Skip to main content

Lifecycle Assessment of Electricity Generation transition in Ecuador

  • Conference paper
  • First Online:
Innovations in Electrical and Electronic Engineering

Abstract

Ecuador's energy mix has greatly reduced its dependency on fossil fuels the last 15 years, down to a marginal role (5%) in electricity generation in 2017. The development plan for the Ecuadorian power network aims to keep adding hydropower to meet the increasing demand. A prospective lifecycle assessment (LCA) of the future power network (2012–2050) can determine the feasibility of the development plan and its environmental sustainability in the long run. For a quantitative analysis of the energy transition over the entire lifecycle, the simulation software® Global Emission Model of Integrated System (GEMIS) is used. The results show that the current development path of the Ecuadorian energy system reduces the emissions of CO2 per kWh generated by 65% due to the large share of renewable energies, mainly hydropower, which costs 1% of Gross Domestic Product. The obtained LCA footprints are similar to the literature benchmarks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Carles, Energy Resources and Crisis the End of 200 Unrepeatable Years, 2nd edn. (Oficina de Publicacions Acadèmiques Digitals de la UPC, Barcelona, 2011).

    Google Scholar 

  2. F. Kern, K.S. Rogge, The pace of governed energy transitions: agency, international dynamics and the global Paris agreement accelerating decarbonisation processes? Energy Res. Soc. Sci. 22, 13–17 (2016). https://doi.org/10.1016/j.erss.2016.08.016

    Article  Google Scholar 

  3. E. Kyritsis, J. Andersson, A. Serletis, Electricity prices, large-scale renewable integration, and policy implications. Energy Policy 101, 550–560 (2017). https://doi.org/10.1016/j.enpol.2016.11.014

    Article  Google Scholar 

  4. L. Vintimilla, “Apagones y soluciones” El sector energético: presente y perspectivas. CIE Corporación para la Investigación Energética (2002)

    Google Scholar 

  5. M. Ayala, J. Maldonado, E. Paccha, C. Riba, Wind power resource assessment in complex terrain: villonaco case-study using computational fluid dynamics analysis. Energy Procedia 107, 41–48 (2017). https://doi.org/10.1016/j.egypro.2016.12.127

    Article  Google Scholar 

  6. “Plan Maestro de Electrificación 2013–2022 VOL III,” 2013.

    Google Scholar 

  7. A.D. Ramirez, A. Boero, B. Rivela, A.M. Melendres, S. Espinoza, D.A. Salas, Life cycle methods to analyze the environmental sustainability of electricity generation in Ecuador: Is decarbonization the right path? Renew. Sustain. Energy Rev., 134, 110373. https://doi.org/10.1016/j.rser.2020.110373

  8. P.E. Carvajal, F.G.N. Li, R. Soria, J. Cronin, G. Anandarajah, Y. Mulugetta, Large hydropower, decarbonisation and climate change uncertainty: modelling power sector pathways for ecuador. Energy Strateg. Rev. 23, 86–99 (2019). https://doi.org/10.1016/j.esr.2018.12.008

    Article  Google Scholar 

  9. P. L. Castro Verdezoto, J. A. Vidoza, W.L.R. Gallo, Analysis and projection of energy consumption in Ecuador: energy efficiency policies in the transportation sector. Energy Policy 134, 110948 (2019). https://doi.org/10.1016/j.enpol.2019.110948

  10. “Plan Maestro de Electrificación 2013–2022 VOL II,” (2013)

    Google Scholar 

  11. B. Guezuraga, R. Zauner, W. Pölz, Life cycle assessment of two different 2 MW class wind turbines. Renew. Energy 37(1), 37–44 (2012). https://doi.org/10.1016/j.renene.2011.05.008

    Article  Google Scholar 

  12. R. Madlener, S. Stagl, Sustainability-guided promotion of renewable electricity generation. Ecol. Econ. 53(2), 147–167 (2005). https://doi.org/10.1016/j.ecolecon.2004.12.016

    Article  Google Scholar 

  13. A. Makhlouf, T. Serradj, H. Cheniti, Life cycle impact assessment of ammonia production in Algeria: a comparison with previous studies. Environ. Impact Assess. Rev. 50, 35–41 (2015). https://doi.org/10.1016/j.eiar.2014.08.003

    Article  Google Scholar 

  14. H. Yang, L. Ma, Z. Li, A method for analyzing energy-related carbon emissions and the structural changes: a case study of China from 2005 to 2015. Energies 13(8), 1–24 (2020). https://doi.org/10.3390/en13082076

    Article  Google Scholar 

  15. N. Thonemann, A. Schulte, D. Maga, How to conduct prospective life cycle assessment for emerging technologies? A systematic review and methodological guidance. Sustainability 12(3) (2020). https://doi.org/10.3390/su12031192

  16. R.N. Shaw, P. Walde, A. Ghosh, Effects of solar irradiance on load sharing of integrated photovoltaic system with IEEE standard bus network. Int. J. Eng. Adv. Technol. 9(1) (2019)

    Google Scholar 

  17. R.N. Shaw, P. Walde, A, Ghosh, A new model to enhance the power and performances of 4×4 PV arrays with puzzle shade dispersion. Int. J. Innovat. Technol. Exp. Eng. 8(12) (2019)

    Google Scholar 

  18. V. Rakotoson, J.-P. Praene, A life cycle assessment approach to the electricity generation of French overseas territories. J. Clean. Prod. 168, 755–763 (2017). https://doi.org/10.1016/j.jclepro.2017.09.055

    Article  Google Scholar 

  19. Updated capital cost estimates for utility scale electricity generating plants (2013)

    Google Scholar 

  20. IPCC, Climate Change 2007-The Physical Science Basis (United Kingdom and New York: Cambridge University Press, 2007)

    Google Scholar 

Download references

Acknowledgements

This research was supported by Secretaría Nacional de Educación Superior, Ciencia, Tecnología e Innovación (SENESCYT), Ecuador;SISAuresearchGroup, Facultad de Ingeniería y Tecnologías de la Información y Comunicación, Universidad Tecnológica Indoamérica, Ambato, Ecuador;Universidad Nacional de Loja, Ecuador; and Centro de Diseño de Equipos Industriales ofUniversidad Politécnica de Cataluña, BarcelonaTech, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Ayala-Chauvin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ayala-Chauvin, M., Samaniego-Ojeda, C., Riba, G., Maldonado-Correa, J. (2021). Lifecycle Assessment of Electricity Generation transition in Ecuador. In: Mekhilef, S., Favorskaya, M., Pandey, R.K., Shaw, R.N. (eds) Innovations in Electrical and Electronic Engineering. Lecture Notes in Electrical Engineering, vol 756. Springer, Singapore. https://doi.org/10.1007/978-981-16-0749-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-0749-3_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-0748-6

  • Online ISBN: 978-981-16-0749-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics