T., Budiarsa, N.: Robust control for the motion five fingered robot gripper. Inter. J. Mecha. Eng. Robot. Res. 4(3), 226–232 (2015)

    Google Scholar 

  11. Liu, J.: Radial Basis Function (RBF) Neural Network Control for Mechanical Systems: Design, Analysis and Matlab Simulation, pp. 55–69. Springer-Verlag, Berlin, Heidelberg (2013)

    Google Scholar 

  12. Thanh, L.M., Thuong, L.H., Loc, P.T., Nguyen, C.-N.: Delta robot control using single neuron PID algorithms based on recurrent fuzzy neural network identifiers. Inter. J. Mech. Eng. Robot. Res. 9(10) (2020)

    Google Scholar 

  13. Slama, S., Errachdi, A., Benrejeb, M.: Adaptive PID controller based on neural networks for MIMO nonlinear systems. J. Theor. Appl. Inf. Tech. 97(2), 361–371 (2019)

    Google Scholar 

  14. Sun, W., Wang, Y.: A recurrent fuzzy neural network based adaptive control and its application on robotic tracking control. Neural Inf. Process. Lett. Rev. 5(1) (2004)

    Google Scholar 

  15. Hasanpour, H., Beni, M.H., Askari, M.: Adaptive PID control based on RBF NN for quadrotor. Int. Res. J. Appl. Basic Sci. 11(2), 177–186 (2017)

    Google Scholar 

  16. Abdelaziz, O.T., Maged, S.A., Awad, M.I.: Towards dynamic task/posture control of a 4 DOF humanoid robotic arm. Int. J. Mech. Eng. Robot. Res. 9(1), 99–105 (2020)

    Google Scholar 

  17. Elayaraja, D., Ramakrishnan, R., Udhayakumar, M., Ramabalan, S.: Intelligent control of mobile robot using C++. Int. J. Mech. Eng. Robot. Res. 3(2), 429–434 (2014)

    Google Scholar 

  18. Dung, N.D.: Reverse dynamics of parallel delta space robots. Ph.D. Dissertation on Mechanical Engineering: 9.52.01.01, Vietnam National Library, code:629.892/Đ455L (2018)

    Google Scholar 

  19. Slama, S., Errachdi, A., Benrejeb, M.: Neural adaptive PID and neural indirect adaptive control switch controller for nonlinear MIMO systems. Math. Probl. Eng. 2019 (2019)

    Google Scholar 

  20. Lee, C.H., Teng, C.C.: Identification and control of dynamic systems using recurrent fuzzy neural networks. IEEE Trans. Fuzzy Syst. 8(4), 349–366 (2000)

    Article  Google Scholar 

  21. Wei, S., Lujin, Z., Jinhai, Z., Siyi, M.: Adaptive control based on neural network. In: You, K. (ed.) Adaptive Control. InTech (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi-Ngon Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Le Thanh, M., Thuong, L.H., Tung, P.T., Nguyen, CN. (2021). Improvement of PID Controllers by Recurrent Fuzzy Neural Networks for Delta Robot. In: Choudhury, S., Gowri, R., Sena Paul, B., Do, DT. (eds) Intelligent Communication, Control and Devices. Advances in Intelligent Systems and Computing, vol 1341. Springer, Singapore. https://doi.org/10.1007/978-981-16-1510-8_27

Download citation

Publish with us

Policies and ethics