Skip to main content

Surgical Models of Laboratory Animals

  • Chapter
  • First Online:
Essentials of Laboratory Animal Science: Principles and Practices
  • 2587 Accesses

Abstract

Animal models play a pivotal role in biomedical research. Surgical rodent models are widely used in the preclinical drug discovery process. A well-planned surgery with aseptic techniques including intraoperative as well as postoperative care is necessitated for the successful surgical outcomes and survivability of animals. Consideration should be given for the pre-emptive and postoperative analgesia of choice with appropriate dosage regimen to prevent pain and distress in the animals. Furthermore, good management practices, minimal handling, socialization, and environmental enrichment provide comfort by reducing the stress in the animals that underwent surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BUN:

Blood urea nitrogen

CCA:

Common carotid artery

CCI:

Chronic constriction injury

ECA:

External carotid artery

ICA:

Internal carotid artery

PDS:

Polydioxanone

PE:

Polyethylene

PTFE:

Polytetrafluoroethylene

PVDF:

Polyvinylidene fluoride

VCC:

Vena cava caudalis

References

  1. Garguilo S, Greco A, Gramanzini M, Esposio S, Affuso A, Brunetti A, Vesce G (2012) Mice anesthesia, analgesia, and care, Part I: Anesthetic considerations in preclinical research. ILAR J 53(1):E55–E69

    Article  Google Scholar 

  2. Pritchett-Corning KR, Mulder GB, Luo Y, White WJ (2011) Principles of rodent surgery for the new surgeon. J Vis Exp 47:e2586. 1–4. PMID: 21248700

    Google Scholar 

  3. Hoogstraten-Miller SL, Brown PA (2008) Techniques in aseptic rodent surgery. Curr Protoc Immunol. Chapter 1, Unit-1.1.14. https://doi.org/10.1002/0471142735.im0112s82

  4. Guide for the Care and Use of Laboratory Animals. (2011). The National Academies Press, Washington, DC

    Google Scholar 

  5. ACLAM Position Statement on Rodent Surgery (2016) J Am Assoc Lab Anim Science 55(6):822–823

    Google Scholar 

  6. Brown MJ, Pearson PT, Tomson FN (1993) Guidelines for animal surgery in research and teaching. Am J Vet Res 54:1544–1559

    CAS  PubMed  Google Scholar 

  7. Heon H, Rousseau N, Montgomery J, Beauregard G, Choiniere M (2006) Establishment of an operating room committee and a training program to improve aseptic techniques for rodent and large animal surgery. J Am Assoc Lab Anim Sci 45:58–62

    CAS  PubMed  Google Scholar 

  8. Flecknell P (2018) Rodent analgesia: assessment and therapeutics 2018. Vet J 232:70–77. PMID: 29428096

    Article  PubMed  Google Scholar 

  9. Flecknell PA, Thomas AA (2015) Comparative anesthesia and analgesia of laboratory animals. In: Chapter 39, Veterinary anesthesia and analgesia: the fifth edition of lumb and jones, pp 754–763. https://doi.org/10.1002/9781119421375.ch39

    Chapter  Google Scholar 

  10. Fish RE, Brown MJ, Danneman PJ, Kras AZ (2008) Anesthesia and analgesia in laboratory animals, 2nd edn. Elsevier, USA

    Google Scholar 

  11. Elizabeth A, Nunamaker EA, Julia L, Goldman JL, Adams CR, Fortman JD (2018) Evaluation of analgesic efficacy of meloxicam and 2 formulations of buprenorphine after laparotomy in female Sprague-Dawley rats. J Am Assoc Lab Anim Med 57(5):498–507. PMID: 30092855

    Article  Google Scholar 

  12. Hedenqvist P, Roughan JV, Flecknell PA (2000) Effects of repeated anaesthesia with ketamine/ medetomidine and of pre-anaesthetic administration of buprenorphine in rats. Lab Anim 34:207–211

    Article  CAS  PubMed  Google Scholar 

  13. Nunamaker EA, Goldman JL, Adams CR, Fortman JD (2018) Evaluation of analgesic efficacy of meloxicam and 2 formulations of buprenorphine after laparotomy in female Sprague-Dawley Rats. J Am Assoc Lab Anim Sci 57(5):498–507

    Article  PubMed  PubMed Central  Google Scholar 

  14. Foley PL, Barthel CH, Brausa HR (2002) Effect of covalently bound heparin coating on patency and biocompatibility of long term indwelling catheters in the rat jugular vein. Comp Med 52:243–248

