Skip to main content

Long Noncoding RNA Acting as Therapeutic Target for Oxidative Stress-Induced Pancreatic Cancer

  • Living reference work entry
  • First Online:
Handbook of Oxidative Stress in Cancer: Therapeutic Aspects

Abstract

Pancreatic cancer (PanCa) is a systemic disease with both locally advanced and malignant neoplastic phenotypes and has a poor prognosis. Among all sorts of PanCa, exocrine cancers account for approximately 95%, with Pancreatic Ductal Adenocarcinoma (PDAC) ranking fourth in terms of cancer mortality in the United States. Due to its increasing incidence, it is appraised to become the second leading cause of cancer by 2030. PDAC has a 5-year survival rate of 8%. PanCa, rightly known to be the “King of Cancer,” has mortality/incidence ratio of 98% due to lack of therapeutic advancement. PDAC and its associated hypoxic microenvironment play a major role in the formation of hypoxia-inducible factor-1 (HIF-1), which is highly expressed in 88% of PanCa tissues. Among the several noncoding RNAs, long noncoding RNAs (lncRNAs) are more promising due to their role as effector molecules. lncRNAs were initially considered to be “transcriptional noise” or “garbage” of encoding genes but later found to have crucial roles in transcriptional regulation. lncRNAs play a dual role as tumor suppressive and oncogenic. lncRNAs hold strong promise as novel therapeutic biomarkers due to their oxidative stress (OS)-modulating capacity with regard to ROS generation, as observed in SLC7A11-AS1 and NUTF2P3-001. Knockout of lncRNA by RNAi or siRNA plays a promising role in increasing the OS in cancer cells leading to cell death. In this chapter, we have documented the emerging functions and association of lncRNAs in PanCa-associated OS and their potential implications in cancer diagnosis and therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AFAP1-AS1:

Actin filament-associated protein 1 antisense RNA

ARE:

Antioxidant response element

ATB:

Activated by TGF-β

CAFHA:

Cancer-associated fibroblasts

ceRNA:

Competitive endogenous RNA

CP:

Chronic pancreatitis

DLEU2:

Deleted in lymphocytic leukemia 2

elncRNA:

Enhancer lncRNAs

EMT:

Epithelial-mesenchymal transition

eRNAs:

Enhancer-associated lncRNAs

ESCC:

Esophageal squamous cell carcinoma

GAS5:

Growth arrest-specific 5

gsRNAs:

Gene body-associated lncRNAs

HAND2-AS1-lncRNA:

Heart and neural crest derivatives expressed transcript 2 antisense RNA 1

HMGB1:

High mobility group box 1

HOTAIR:

HOX transcript antisense RNA

HOTTIP:

HOXA transcript at the distal tip

HRE:

Hypoxia response elements

HULC:

Highly upregulated in liver cancer

IPMN:

Intraductal papillary mucinous neoplasm

lincRNA:

Intervening lncRNA

lncRNA:

Long noncoding RNA

MALAT1:

Metastasis-associated lung adenocarcinoma transcript 1

MCN:

Mucinous cystic neoplasm

MLL1:

Mixed lineage leukemia 1

NADPH:

Nicotinamide adenine dinucleotide phosphate

Nrf2:

Nuclear factor erythroid-2-related factor 2

OS:

Oxidative stress

OXPHOS:

Oxidative phosphorylation

PanCa:

Pancreatic cancer

PANIN:

Pancreatic intraepithelial neoplasia

PCEB1B-AS1:

PC-esterase domain containing 1B antisense RNA 1

PCRC2:

Polycomb repressive complex 2

PDAC:

Pancreatic ductal adenocarcinoma

pRNAs:

Promoter-associated lncRNAs

PVT1:

Plasmacytoma variant translocation 1

ROR:

Regulator of reprogramming

ROS:

Reactive oxygen species

SNHG15:

Small nucleolar RNA host gene 15

SNHG16:

Small nucleolar RNA host gene 16

TUG1:

Taurine upregulated 1

UCA1:

Urothelial cancer-associated 1

VDAC1:

Voltage-dependent anion channel type 1

XIST:

