Skip to main content

Carotenoids and Flavonoids in Plant Stress Management

  • Chapter
  • First Online:
Antioxidants in Plant-Microbe Interaction

Abstract

Globally escalating food demand and unpredictable global warming have threatened the humanity in jeopardy. Excessive use of commercial pesticides and chemical fertilizers is providing ease of handling, but their toxic nondegradable residues are known to exert negative impacts on the plants, microbes, and even soil health. The unpredictable climate change leads to enhanced incidence of abiotic and biotic stresses in plants. Several integral approaches of fungi, microbes, plant, and their derived metabolites are used to encounter the stresses for effective crop management. The secondary metabolites are proving their immense potential and have time and again being proven to cope up the unavoidable and unpredictable changes due to adverse environmental conditions. The chapter highlights the role of both microbial and plant-based flavonoids and carotenoids as key agents for managing biotic and abiotic stress tolerance in crop plants. Moreover, such feasible and efficient biological application using plant-based composition helps to mitigate the challenges and open new gates of sustainable agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdallah SB, Aung B, Amyot L, Lalin I, Lachaal M, Karray-Bouraoui N, Hannoufa A (2016) Salt stress (NaCl) affects plant growth and branch pathways of carotenoid and flavonoid biosyntheses in Solanum nigrum. Acta Physiol Plant 38:72–84

    Article  CAS  Google Scholar 

  • Abdel-Latef AAH, Abu-Alhmad MF (2013) Strategies of copper tolerance in root and shoot of broad bean (Vicia faba L.). Pak J Agri Sci 50:223–328

    Google Scholar 

  • Agati G, Tattini M (2010) Multiple functional roles of flavonoids in photoprotection. New Phytol 186(4):786–793

    Article  CAS  PubMed  Google Scholar 

  • Agati G, Stefano G, Biricolti S, Tattini M (2009) Mesophyll distributionof antioxidant flavonoids in Ligustrum vulgare leaves under contrastingsunlight irradiance. Ann Bot 104:853–861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agati G, Biricolti S, Guidi L, Ferrini F, Fini A, Tattini M (2011) The biosynthesis of flavonoids is enhanced similarly by UV radiation and root zone salinity in L. vulgare leaves. J Plant Physiol 168:204–212

    Article  CAS  PubMed  Google Scholar 

  • Ahmad P, Latef AAA, Abdallah EF, Hashem A, Sarwat M, Anjum NA, Gucel S (2016) Calcium and potassium supplementation enhanced growth, osmolyte secondary metabolite production, and enzymatic antioxidant machinery in cadmium-exposed chickpea (Cicer arietinum L.). Front Plant Sci 7:513

    Article  PubMed  PubMed Central  Google Scholar 

  • Akcin A, Yalcin E (2016) Effect of salinity stress on chlorophyll, carotenoid content, and proline in Salicornia prostrata Pall. and Suaeda prostrata Pall. subsp. prostrata (Amaranthaceae). Braz J Bot 39:101–106

    Article  Google Scholar 

  • Alori ET, Babalola (2018) Microbial inoculants for improving crop quality and human health in Africa. Front Microbiol 9:1–12

    Article  Google Scholar 

  • Antoun H, Prévost D (2005) Ecology of plant growth-promoting rhizobacteria PGPR. In: Siddiqui ZA (ed) Biocontrol and biofertilization. Springer, Berlin, pp 1–38. https://doi.org/10.1007/1-4020-4152-7_1

    Chapter  Google Scholar 

  • Barry KM, Davies NW, Mohammed CL (2002) Effect of season and different fungi on phenolics in response to xylem wounding and inoculation in Eucalyptus nitens. For Pathol 32:163–178

    Article  Google Scholar 

  • Baslam M, Garmendia I, Goicoechea N (2011) Arbuscular mycorrhizal fungi (AMF) improved growth and nutritional quality of greenhouse-grown lettuce. J Agric Food Chem 59:5504–5515

    Article  CAS  PubMed  Google Scholar 

  • Ben Abdallah S, Aung B, Amyot L, Lalin I, Lachâal M, Karray-Bouraoui N, Hannoufa A (2016) Salt stress (NaCl) affects plant growth and branch pathways of carotenoid and flavonoid biosyntheses in Solanum nigrum. Acta Physiol Plant 38:72

    Article  CAS  Google Scholar 

  • Bennett RN, Wallsgrove RM (1994) Secondary metabolites in plant defense mechanisms. Tansley review no. 72. New Phytol 127:618

    Article  Google Scholar 

  • Berli FJ, Moreno D, Piccoli P, Hespanhol-Viana L, Silva MF, Bressan-Smith R, Cavagnaro JB, Bottini R (2010) Abscisic acid is involved in the response of grape (Vitis vinifera L.) cv. Malbec leaf tissues to ultraviolet-B radiation by enhancing ultraviolet-absorbing compounds, antioxidant enzymes and membrane sterols. Plant Cell Environ 33:1–10

    CAS  PubMed  Google Scholar 

  • Bhattacharyya PN, Goswami MP, Bhattacharyya LH (2016) Perspective of beneficial microbes in agriculture under changing climatic scenario: a review. J Phytology 8:26–41. https://doi.org/10.19071/jp.2016.v8.3022

    Article  CAS  Google Scholar 

  • Bhutia LP, Chakraborty BN, Chakraborty U (2012) Management of charcoal stump rot disease using AMF and PGPR in Temi Tea Estate. Sikkim J Mycol Plant Pathol 42(1):1–12

    CAS  Google Scholar 

  • Bilger W, Rolland M, Nybakken L (2007) UV screening in higher plants induced by low temperature in the absence of UV-B radiation. Photochem Photobiol Sci 6:190–195

    Article  CAS  PubMed  Google Scholar 

  • Boué SM, Carter CH, Ehrlich KC, Cleveland TE (2000) Induction of the soybean phytoalexins coumestrol and glyceollin by Aspergillus. J Agric Food Chem 48:2167–2172

    Article  PubMed  CAS  Google Scholar 

  • Brown JE, Khodr H, Hider RC, Rice-Evans CA (1998) Structural dependence of flavonoid interactions with Cu2+ ions: implication for their antioxidant properties. Biochem J 330:1173–1178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buchner O, Roach T, Gertzen J, Schenk S, Karadar M, Stöggl W, Kranner I (2017) Drought affects the heat-hardening capacity of alpine plants as indicated by changes in xanthophyll cycle pigments, singlet oxygen scavenging, α-tocopherol and plant hormones. Environ Exp Bot 133:159–175

    Article  CAS  Google Scholar 

  • Cepeda MV (2012) Effects of microbial inoculants on biocontrol and plant growth promotion. Plant Pathology. Master of Science, Ohio State University, Columbus, OH, p 102

    Google Scholar 

  • Cesari A, Paulucci N, López-Gómez M, Hidalgo-Castellanos J, Plá CL, Dardanelli MS (2019) Restrictive water condition modifies the root exudates composition during peanut-PGPR interaction and conditions early events, reversing the negative effects on plant growth. Plant Physiol Biochem 142:519–527

    Article  CAS  PubMed  Google Scholar 

  • Chi WC, Chen YA, Hsiung YC et al (2013) Autotoxicity mechanism of Oryza sativa: transcriptome response in rice roots exposed to ferulic acid. BMC Genomics 14:351. https://doi.org/10.1186/1471-2164-14-351

    Article  PubMed  PubMed Central  Google Scholar 

  • Clayton WA, Albert NW, Thrimawithana AH, McGhie TK, Deroles SC, Schwinn KE, Davies KM (2018) UVR8-mediated induction of flavonoid biosynthesis for UVB tolerance is conserved between the liverwort Marchantia polymorpha and flowering plants. Plant J 96(3):503–517

    Article  CAS  PubMed  Google Scholar 

  • Couso I, Vila M, Vigara J, Cordero B, Vargas M, Rodríguez H, León R (2012) Synthesis of carotenoids and regulation of the carotenoid biosynthesis pathway in response to high light stress in the unicellular microalga Chlamydomonas reinhardtii. Eur J Phycol 47:223–232

    Article  CAS  Google Scholar 

  • Dashti NH, Smith DL, Cherian VM (2014) PGPR to alleviate the stress of suboptimal root zone temperature on leguminous plant growth. In: Use of microbes for the alleviation of soil stresses, vol 1. Springer, New York, NY, pp 111–137

    Chapter  Google Scholar 

  • de Klerk GJ, Guan H, Huisman P, Marinova S (2011) Effects of phenolic compounds on adventitious root formation and oxidative decarboxylation of applied indoleacetic acid in Malus ‘Jork 9’. Plant Growth Regul 63:175–185