    CAS  PubMed  Google Scholar 

  15. Feng J, Fitz YV, Li Y, Fernandez M, Puch IC, Wang D, Pazniokas S, Bucher B, Cui X, Solomon SB (2015) Catheterization of the carotid artery and jugular vein to perform hemodynamic measures, infusions and blood sampling in a conscious rat model. J Vis Exp 95:e51881. 1–6. PMID: 25741606

    Google Scholar 

  16. Tsui BCH, Mosher SJ, Yeung PKF (1991) A reliable technique for chronic carotid arterial catheterization in the rat. J Pharmacol Methods 25(4):343–352

    Article  CAS  PubMed  Google Scholar 

  17. Rath L, Hutchison M (1989) A new method of bile duct cannulation allowing bile collection and re-infusion in the conscious rat. Lab Anim 23:163–168

    Article  CAS  PubMed  Google Scholar 

  18. Kirkland JG, Godfrey GB, Garreet R, Kakkar S, Yeh BM, Corvera CU (2010) Reversible surgical model of biliary inflammation and obstructive jaundice in mice. J Surg Res 164(2):221–227. PMID: 19932898

    Article  PubMed  Google Scholar 

  19. Georgiev P, Jochum W, Heinrich S, Jang JH, Nocito A, Dahm F, Clavien PA (2008) Characterization of time-related changes after experimental bile duct ligation. Br J Surg 95(5):646–656. PMID: 18196571; 19932898

    Article  CAS  PubMed  Google Scholar 

  20. Tannuri AA, Coelho MM, Goncalves JD, Santos MM, Ferraz dS LF, Bendit I, Tannuri U (2012) Effects of selective bile duct ligation on liver parenchyma in young animals: histologic and molecular evaluations. J Paediatr Surg 43(93):513–522. PMID: 22424347

    Article  Google Scholar 

  21. Wang YM, Reuning RH (1994) A comparison of two surgical techniques for preparation of rats with chronic bile duct cannulae for the investigation of enterohepatic circulation. Lab Animl Sci 44(5):479–485. PMID: 7844957

    CAS  Google Scholar 

  22. Strubbe JH, Bruggink JE, Steffens AB (1998) Hepatic Portal vein cannulation for infusion and blood sampling in freely moving rats. Physiol Behav 65(4–5):885–887. PMID: 10073496

    Article  Google Scholar 

  23. Matsuda Y, Konno Y, Satsukawa M, Kobayashi T, Takimoto Y, Morisaki K, Yamashita S (2012) Assessment of intestinal availability of various drugs in the oral absorption process using portal vein cannulated rats. Drug Metab Dispos 40(12):2231–2238. PMID: 22930277

    Article  CAS  PubMed  Google Scholar 

  24. Mudra DR, Borchardt RT (2009) Absorption barriers in the rat intestinal mucosa: 1. Application of an in situ perfusion model to simultaneously assess drug permeation and metabolism. J Pharm Sci 99(2):982–998. https://doi.org/10.1002/jps.21912

    Article  CAS  Google Scholar 

  25. Shimomura M, Masuda S, Saito H, Sakamoto S, Uemoto S, Tanaka K, Inui K (2002) Roles of the Jejunum and ileum in the first pass effect as absorptive barriers for orally administered tacrolimus. J Surg Res 103(2):215–222. PMID: 11922737

    Article  CAS  PubMed  Google Scholar 

  26. Cao X, Gibbs ST, Fang L, Miller HA, Landowski CP, Shin H, Lennermas H, Zhong Y, Amidon GL, Yu LX, Sun D (2006) Why is it challenging to predict intestinal drug absorption and oral bioavailability in human using rat model. Pharma Res 23(8):1675–1686. PMID: 16841194

    Article  CAS  Google Scholar 

  27. Tsai YC, Sung YH, Chang PJ, Kang FC, Chu KS (2000) Tramadol relieves thermal hyperalgesia in rats with chronic constriction injury of the sciatic nerve. Fund Clin Pharmacol 14:335–340

    Article  CAS  Google Scholar 

  28. Liang M, Ly J, Zou L, Yang W, Xiong Y, Chen X, Guan M, He R, Zou H (2015) A modified murine model of systemic sclerosis: bleomycin given by pump infusion induced skin and pulmonary inflammation and fibrosis. Lab Investig 95:342–350