X-inactive-specific transcript

References

  • Abdel Hadi N, Reyes-Castellanos G, Carrier A (2021) Targeting redox metabolism in pancreatic cancer. Int J Mol Sci 22(4):1534

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alexander MS, Cullen JJ (2018) Treating pancreatic cancer: more antioxidants more problems? Expert Rev Gastroenterol Hepatol 12(9):849–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bararia A et al (2020) Differential methylation landscape of pancreatic ductal adenocarcinoma and its precancerous lesions. Hepatobiliary Pancreat Dis Int 19(3):205–217

    Article  PubMed  Google Scholar 

  • Bray F et al (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424

    Article  PubMed  Google Scholar 

  • Cao J (2014) The functional role of long non-coding RNAs and epigenetics. Biol Proc Online 16:11

    Article  CAS  Google Scholar 

  • Chen J et al (2018) Long noncoding RNA MALAT1 regulates generation of reactive oxygen species and the insulin responses in male mice. Biochem Pharmacol 152:94–103

    Article  CAS  PubMed  Google Scholar 

  • Connerty P, Lock RB, de Bock CE (2020) Long non-coding RNAs: major regulators of cell stress in cancer. Front Oncol 10:285

    Article  PubMed  PubMed Central  Google Scholar 

  • de Martel C et al (2012) Global burden of cancers attributable to infections in 2008: a review and synthetic analysis. Lancet Oncol 13(6):607–615

    Article  PubMed  Google Scholar 

  • Derrien T et al (2012) The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22(9):1775–1789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding YC et al (2014) Expression of long non-coding RNA LOC285194 and its prognostic significance in human pancreatic ductal adenocarcinoma. Int J Clin Exp Pathol 7(11):8065–8070

    PubMed  PubMed Central  Google Scholar 

  • Dizaji BF (2020) Strategies to target long non-coding RNAs in cancer treatment: progress and challenges. Egypt J Med Hum Genet 21:41

    Article  Google Scholar 

  • Erickson LA et al (2015) Targeting the hypoxia pathway to treat pancreatic cancer. Drug Des Devel Ther 9:2029–2031

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fatica A, Bozzoni I (2014) Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet 15(1):7–21

    Article  CAS  PubMed  Google Scholar 

  • Fatima R et al (2015) Long noncoding RNAs in development and cancer: potential biomarkers and therapeutic targets. Mol Cell Ther 3:5

    Article  PubMed  PubMed Central  Google Scholar 

  • Franco R et al (2008) Oxidative stress, DNA methylation and carcinogenesis. Cancer Lett 266(1):6–11

    Article  CAS  PubMed  Google Scholar 

  • Gaidhani RH, Balasubramaniam G (2021) An epidemiological review of pancreatic cancer with special reference to India. Indian J Med Sci 73(1):99–109

    Article  Google Scholar 

  • Gao Y et al (2019) Author correction: Linc-DYNC2H1-4 promotes EMT and CSC phenotypes by acting as a sponge of miR-145 in pancreatic cancer cells. Cell Death Dis 10(8):604

    Article  PubMed  PubMed Central  Google Scholar 

  • Garcia-Guede A, Vera O, Ibanez-de-Caceres I (2020) When oxidative stress meets epigenetics: implications in cancer development. Antioxidants (Basel) 9(6):468

    Article  CAS  Google Scholar 

  • Ghafouri-Fard S, Shoorei H, Taheri M (2020) Non-coding RNAs are involved in the response to oxidative stress. Biomed Pharmacother 127:110228

    Article  CAS  PubMed  Google Scholar 

  • Guo X et al (2019) LncRNA MALAT1 protects cardiomyocytes from isoproterenol-induced apoptosis through sponging miR-558 to enhance ULK1-mediated protective autophagy. J Cell Physiol 234(7):10842–10854

    Article  CAS  PubMed  Google Scholar 

  • Gutschner T, Diederichs S (2012) The hallmarks of cancer: a long non-coding RNA point of view. RNA Biol 9(6):703–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guttman M, Rinn JL (2012) Modular regulatory principles of large non-coding RNAs. Nature 482(7385):339–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halbrook CJ, Lyssiotis CA (2017) Employing metabolism to improve the diagnosis and treatment of pancreatic cancer. Cancer Cell 31(1):5–19

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70

    Article  CAS  PubMed  Google Scholar 

  • Hu W, Alvarez-Dominguez JR, Lodish HF (2012) Regulation of mammalian cell differentiation by long non-coding RNAs. EMBO Rep 13(11):971–983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu WL et al (2018) GUARDIN is a p53-responsive long non-coding RNA that is essential for genomic stability. Nat Cell Biol 20(4):492–502

    Article  PubMed  CAS  Google Scholar 

  • Ilic M, Ilic I (2016) Epidemiology of pancreatic cancer. World J Gastroenterol 22(44):9694–9705

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiao F et al (2014) Elevated expression level of long noncoding RNA MALAT-1 facilitates cell growth, migration and invasion in pancreatic cancer. Oncol Rep 32(6):2485–2492

    Article  CAS  PubMed  Google Scholar 

  • Kang Y et al (2018) Energy stress-induced lncRNA HAND2-AS1 represses HIF1-alpha-mediated energy metabolism and inhibits osteosarcoma progression. Am J Cancer Res 8(3):526–537

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koong AC et al (2000) Pancreatic tumors show high levels of hypoxia. Int J Radiat Oncol Biol Phys 48(4):919–922

    Article  CAS  PubMed  Google Scholar 

  • Krantz BA, Yu KH, O’Reilly EM (2017) Pancreas adenocarcinoma: novel therapeutics. Chin Clin Oncol 6(3):30

    Article  PubMed  Google Scholar 

  • Li L et al (2016a) Long noncoding RNA MALAT1 promotes aggressive pancreatic cancer proliferation and metastasis via the stimulation of autophagy. Mol Cancer Ther 15(9):2232–2243

    Article  CAS  PubMed  Google Scholar 

  • Li X et al (2016b) Hypoxia-induced lncRNA-NUTF2P3-001 contributes to tumorigenesis of pancreatic cancer by derepressing the miR-3923/KRAS pathway. Oncotarget 7(5):6000–6014

    Article  PubMed  PubMed Central  Google Scholar 

  • Li H et al (2017) Long noncoding RNA NORAD, a novel competing endogenous RNA, enhances the hypoxia-induced epithelial-mesenchymal transition to promote metastasis in pancreatic cancer. Mol Cancer 16(1):169

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li Y et al (2019) The regulatory roles of long noncoding RNAs in the biological behavior of pancreatic cancer. Saudi J Gastroenterol 25(3):145–151

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu JH et al (2014) Expression and prognostic significance of lncRNA MALAT1 in pancreatic cancer tissues. Asian Pac J Cancer Prev 15(7):2971–2977

    Article  PubMed  Google Scholar 

  • Liu K et al (2020) Long non-coding RNAs regulate drug resistance in cancer. Mol Cancer 19(1):54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liz J, Esteller M (2016) lncRNAs and microRNAs with a role in cancer development. Biochim Biophys Acta 1859(1):169–176

    Article  CAS  PubMed  Google Scholar 

  • Lu X et al (2013) Downregulation of GAS5 increases pancreatic cancer cell proliferation by regulating CDK6. Cell Tissue Res 354(3):891–896

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Useros J et al (2017) Oxidative stress: a new target for pancreatic cancer prognosis and treatment. J Clin Med 6(3):29

    Article  PubMed Central  CAS  Google Scholar 

  • Matouk IJ et al (2009) Highly upregulated in liver cancer noncoding RNA is overexpressed in hepatic colorectal metastasis. Eur J Gastroenterol Hepatol 21(6):688–692

    Article  CAS  PubMed  Google Scholar 

  • Matsuoka T, Yashiro M (2016) Molecular targets for the treatment of pancreatic cancer: clinical and experimental studies. World J Gastroenterol 22(2):776–789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mortoglou M et al (2021) Non-coding RNAs in pancreatic ductal adenocarcinoma: new approaches for better diagnosis and therapy. Transl Oncol 14(7):101090