    Article  CAS  Google Scholar 

  • Del Valle I, Webster TM, Cheng HY, Thies JE, Kessler A, Miller MK, Ball ZT, MacKenzie KR, Masiello CA, Silberg JJ et al (2020) Soil organic matter attenuates the efficacy of flavonoid-based plant-microbe communication. Sci Adv 6:eaax8254

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deng F, Aoki M, Yogo Y (2004) Effect of naringenin on the growth and lignin biosynthesis of gramineous plants. Weed Biol Manag 4:49–55

    Article  CAS  Google Scholar 

  • di Ferdinando M, Brunetti C, Fini A, Tattini M (2012) Flavonoids as antioxidants in plants under abiotic stresses. In: Ahmad P, Prasad MNV (eds) Abiotic stress responses in plants: metabolism, productivity and sustainability. Springer, pp 159–179

    Google Scholar 

  • Domenech J, Reddy MS, Kloepper JW, Ramos B, Gutierrez-Mañero J (2006) Combined application of the biological product LS213 with Bacillus, Pseudomonas or Chryseobacterium for growth promotion and biological control of soil-borne diseases in pepper and tomato. BioControl 51:245–258

    Article  CAS  Google Scholar 

  • Doupis G, Bertaki M, Psarras G, Kasapakis I, Chartzoulakis K (2013) Water relations, physiological behavior and antioxidant defence mechanism of olive plants subjected to different irrigation regimes. Scient Horticul 153:150–156

    Article  CAS  Google Scholar 

  • El-Rayes DA (2009) Effect of carbon dioxide-enriched atmosphere during cold storage on limiting antioxidant losses and maintaining quality of ‘Barhy’ date fruits. J Meteorol Environ Arid Land Agric Sci 20(1):3–22

    Article  Google Scholar 

  • Enebe MC, Babalola OO (2018) The influence of plant growth-promoting rhizobacteria in plant tolerance to abiotic stress: a survival strategy. Appl Microbiol Biotechnol 102(18):7821–7835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Etcheverry MG, Scandolara A, Nesci A, Vilas B, Ribeiro MS, Pereira P et al (2009) Biological interactions to select biocontrol agents against toxigenic strains of Aspergillus flavus and Fusarium verticillioides from maize. Mycopathologia 167:287–295. https://doi.org/10.1007/s11046-008-9177-1.

    Article  CAS  PubMed  Google Scholar 

  • Farrar K, Bryant D, Cope-Selby N (2014) Understanding and engineering beneficial plant–microbe interactions: plant growth promotion in energy crops. Plant Biotechnol J 12:1193–1206

    Article  PubMed  PubMed Central  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica. https://doi.org/10.6064/2012/963401

  • Glick BR (2015) Resource acquisition- beneficial plant-bacterial interactions. Springer, New York, NY, pp 29–63. https://doi.org/10.1007/978-3-319-13921-0

    Book  Google Scholar 

  • Gonçalves AC, Bento C, Jesus F, Alves G, Silva LR (2018) Sweet cherry phenolic compounds: identification, characterization, and health benefits. In: Studies in natural products chemistry, vol 59. Elsevier, pp 31–78

    Google Scholar 

  • Grayson M (2013) Agriculture and drought. Nature 501:S1. https://doi.org/10.1038/501S1a

    Article  CAS  PubMed  Google Scholar 

  • Grobelak A, Napora A, Kacprzak M (2015) Using plant growth-promoting rhizobacteria (PGPR) to improve plant growth. Ecol Engr 84:22–28. https://doi.org/10.1016/j.ecoleng.2015.07.019

    Article  Google Scholar 

  • Hamayun M, Hussain A, Khan SA, Kim HY, Khan AL, Waqas M, Lee IJ (2017) Gibberellins producing endophytic fungus Porostereum spadiceum AGH786 rescues growth of salt affected soybean. Front Micro 8:686

    Article  Google Scholar 

  • Hannah MA, Weise D, Freund S, Fiehn O, Heyer AG, Hincha DK (2006) Natural genetic variation of freezing tolerance in Arabidopsis. Plant Physiol 142:98–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernandez I, Alegre L, Munne-Bosch S (2004) Drought-induced changes in flavonoids and other low- molecular weight antioxidants in Cistus clusii grown under Mediterranean field conditions. Tree Physiol 24:1303–1311

    Article  CAS  PubMed  Google Scholar 

  • Ingle K, Padole D (2019) Secondary metabolites for plant growth promotion and plant protection. Adv Life Sci 5(23):10888–10891

    Google Scholar 

  • Jenkins GI (2013) Photomorphogenic responses of plants to UV-B radiation. Am Soc Photobiol. http://photobiology.info/Jenkins.html.

  • Jin C, Ji J, Zhao Q, Ma R, Guan C, Wang G (2015) Characterization of lycopene b-cyclase gene from Lycium chinense conferring salt tolerance by increasing carotenoids synthesis and oxidative stress resistance in tobacco. Mol Breed 35:228

    Article  CAS  Google Scholar 

  • Johnson ET, Dowd PF (2004) Differentially enhanced insect resistance, at a cost, in Arabidopsis thaliana constitutively expressing a transcription factor of defensive metabolites. J Agric Food Chem 52:5135–5138

    Article  CAS  PubMed  Google Scholar 

  • Juneja A, Ceballos R, Murthy G (2013) Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: a review. Energies 6:4607–4638

    Article  CAS  Google Scholar 

  • Kaab SB, Rebey IB, Hanafi M, Hammi KM, Smaoui A, Fauconnier ML, De Clerck C, Jijakli MH, Ksouri R (2020) Screening of Tunisian plant extracts for herbicidal activity and formulation of a bioherbicide based on Cynara cardunculus. S Afr J Bot 128:67–76

    Article  CAS  Google Scholar 

  • Kang L, Ji CY, Kim SH, Ke Q, Park SC, Kim HS, Lee HU, Lee JS, Park WS, Ahn MJ, Lee HS, Deng X, Kwak SS (2017) Suppression of the b-carotene hydroxylase gene increases b-carotene content and tolerance to abiotic stress in transgenic sweet potato plants. Plant Physiol Biochem 117:24–33

    Article  CAS  PubMed  Google Scholar 

  • Kang C, Zhai H, Xue L, Zhao N, He S, Liu Q (2018) A lycopene β-cyclase gene, IbLCYB2, enhances carotenoid contents and abiotic stress tolerance in transgenic sweet potato. Plant Sci 272:243–254

    Article  CAS  PubMed  Google Scholar 

  • Kaushal M, Wani SP (2016) Plant growth-promoting rhizobacteria: drought stress alleviators to ameliorate crop production in drylands. Ann Microbiol 66:35–42

    Article  CAS  Google Scholar 

  • Ke Q, Kang L, Kim HS, Xie T, Liu C, Ji CY, Kwak SS (2019) Down-regulation of lycopene ε-cyclase expression in transgenic sweet potato plants increases the carotenoid content and tolerance to abiotic stress. Plant Sci 281:52–60

    Article  CAS  PubMed  Google Scholar 

  • Khan N, Bano A, Ali S, Babar MA (2020) Crosstalk amongst phytohormones from planta and PGPR under biotic and abiotic stresses. Plant Growth Regul 90:189–203

    Article  CAS  Google Scholar 

  • Kim HJ, Park WS, Bae JY, Kang SY, Yang MH, Lee S, Ahn MJ (2015) Variations in the carotenoid and anthocyanin contents of Korean cultural varieties and home-processed sweet potatoes. J Food Compos Anal 41:188–193

    Article  CAS  Google Scholar 

  • Korn M, Peterek S, Petermock H, Heyer AG, Hincha DK (2008) Heterosis in the freezing tolerance, and sugar and flavonoid contents of crosses between Arabidopsis thaliana accessions of widely varying freezing tolerance. Plant Cell Environ 31:313–327

    Article  CAS  Google Scholar 

  • Kousar B, Bano A, Khan N (2020) PGPR modulation of secondary metabolites in tomato infested with Spodoptera litura. Agron 10(6):778

    Article  Google Scholar 

  • Kudoyarova G, Arkhipova TN, Korshunova T, Bakaeva M, Loginov O, Dodd IC (2019) Phytohormone mediation of interactions between plants and non-symbiotic growth-promoting bacteria under edaphic stresses. Front Plant Sci 10:1368

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Patel JS, Meena VS, Ramteke PW (2019) Plant growth-promoting rhizobacteria: strategies to improve abiotic stresses under sustainable agriculture. J Plant Nutr 42:1402–1415

    Article  CAS  Google Scholar 

  • Kumawat KC, Sharma P, Sirari A, Singh I, Gill BS, Singh U, Saharan K (2019) Synergism of Pseudomonas aeruginosa (LSE-2) nodule endophyte with Bradyrhizobium sp. (LSBR-3) for improving plant growth, nutrient acquisition and soil health in soybean. W J Microbiol Biotechnol 35:1–17

    Article  CAS  Google Scholar 

  • Lama AD, Kim J, Martiskainen O, Klemola T, Salminen JP, Tyystjarvi E, Niemeka P, Vuorisalo T (2016) Impacts of simulated drought stress and artificial damage on concentrations of flavonoids in Jatropha curcas (L.), a biofuel shrub. J Plant Res 129:1141–1150

    Article  CAS  PubMed  Google Scholar 

  • Lattanzio V, Lattanzio VM, Cardinali A (2006) Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. Phytochem Adv Res 661:23–67

    Google Scholar 

  • León-Chan R, López-Meyer M, Osuna-Enciso T, Sañudo-Barajas J, Heredia J, León-Félix J (2017) Low temperature and ultraviolet-B radiation affect chlorophyll content and induce the accumulation of UV-B-absorbing and antioxidant compounds in bell pepper (Capsicum annuum) plants. Environ Exp Bot 139:143–151

    Article  CAS  Google Scholar 

  • Li R, Kang C, Song X, Yu L, Liu D, He S, Liu Q (2017) A ζ-carotene desaturase gene, IbZDS, increases β-carotene and lutein contents and enhances salt tolerance in transgenic sweet potato. Plant Sci 262:39–51

    Article  CAS  PubMed  Google Scholar 

  • Liu RQ, Xu XJ, Wang S, Shan CJ (2015) Lanthanum improves salt tolerance of maize seedlings. Photosynthetica 54:148–151

    Article  CAS  Google Scholar 

  • Liu X, Zhou Y, Xiao J, Bao F (2018) Effects of chilling on the structure, function and development of chloroplasts. Front Plant Sci 9:1715

    Article  PubMed  PubMed Central  Google Scholar 

  • Llorente B, Martinez-Garcia J, Stange C, Rodriguez-Concepcion M (2017) Illuminating colors: regulation of carotenoid biosynthesis and accumulation by light. Curr Opin Plant Biol 37:49–55

    Article  CAS  PubMed  Google Scholar 

  • Luan Y, Cui J, Zhai J, Li J, Han L, Meng J (2015) High-throughput sequencing reveals differential expression of miRNAs in tomato inoculated with Phytophthora infestans. Planta 241:1405–1416

    Article  CAS  PubMed  Google Scholar 

  • Mahmoudi TR, Yu JM, Liu S, Pierson IIILS, Pierson EA (2019) Drought-stress tolerance in wheat seedlings conferred by phenazine-producing rhizobacteria. Front Microbiol 10:1590

    Article  PubMed  PubMed Central  Google Scholar 

  • Maurya KV, Srinvasan R, Ramesh N, Anbalagan M, Gothandam KM (2015) Expression of carotenoid pathway genes in three capsicum varieties under salt stress. Asian J Crop Sci 7:286–294

    Article  Google Scholar 

  • Meena KK, Sorty AM, Bitla UM, Choudhary K, Gupta P, Pareek A, Singh DP, Prabha R, Sahu PK, Gupta VK, Singh HB, Krishanani KK, Minhas PS (2017) Abiotic stress responses and microbe-mediated mitigation in plants: the omics strategies. Front Plant Sci 8:172

    Article  PubMed  PubMed Central  Google Scholar 

  • Mekawy AMM, Abdelaziz MN, Ueda A (2018) Apigenin pretreatment enhances growth and salinity tolerance of rice seedlings. Plant Physiol Biochem 130:94–104. https://doi.org/10.1016/j.plaphy.2018.06.036

    Article  CAS  PubMed  Google Scholar 

  • Melo HF, de Souza ER, Duarte HHF, Cunha JC, Santos HRB (2017) Gas exchange and photosynthetic pigments in bell pepper irrigated with saline water. Revist Brasil Engen Agrícola Ambient 21:38–43

    Article  Google Scholar 

  • Mizuno H, Yazawa T, Kasuga S, Sawada Y, Ogata J, Ando T, Kanamori H, Yonemaru JI, Wu J, Hirai MY, Matsumoto T (2014) Expression level of a flavonoid 3′-hydroxylase gene determines pathogen-induced color variation in sorghum. BMC Res Notes 7(1):1–12

    Article  CAS  Google Scholar 

  • Moussa ID, Chtourou H, Karray F, Sayadi S, Dhouib A (2017) Nitrogen or phosphorus repletion strategies for enhancing lipid or carotenoid production from Tetraselmis marina. Biorese Technol 238:325–332

    Article  CAS  Google Scholar 

  • Nabavi SM, Samec D, Tomczyk M, Milella L, Russo D, Habtemariam S, Suntar I, Rastrelli L, Daglia M, Xiao J et al (2020) Flavonoid biosynthetic pathways in plants: versatile targets for metabolic engineering. Biotechnol Adv 38:107316

    Article  CAS  PubMed  Google Scholar 

  • Nagpal S, Sharma P, Sirari A, Gupta RK (2020) Coordination of Mesorhizobium sp. and endophytic bacteria as elicitor of biocontrol against Fusarium wilt in chickpea. Eur J Plant Pathol. https://doi.org/10.1007/s10658-020-02062-1

  • Nesci A, Bluma R, Etcheverry M (2005) In vitro selection of maize rhizobacteria to study potential biological control of Aspergillus section flavi and aflatoxin production. Eur J Plant Pathol 113:1–13. https://doi.org/10.1007/s10658-005-5548-3.

    Article  Google Scholar 

  • Olanrewaju OO, Glick BR, Babalola OO (2017) Mechanisms of action of plant growth-promoting bacteria. World J Microbiol Biotechnol 33:197. https://doi.org/10.1007/s11274-017-2364-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paliwal C, Mitra M, Bhayani K, Bharadwaj S, Ghosh T, Dubey S, Mishra S (2017) Abiotic stresses as tools for metabolites in microalgae. Bioresour Technol 244:1216–1226

    Article  CAS  PubMed  Google Scholar 

  • Passari AK, Mishra VK, Singh G, Singh P, Kumar B, Gupta VK, Singh BP (2017) Insights into the functionality of endophytic actinobacteria with a focus on their biosynthetic potential and secondary metabolites production. Sci Rep 7(1):1–17

    Article  CAS  Google Scholar 

  • Pathan SI, Ceccherini MT, Sunseri F, Lupini A (2020) Rhizosphere as hotspot for plant-soil-microbe interaction. In: Carbon and nitrogen cycling in soil. Springer, Berlin/Heidelberg, pp 17–43

    Chapter  Google Scholar 

  • Peer WA, Murphy AS (2006) Flavonoids as signal molecules. In: Grotewold E (ed) The science of flavonoids. Springer, New York, NY, pp 239–267

    Chapter  Google Scholar 

  • Pei Y, Siemann E, Tian B, Ding J (2020) Root flavonoids are related to enhanced AMF colonization of an invasive tree. AoB Plants 12(1):plaa002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pereira P, Nesci A, Etcheverry M (2007) Effects of biocontrol agents on Fusarium verticillioides count and fumonisin content in the maize agroecosystem: impact on rhizospheric bacterial and fungal groups. Biol Control 42:281–287. https://doi.org/10.1016/j.biocontrol.2007.05.015

    Article  Google Scholar 

  • Purohit S, Laloraya MM, Bharti S (1991) Effect of phenolic compounds on abscisic acid-induced stomatal movement: structure—activity relationship. Physiol Plant 81:79–82. https://doi.org/10.1111/j.1399-3054.1991.tb01716.x

    Article  CAS  Google Scholar 

  • Raaijmakers JM, Mazzola M (2012) Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria. Annu Rev Phytopathol 50:403–424. https://doi.org/10.1146/annurev-phyto-081211-172908

    Article  CAS  PubMed  Google Scholar 

  • Ramel F, Birtic S, Cuine S, Triantaphylides C, Ravanat JL, Havaux M (2012) Chemical quenching of singlet oxygen by carotenoids in plants. Plant Physiol 158:1267–1278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao MJ, Xu Y, Tang X, Huang Y, Liu J, Deng X, Xu Q (2020) CsCYT75B1, a citrus cytochrome P450 gene, is involved in accumulation of antioxidant flavonoids and induces drought tolerance in transgenic Arabidopsis. Antioxidants 9(2):161

    Article  CAS  PubMed Central  Google Scholar 

  • Rashid MI, Fareed MI, Rashid H, Aziz H, Ehsan N, Khalid S, Ghaffar I, Ali R, Gul A, Hakeem KR (2019) Flavonoids and their biological secrets. In: Plant and human health, vol 2. Springer, Cham, pp 579–605

    Google Scholar 

  • Renwick JAA, Zhang W, Haribal M, Attygalle AB, Lopez KD (2001) Dual chemical barriers protect a plant against different larval stages of an insect. J Chem Ecol 27:1575–1583

    Article  CAS  PubMed  Google Scholar 

  • Rob MM, Hossen K, Iwasaki A, Suenaga K, Kato-Noguchi H (2020) Phytotoxic activity and identification of phytotoxic substances from schumannianthus dichotomus. Plan Theory 9:102

    CAS  Google Scholar 

  • Rodríguez-Navarro DN, Bellogín R, Camacho M, Daza A, Medina C, Ollero FJ, Santamaría C, Ruíz-Saínz JE, Vinardell JM, Temprano FJ (2002) Field assessment and genetic stability of Sinorhizobium fredii strain SMH12 for commercial soybean inoculants. Eur J Agron 19:299–309

    Article  Google Scholar 

  • Samanta A, Das G, Das SK (2011) Roles of flavonoids in plants. Carbon 100(6):12–35

    Google Scholar 

  • Savvides A, Ali S, Tester M, Fotopoulos V (2016) Chemical priming of plants against multiple abiotic stresses: mission possible? Trends Plant Sci 21(4):329–340

    Article  CAS  PubMed  Google Scholar 

  • Scervino JM, Ponce MA, Erra-Bassells R et al (2005) Flavonoids exhibit fungal species and genus specific effects on the presymbiotic growth of Gigaspora and Glomus. Mycol Res 109(7):789–794

    Article  CAS  PubMed  Google Scholar 

  • Schweiggert RM, Ziegler JU, Metwali EM, Mohamed FH, Almaghrabi OA, Kadasa NM, Carle R (2017) Carotenoids in mature green and ripe red fruits of tomato (Solanum lycopersicum L.) grown under different levels of irrigation. Arch Biol Sci 69(2):305–314

    Article  Google Scholar 

  • Shen J, Jiang C, Yan Y, Liu B, Zu C (2017) Effect of increased UV-B radiation on carotenoid accumulation and total antioxidant capacity in tobacco (Nicotiana tabacum L.) leaves. Genet Mol Res 16(1):1–11

    Article  Google Scholar 

  • Shojaie B, Mostajerani A, Mustafa Ghannadian M (2016) Flavonoid dynamic responses to different drought conditions: amount, type, and localization of flavonols in roots and shoots of Arabidopsis thaliana L. Turk J Biol 40:612–622

    Article  CAS  Google Scholar 

  • Shukla S, Gupta S (2010) Apigenin: a promising molecule for cancer prevention. Pharm Res 27:962–978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simmonds MSJ, Stevenson PC (2001) Effects of isoflavonoids from Cicer on larvae of Helicoverpa armigera. J Chem Ecol 27:965–977

    Article  CAS  PubMed  Google Scholar 

  • Simmonds MSJ, Blaney WM, Fellows LE (1990) Behavioural and electrophysiological study of antifeedant mechanisms associated with polyhydroxyalkaloids. J Chem Ecol 16:3167–3196

    Article  CAS  PubMed  Google Scholar 

  • Sorty AM, Meena KK, Choudhary K, Bitla UM, Minhas PS, Krishnani KK (2016) Effect of plant growth-promoting bacteria associated with halophytic weed (Psoralea corylifolia L.) on germination and seedling growth of wheat under saline conditions. Appl Biochem Biotechnol 180:872–882

    Article  CAS  PubMed  Google Scholar 

  • Sudrajat DJ, Siregar IZ, Khumaida N, Siregar UJ, Mansur I (2015) Adaptability of white jabon (Anthocephalus cadamba MIQ.) seedling from 12 populations to drought and water logging. Agri 37:130–143

    Google Scholar 

  • Tabatabaei S, Ehsanzadeh P (2016) Photosynthetic pigments, ionic and antioxidative behaviour of hulled tetraploid wheat in response to NaCl. Photosynthetica 54:340–350

    Google Scholar 

  • Taïbi K, Taïbi F, Abderrahim LA, Ennajah A, Belkhodja M, Mulet JM (2016) Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in Phaseolus vulgaris L. South Afr J Bot 105:306–312

    Article  CAS  Google Scholar 

  • Takahashi F, Shinozaki K (2019) Long-distance signaling in plant stress response. Curr Opin Plant Biol 47:106–111

    Article  CAS  PubMed  Google Scholar 

  • Tejera NA, Campos R, Sanjuán J, Lluch C (2004) Nitrogenase and antioxidant enzyme activities in Phaseolus vulgaris nodules formed by Rhizobium tropici isogenic strains with varying tolerance to salt stress. J Plant Physiol 161:329–338

    Article  CAS  PubMed  Google Scholar 

  • Tian F, Wang W, Liang C, Wang X, Wang G, Wang W (2017) Over accumulation of glycine betaine makes the function of the thylakoid membrane better in wheat under salt stress. Crop J 5:73–82

    Article  Google Scholar 

  • Tiwari S, Singh P, Tiwari R, Meena KK, Yandigeri M, Singh DP, Arora DK (2011) Salt-tolerant rhizobacteria-mediated induced tolerance in wheat (Triticum aestivum) and chemical diversity in rhizosphere enhance plant growth. Biol Fertil Soils 47:907–916

    Article  CAS  Google Scholar 

  • Venkidasamy B, Rajendran V, Sathishkumar R (2018) Flavonoids (antioxidants systems) in higher plants and their response to stresses. Springer International Publishing AG Antioxidants and Antioxidant Enzymes in Higher. Plan Theory 12:253–268

    Google Scholar 

  • War AR, Paulraj MG, Hussain B, Buhroo AA, Ignacimuthu S, Sharma HC (2013) Effect of plant secondary metabolites on Helicoverpa armigera. J Pest Sci 86:399–408

    Article  Google Scholar 

  • Wei J, Xu M, Zhang D, Mi H (2010) The role of carotenoid isomerase in maintenance of photosynthetic oxygen evolution in rice plant. Acta Biochim Biophys Sin 42:457–463

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Ji J, Wang G, Wu G, Diao J, Li Z, Chen X, Chen Y, Luo L (2015) Ecotopic expression of the Lyciumbarbarum b-carotene hydroxylase gene (chyb) enhances drought and salt stress resistance by increasing xanthophyll cycle pool in tobacco. Plant Cell Tissue Organ Cult 121:559–569

    Article  CAS  Google Scholar 

  • Yan Q, Cui X, Lin S, Gan S, Xing H, Dou D (2016) GmCYP82A3, a soybean cytochrome P450 family gene involved in the jasmonic acid and ethylene signaling pathway, enhances plant resistance to biotic and abiotic stresses. PLoS One 11:e0162253

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang J, Yen HE (2000) Early salt stress effects on the changes in chemical composition in leaves of ice plant and Arabidopsis- a fourier transform infrared spectroscopy study. Plant Physiol 130:1032–1042

    Article  CAS  Google Scholar 

  • Yu O, Jung W, Shi J, Croes RA, Fader GM, McGonigle B, Odell JT (2000) Production of the isoflavones genistein and daidzein in non-legume dicot and monocot tissues. Plant Physiol 124(2):781–794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zahran HH (1999) Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Micro Mol Biol Rev 63(4):968–989

    Article  CAS  Google Scholar 

  • Zhan X, Shen Q, Chen J, Yang P, Wang X, Hong Y (2019) Rice sulfoquinovosyltransferase SQD2. 1 mediates flavonoid glycosylation and enhances tolerance to osmotic stress. Plant Cell Environ 42(7):2215–2230

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Li Z, Lu L, Xiao Y, Liu J, Guo J, Fang F (2017) Effects of stepwise nitrogen depletion on carotenoid content, fluorescence parameters and the cellular stoichiometry of Chlorella vulgaris. Spectrochim Acta Part a Mol Biomol Spectr 181:30–38

    Article  CAS  Google Scholar 

  • Zhao J, Dixon RA (2009) The ‘ins’ and ‘outs’ of flavonoid transport. Trend Plant Sci 14:72–80

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, A., Nagpal, S., Choudhary, A. (2021). Carotenoids and Flavonoids in Plant Stress Management. In: Singh, H.B., Vaishnav, A., Sayyed, R. (eds) Antioxidants in Plant-Microbe Interaction. Springer, Singapore. https://doi.org/10.1007/978-981-16-1350-0_5

Download citation

Publish with us

Policies and ethics