    Article  CAS  PubMed  Google Scholar 

  29. Lee R, Reese C, Bonner M, Tourkina E, Hajdu Z, Riemer EC, Silver RM, Visconti RP, Hoffman S (2014) Bleomycin delivery by osmotic minipump: similarity to human scleroderma interstitial lung disease. Am J Physiol-Lung Cell Mol Physiol 306:L736–L748. PMID: 24583879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tan T, Watts SW, Davis RP (2011) Drug delivery: enabling technology for drug discovery and development, iPRECIO micro infusion pump: programmabe, refillable and implantable. Front Pharmacol 44(2):1–13

    Google Scholar 

  31. Kim SH, Chung JM (1992) An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat. Pain 50(3):355–363

    Article  Google Scholar 

  32. Hogan Q, Sapunar D, Modric-Jednacak K, McCallum B (2004) Detection of neuropathic pain in a rat model of peripheral nerve injury. Anesthesiology 101(2):476–487

    Article  PubMed  Google Scholar 

  33. Austin PJ, Wu A, Moalem-Taylor G (2012) Chronic Constriction of the Sciatic Nerve and Pain Hypersensitivity Testing in Rats. J Vis Exp (61):e3393. 1–6

    Google Scholar 

  34. Attal N, Jazat F, Kayser V, Guilbaud G (1990) Further evidence for 'pain-related' behaviours in a model of unilateral peripheral mononeuropathy. Pain 41(2):235–251. PMID: 2164179

    Article  CAS  PubMed  Google Scholar 

  35. Tanck EN, Kroin JS, McCarthy RJ, Penn RD, Ivankovich AD (1992) Effects of age and size on development of allodynia in a chronic pain model produced by sciatic nerve ligation in rats. Pain 51:313–316

    Article  PubMed  Google Scholar 

  36. Rigali A, Di Loreto VE (2009) Experimental surgical models in the laboratory rat. CRC Press, Boca Raton, FL

    Google Scholar 

  37. Jespersen B, Knupp L, Northcott CA (2012) Femoral arterial and venous catheterization for blood sampling, drug administration and conscious blood pressure and heart rate measurements. J Vis Exp 59(e3496):1–8

    Google Scholar 

  38. Qi Z, Whitt I, Mehta A, Jin J, Zhao M, Harris RC, Fogo AB, Breyer MD (2004) Serial determination of glomerular filtration rate in conscious mice using FITC-inulin clearance. Am J Physiol Renal Physiol 286:F590–F596

    Article  CAS  PubMed  Google Scholar 

  39. Moravek J, Schuck O, Hatala M, Priborsky J (1987) Preclinical modeling of changes in drug kinetics caused by acute renal failure in rats. J Pharmacokinet Biopharm 15:15–23

    Article  CAS  PubMed  Google Scholar 

  40. Hoke TS, Douglas IS, Klein CL, He Z, Fang W, Thurman JM, Tao Y, Dursun B, Voelkel NF, Edelstein CL, Faubel S (2007) Acute renal failure after bilateral nephrectomy is associated with cytokine-mediated pulmonary injury. J Am Soc Nephrol 18:155–164. PMID: 17167117

    Article  CAS  PubMed  Google Scholar 

  41. Naud J, Michaud J, Beauchemin S, Hebert MJ, Roger M, Lefrancois S (2011) Effects of chronic renal failure on kidney drug transporters and cytochrome P450 in rats. Drug Metab Dispos 39:1363–1369

    Article  CAS  PubMed  Google Scholar 

  42. Reis LO, Sopena JM, Favaro WJ, Martin MC, Simao AF, Reis RB, Andrade MF, Domenech JD, Cardo CC (2011) Anatomical features of the urethra and urinary bladder catheterization in female mice and rats. An essential translational tool. Acta Cir Bras 26(2):106–110

    Article  PubMed  Google Scholar 

  43. Oliveira PA, Pires MJ, Nobrega C, Arantes-Rodrigues R, Calado AM, Carrola J, M Ginja M, Colaco A (2009) Technical report: technique of bladder catheterization in female mice and rats for intravesical instillation in models of bladder cancer. scand. J Lab Anim Sci 36(1):5–9

    CAS  Google Scholar 

  44. St Clair MB, Sowers AL, Davis LA, Rhodes LL (1999) Urinary bladder catheterization of female mice and Rats. Contemp Top Lab Anim Sci 38(3):78–79

    PubMed  Google Scholar 

  45. Vestergaard B, Agerso H, Lykkesfeldt J (2013) Nephrectomized and hepatectomized animal models as tools in preclinical pharmacokinetics. Basic Clin Pharmacol Toxicol 113:75–86

    Article  CAS  PubMed  Google Scholar 

  46. Nevzorova YA, Tolba R, Trautwein C, Liedtke C (2015) Partial hepatectomy in mice. Lab Anim 49(S1):81–88

    Article  CAS  PubMed  Google Scholar 

  47. Andersen KJ, Knudsen AR, Kannerup A, Sasanuma H, Nyengaard JR, Hamilton-Dutoit S, Erlandsen EJ, Bo Jorgensene B, Mortensen FV (2013) The natural history of liver regeneration in rats: description of an animal model for liver regeneration studies. Int J Surg 11(9):903–908

    Article  PubMed  Google Scholar 

  48. Bedirli A, Sakrak O, Soyuer I, Muhtaroglu S (2004) Portosystemic shunt prevents apoptosis in rat intestinal mucosa caused by total hepatic ischemia. Eur Surg Res 36:293–299

    Article  CAS  PubMed  Google Scholar 

  49. Kogure K, Suzuki M (1992) Effects of hepatic inflow occlusion on changes in plasma potassium, histamine, and norepinephrine in rats. Circ Shock 36:290–298

    CAS  PubMed  Google Scholar 

  50. Aller MA, Lorente L, Prieto I, Moquillaza LM, Arias J (2009) Hepatectomies in the rat: a look at the caudate process through microsurgery. Dig Liver Dis 41:695–699

    Article  PubMed  Google Scholar 

  51. Azoulay D, Astarcioglu I, Astarcioglu H, Lemoine A, Majno P, Bismuth H (1997) A new technique of one-stage total hepatectomy in the rat. Surgery 121:219–222

    Article  CAS  PubMed  Google Scholar 

  52. Yamaguchi Y, Bollinger RR, DeFaria E, Landis B, Quarfordt S (1989) A simplified single stage total hepatectomy in the rat with maintenance of gastrointestinal absorptive function. Hepatology 9:69–74

    Article  CAS  PubMed  Google Scholar 

  53. Engelbrecht GH, Hickman R, Kahn D (1999) One-stage total hepatectomy in the rat using microvascular anastomoses. Microsurgery 19:95–97. PMID: 10188833

    Article  CAS  PubMed  Google Scholar 

  54. Ping H, Zhen-Fu C, Shao-Qing X, Ming L, Jian W, Guo-Qing Z (2001) An in vivo rat model for assessment of extrahepatic metabolism. J Pharmacol Toxicol Methods 45:181–185

    Article  CAS  PubMed  Google Scholar 

  55. Gu J, Lu K, Xia P, Tang M, Dai Q, Ma D (2009) Pharmacokinetics of propofol and extrahepatic UGT1A6 gene expression in anhepatic rats. Pharmacology 84:219–226

    Article  CAS  PubMed  Google Scholar 

  56. Souza VR, Mendes E, Casaro M, Tada A, Antirio AF, Oliveira FA, Ferreira CM (2019) Description of ovariectomy protocol in mice. Methods Mol Biol 1916:303–309. PMID: 30535707

    Article  CAS  PubMed  Google Scholar 

  57. Hayward AM, Lemke LB, Bridgeford EC, Theve EJ, Jackson CJ, Cunliffe-Beamer TL (2006) Biomethodology and surgical techniques. The mouse in biomedical research. Academic Press, Elsevier, Boston, MA

    Google Scholar 

  58. Waynforth HB, Flecknell PA (1992) Experimental and surgical techniques in the rat, 2nd edn. Academic Press, New York

    Google Scholar 

  59. Paxinos G, Watson C (2009) The rat brain in stereotaxic coordinates, compact, 6th edn. Elsevier, Academic Press, Amsterdam

    Google Scholar 

  60. Mostany R, Portera-Cailliau C (2008) A craniotomy surgery procedure for chronic brain imaging. J Vis Exp. https://doi.org/10.3791/680

  61. Fornari RV, Wichmann R, Atsak P, Atucha E, Barsegyan A, Beldjoud H, Messanvi FC, Thuring CM, Roozendaal BR (2012) Rodent stereotaxic surgery and animal welfare outcome improvements for behavioral neuroscience. J Vis Exp 59(e3528):1–4

    Google Scholar 

  62. Geiger BM, Frank LE, Caldera-Siu AD, Pothos EN (2008) Survivable stereotaxic surgery in rodents. J Vis Exp 20(e880):1–3

    Google Scholar 

  63. Poole EI, McGavin JJ, Cochkanooff N, Corssby KM (2019) Stereotaxic surgery for implantation of guidecannulas for microinjection into the dorsomedialhypothalamus in young rats. MethodsX 6(2019):1652–1659

    Article  PubMed  PubMed Central  Google Scholar 

  64. Zausinger S, Baethmann A, Schmid-Elsaesser R (2002) Anesthetic methods in rats determine outcome after experimental focal cerebral ischemia: mechanical ventilation is required to obtain controlled experimental conditions. Brain Res Brain Res Protoc 9:112–121. [PubMed: 12034330]

    Article  CAS  PubMed  Google Scholar 

  65. Durukan A, Tatlisumak T (2007) Acute ischemic stroke: overview of major experimental rodent models, pathophysiology, and therapy of focal cerebral ischemia. Pharmacol Biochem Behav 87:179–197. [PubMed: 17521716]

    Article  CAS  PubMed  Google Scholar 

  66. Thomas CS (2005) Rodent models of focal stroke: size, mechanism and purpose. NeuroRx 2:396–409. [PubMed: 16389304]

    Article  Google Scholar 

  67. Krueger K, Busch E (2002) Protocol of a thromboembolic stroke model in the rat: review of the experimental procedure and comparison of models. Investig Radiol 37(11):600–608. PMID: 12393972

    Article  Google Scholar 

  68. Park S, Shin J, Hong Y, Kim S, Lee S, Park K, Lkhagvasuren T, Lee SR, Chang KT, Hong Y (2012) Forced exercise enhances functional recovery after focal cerebral ischemia in spontaneously hypertensive rats. Brain Sci 2:483–503. PubMed: 24961257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Rupadevi M, Parasuraman S, Raveendran R (2011) Protocol for middle cerebral artery occlusion by an intraluminal suture method. J Pharmacol Pharmacother 2(1):36–39. https://doi.org/10.4103/0976-500X.77113:10.4103/0976-500X.77113. PMID: 21701645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lee S, Lee M, Yunyung H, Won J, Lee Y, Kang S, Chang K, Hong Y (2014) 25206884 Middle cerebral artery occlusion methods in rat versus mouse models of transient focal cerebral ischemic stroke. Neural Regen Res 9(7):757–758. PMID: 25206884

    Article  PubMed  PubMed Central  Google Scholar 

  71. Zhang L, Zhang RL, Jiang Q, Ding G, Chopp M, Zhang ZG (2015) Focal embolic cerebral ischemia in the rat. Nat Protoc 10(4):539–547. PMID: 25741989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sommer CJ (2017) Ischemic stroke: experimental models and reality. Acta Neuropathol 133:245–262. https://doi.org/10.1007/s00401-017-1667-0

    Article  PubMed  PubMed Central  Google Scholar 

  73. Zaki Ghali MG (2018) Microsurgical technique for tracheostomy in the rat. Methods X 5:61–67. PMID: 29511643

    Google Scholar 

  74. Irazuzta J, Hopkins P, Gunnoe P, Brittain E (1997) Simple method of multipurpose airway access through percutaneous tracheostomy in rabbits (Oryctolagus cuniculus). Lab Anim Sci 47(4):411–413. PMID: 9306316

    CAS  PubMed  Google Scholar 

  75. Boon MS, Daniero JJ, , Saxena S, Balceniuk M.( 2015). Tubeless tracheotomy for survival airway surgery in the leporine model. Laryngoscope 125(3):680–684

    Article  PubMed  Google Scholar 

  76. Miller AL, Wright-Williams SL, Flecknell PA, Roughan JV (2012) A comparison of abdominal and scrotal approach methods of vasectomy and the influence of analgesic treatment in laboratory mice. Lab Anim 46:304–310. https://doi.org/10.1258/la.2012.012078

    Article  CAS  PubMed  Google Scholar 

  77. Lavers AE, Swanlund DJ, Hunter BA, Tran ML, Pryor JL, Roberts KP (2006) Acute effect of vasectomy on the function of the rat epididymal epithelium and vas deferens. J Androl 27(6):826–836. https://doi.org/10.2164/jandrol.106.000745

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Devan, R.K.S. (2021). Surgical Models of Laboratory Animals. In: Nagarajan, P., Gudde, R., Srinivasan, R. (eds) Essentials of Laboratory Animal Science: Principles and Practices. Springer, Singapore. https://doi.org/10.1007/978-981-16-0987-9_32

Download citation

Publish with us

Policies and ethics