    Article  PubMed  PubMed Central  Google Scholar 

  • Olive KP et al (2009) Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 324(5933):1457–1461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orfanelli U et al (2015) Antisense transcription at the TRPM2 locus as a novel prognostic marker and therapeutic target in prostate cancer. Oncogene 34(16):2094–2102

    Article  CAS  PubMed  Google Scholar 

  • Orom UA et al (2010) Long noncoding RNAs with enhancer-like function in human cells. Cell 143(1):46–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Outeiro-Pinho G et al (2020) Renal cell tumors: uncovering the biomarker potential of ncRNAs. Cancers (Basel) 12(8):2214

    Article  CAS  Google Scholar 

  • Panzitt K et al (2007) Characterization of HULC, a novel gene with striking up-regulation in hepatocellular carcinoma, as noncoding RNA. Gastroenterology 132(1):330–342

    Article  CAS  PubMed  Google Scholar 

  • Pelicano H, Carney D, Huang P (2004) ROS stress in cancer cells and therapeutic implications. Drug Resist Updat 7(2):97–110

    Article  CAS  PubMed  Google Scholar 

  • Peng W, Jiang A (2016) Long noncoding RNA CCDC26 as a potential predictor biomarker contributes to tumorigenesis in pancreatic cancer. Biomed Pharmacother 83:712–717

    Article  CAS  PubMed  Google Scholar 

  • Peng JF et al (2016) Noncoding RNAs and pancreatic cancer. World J Gastroenterol 22(2):801–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi P, Du X (2013) The long non-coding RNAs, a new cancer diagnostic and therapeutic gold mine. Mod Pathol 26(2):155–165

    Article  CAS  PubMed  Google Scholar 

  • Qi C et al (2019) Long non-coding RNA MACC1-AS1 promoted pancreatic carcinoma progression through activation of PAX8/NOTCH1 signaling pathway. J Exp Clin Cancer Res 38(1):344

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qin J et al (2021) Long non-coding RNA PCED1B-AS1 promotes the progression of clear cell renal cell carcinoma through miR-484/ZEB1 axis. Onco Targets Ther 14:393–402

    Article  PubMed  PubMed Central  Google Scholar 

  • Rawla P, Sunkara T, Gaduputi V (2019) Epidemiology of pancreatic cancer: global trends, etiology and risk factors. World J Oncol 10(1):10–27

    Article  PubMed  PubMed Central  Google Scholar 

  • Reuter S et al (2010) Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med 49(11):1603–1616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saad AM et al (2018) Trends in pancreatic adenocarcinoma incidence and mortality in the United States in the last four decades; a SEER-based study. BMC Cancer 18(1):688

    Article  PubMed  PubMed Central  Google Scholar 

  • Saha G et al (2020) A novel hotspot and rare somatic mutation p.A138V, at TP53 is associated with poor survival of pancreatic ductal and periampullary adenocarcinoma patients. Mol Med 26(1):59

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sajadimajd S, Khazaei M (2018) Oxidative stress and cancer: the role of Nrf2. Curr Cancer Drug Targets 18(6):538–557

    Article  CAS  PubMed  Google Scholar 

  • Siegel RL, Miller KD, Jemal A (2020) Cancer statistics, 2020. CA Cancer J Clin 70(1):7–30

    Article  PubMed  Google Scholar 

  • Sikdar N et al (2018) Genetic alterations of periampullary and pancreatic ductal adenocarcinoma: an overview. Curr Genomics 19(6):444–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun YW et al (2014) A novel long non-coding RNA ENST00000480739 suppresses tumour cell invasion by regulating OS-9 and HIF-1-alpha in pancreatic ductal adenocarcinoma. Br J Cancer 111(11):2131–2141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tahira AC et al (2011) Long noncoding intronic RNAs are differentially expressed in primary and metastatic pancreatic cancer. Mol Cancer 10:141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taiana E et al (2020) Long non-coding RNA NEAT1 targeting impairs the DNA repair machinery and triggers anti-tumor activity in multiple myeloma. Leukemia 34(1):234–244

    Article  CAS  PubMed  Google Scholar 

  • Tang YT et al (2014) Role of non-coding RNAs in pancreatic cancer: the bane of the microworld. World J Gastroenterol 20(28):9405–9417

    PubMed  PubMed Central  Google Scholar 

  • Thai P et al (2013) Characterization of a novel long noncoding RNA, SCAL1, induced by cigarette smoke and elevated in lung cancer cell lines. Am J Respir Cell Mol Biol 49(2):204–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trachootham D, Alexandre J, Huang P (2009) Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov 8(7):579–591

    Article  CAS  PubMed  Google Scholar 

  • Wang Y et al (2015) Expression profile of long non-coding RNAs in pancreatic cancer and their clinical significance as biomarkers. Oncotarget 6(34):35684–35698

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang X et al (2019) Long noncoding RNAs in the regulation of oxidative stress. Oxidative Med Cell Longev 2019:1318795

    Google Scholar 

  • Wang J et al (2020) Long non-coding RNA H19, a novel therapeutic target for pancreatic cancer. Mol Med 26(1):30

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wormann SM, Algul H (2013) Risk factors and therapeutic targets in pancreatic cancer. Front Oncol 3:282

    Article  PubMed  PubMed Central  Google Scholar 

  • Yan X et al (2015) Comprehensive genomic characterization of long non-coding RNAs across human cancers. Cancer Cell 28(4):529–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Q et al (2020) lncRNA SLC7A11-AS1 promotes chemoresistance by blocking SCF(beta-TRCP)-mediated degradation of NRF2 in pancreatic cancer. Mol Ther Nucleic Acids 19:974–985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao N et al (2019a) Long non-coding RNA NONHSAT101069 promotes epirubicin resistance, migration, and invasion of breast cancer cells through NONHSAT101069/miR-129-5p/Twist1 axis. Oncogene 38(47):7216–7233

    Article  CAS  PubMed  Google Scholar 

  • Yao Z et al (2019b) Research progress on long non-coding RNA and radiotherapy. Med Sci Monit 25:5757–5770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu S et al (2019) Long noncoding RNA actin filament-associated protein 1 antisense RNA 1 promotes malignant phenotype through binding with lysine-specific demethylase 1 and repressing HMG box-containing protein 1 in non-small-cell lung cancer. Cancer Sci 110(7):2211–2225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng R et al (2018) The long non-coding RNA MALAT1 activates Nrf2 signaling to protect human umbilical vein endothelial cells from hydrogen peroxide. Biochem Biophys Res Commun 495(4):2532–2538

    Article  CAS  PubMed  Google Scholar 

  • Zhang L et al (2016) Reactive oxygen species and targeted therapy for pancreatic cancer. Oxidative Med Cell Longev 2016:1616781

    Google Scholar 

  • Zhang L et al (2018) Shedding light on the dark cancer genomes: long noncoding RNAs as novel biomarkers and potential therapeutic targets for cancer. Mol Cancer Ther 17(9):1816–1823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng ZG et al (2016) The essential role of H19 contributing to cisplatin resistance by regulating glutathione metabolism in high-grade serous ovarian cancer. Sci Rep 6:26093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Y et al (2018) Study on mechanism about long noncoding RNA MALAT1 affecting pancreatic cancer by regulating Hippo-YAP signaling. J Cell Physiol 233(8):5805–5814

    Article  CAS  PubMed  Google Scholar 

  • Zhou W et al (2020) The multifaceted roles of long noncoding RNAs in pancreatic cancer: an update on what we know. Cancer Cell Int 20:41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu H et al (2018) Pancreatic cancer: challenges and opportunities. BMC Med 16(1):214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J et al (2019) Molecular mechanisms of lncRNAs in regulating cancer cell radiosensitivity. Biosci Rep 39(8):BSR20190590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nilabja Sikdar .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sikdar, N., Bararia, A., Dutta, A., Banerjee, S. (2022). Long Noncoding RNA Acting as Therapeutic Target for Oxidative Stress-Induced Pancreatic Cancer. In: Chakraborti, S. (eds) Handbook of Oxidative Stress in Cancer: Therapeutic Aspects. Springer, Singapore. https://doi.org/10.1007/978-981-16-1247-3_77-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1247-3_77-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1247-3

  • Online ISBN: 978-981-16-1247-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics