Skip to main content

Biofilm on Medical Appliances

  • Chapter
  • First Online:
Biofilm-Mediated Diseases: Causes and Controls

Abstract

Biofilm-forming microbes are the root cause of various almost incurable chronic, nosocomial, and medical device-associated infections that are of serious concern in present-day condition. With the advent of science, a number of diseases, disorders, and abnormalities can be effectively managed by the use of various medical devices including pacemakers, vascular catheters, chronic hemodialysis catheters, prosthetic heart valves, and prosthetic joints. But the effectiveness of these medical devices is seriously hampered by the biofilm grown aggressively on these devices. The interactions existing between the microbial cells, host, and the biomaterials result in the development, persistence, and failure in treating these device-associated infections. The present chapter would focus on various medical devices-associated biofilm infections that are affecting the host immune system leading to chronic infections and failure of the objective of this implant operation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adair CG, Gorman SP, Feron BM, Byers LM, Jones DS, Goldsmith CE, Moore JE, Kerr JR, Curran MD, Hogg G, Webb CH, Mccarthy GJ, Milligan KR (1999) Implications of endotracheal tube biofilm for ventilator-associated pneumonia. Intensive Care Med 25:1072–1076

    Article  CAS  PubMed  Google Scholar 

  • Akbari F, Kjellerup BV (2015) Elimination of bloodstream infections associated with Candida albicans biofilm in intravascular catheters. Pathogens 4:457–469

    Article  PubMed  PubMed Central  Google Scholar 

  • Akhter J, Ahmed S, Saleh AA, Anwar S (2014) Antimicrobial resistance and in vitro biofilm-forming ability of Enterococci spp. isolated from urinary tract infection in a tertiary care hospital in Dhaka, Bangladesh. Med Res Counc Bull 40:6–9

    CAS  Google Scholar 

  • Allignet J, Galdbart JO, Morvan A, Dyke KGH, Vaudaux P, Aubert S, Desplaces N, Solh NE (1999) Tracking adhesion factors in Staphylococcus caprae strains responsible for human bone infections following implantation of orthopaedic material. Microbiology 145:2033–2042

    Article  CAS  PubMed  Google Scholar 

  • Anwar H, Van Biesen T, Dasgupta M, Lain K, Costerton JW (1989) Interaction of biofilm bacteria with antibiotics in a novel in vitro chemostat system. Antimicrob Agents Chemother 33:1824–1826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atsumi T, Mccarter L, Imae Y (1992) Polar and lateral flagellar motors of marine vibrio are driven by different ion-motive forces. Nature 355:182–184

    Article  CAS  PubMed  Google Scholar 

  • Barken KB, Pamp SJ, Yang L, Gjermansen M, Bertrand JJ, Klausen M, Givskov M, Whitchurch CB, Engel JN, Tolker-Nielsen T (2008) Roles of type IV pili, Flagellum mediated motility and extracellular DNA in the formation of mature multicellular structures in Pseudomonas aeruginosa biofilms. Environ Microbiol 10:2331–2343

    Article  CAS  PubMed  Google Scholar 

  • Barlow M (2009) What antimicrobial resistance has taught us about horizontal gene transfer. Methods Mol Biol 532:397–411

    Article  CAS  PubMed  Google Scholar 

  • Barnhart MM, Chapman MR (2006) Curli biogenesis and function. Annu Rev Microbiol 60:131–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berg HC (2003) The rotary motor of bacterial flagella. Annu Rev Biochem 72:19–54

    Article  CAS  PubMed  Google Scholar 

  • Berg HC, Anderson RA (1973) Bacteria swim by rotating their flagellar filaments. Nature 245:380–382

    Article  CAS  PubMed  Google Scholar 

  • Bohn YS, Brandes G, Rakhimova E, Horatzek S, Salunkhe P, Munder A, Van Barneveld A, Jordan D, Bredenbruch F, Haussler S (2009) Multiple roles of Pseudomonas aeruginosa TBCF10839 PilY1 in motility, transport and infection. Mol Microbiol 71:730–747

    Article  CAS  PubMed  Google Scholar 

  • Briegel A, Ortega DR, Tocheva EI, Wuichet K, Li Z, Chen S, Müller A, Iancu CV, Murphy GE, Dobro MJ, Zhulin IB, Jensen GJ (2009) Universal architecture of bacterial chemoreceptor arrays. Proc Natl Acad Sci U S A 106:17181–17186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bryers JD (2008) Medical biofilms. Biotechnol Bioeng 100(1):1–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Busscher HJ, Van Der Mei HC, Schakenraad JM (1991a) Analogies in the two-dimensional spatial arrangements of adsorbed proteins and adhering bacteria: bovine serum albumin and Streptococcus sanguis 12. J Biomat Sci Polymer EDN 3:85094

    Google Scholar 

  • Busscher HJ, Stokroos I, Schakenraad JM (1991b) Two-dimensional, spatial arrangement of fibronectin adsorbed to biomaterials with different wettabilities. Cell Mater 1:49–57

    Google Scholar 

  • Buswell CM, Herlihy YM, Lawrence LM, McGuiggan JTM, Marsh PD, Keevil CW (1996) Extended survival and persistence of Campylobacter spp. in water and aquatic biofilms and their detection by immunofluorescent-antibody and -rRNA staining. Appl Environ Microbiol 5:319–326. https://doi.org/10.1016/0927-7765(95)01226-5

    Article  Google Scholar 

  • Cabral DA, Loh BA, Speert DP (1987) Mucoid Pseudomonas aeruginosa resists nonopsonic phagocytosis by human neutrophils and macrophages. Pediatr Res 22:429–431

    Article  CAS  PubMed  Google Scholar 

  • Camper AK, Warnecke M, Jones WL, McFeters GA (1998) Pathogens in model distribution system biofilms. American Water Works Association Research Foundation, Denver

    Google Scholar 

  • Chagnot C, Listrat A, Astruc T, Desvaux M (2012) Bacterial adhesion to animal tissues: protein determinants for recognition of extracellular matrix components. Cell Microbiol 14:1687–1696

    Article  CAS  PubMed  Google Scholar 

  • Chagnot C, Zorgani MA, Astruc T, Desvaux M (2013) Proteinaceous determinants of surface colonization in bacteria: bacterial adhesion and biofilm formation from a protein secretion perspective. Front Microbiol 4:303

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen M, Yu Q, Sun H (2013) Novel strategies for the prevention and treatment of biofilm related infections. Int J Mol Sci 14(9):18488–18501

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Clarke SR, Foster SJ (2006) Surface adhesins of Staphylococcus aureus. Adv Microb Physiol 51:187–224

    Article  CAS  PubMed  Google Scholar 

  • Cohen FE, Kelly JW (2003) Therapeutic approaches to protein-misfolding diseases. Nature 426:905–909

    Article  CAS  PubMed  Google Scholar 

  • Costerton JW, Lappin-Scott HM (1989) Behavior of bacteria in biofilms. ASM News 1989:650

    Google Scholar 

  • Costerton JW, Irvin RT, Cheng KJ (1981) The bacterial glycocalyx in nature and disease. Annu Rev Microbiol 35:299–324

    Article  CAS  PubMed  Google Scholar 

  • Danne C, Dramsi S (2012) Pili of Gram-positive bacteria: roles in host colonization. Res. Microbiology 163:645–658

    CAS  Google Scholar 

  • Darouiche RO (2001) Device-associated infections: a macroproblem that starts with microadherence. Clin Infect Dis 33:1567–1572

    Article  CAS  PubMed  Google Scholar 

  • Dastgheyb SS, Hammoud S, Ketonis C, Liu AY, Fitzgerald K, Parvizi J, Purtill J, Ciccotti M, Shapiro IM, Otto M, Hickok NJ (2015) Staphylococcal persistence due to biofilm formation in synovial fluid containing prophylactic cefazolin. Antimicrob Agents Chemother 59:2122–2128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davey ME, O’Toole A (2000) Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64:847–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280:295–298. https://doi.org/10.1126/science.280.5361.295

    Article  CAS  PubMed  Google Scholar 

  • De Kievit TR (2001) Multidrug efflux pumps: expression patterns and contribution to antibiotic resistance in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 45:1761–1770

    Article  PubMed  PubMed Central  Google Scholar 

  • Dickinson GM, Bisno AL (1989) Infections associated with indwelling devices: infections related to extravascular devices. Antimicrob Agents Chemother 33(5):602–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donlan RM (2000a) Role of biofilms in antimicrobial resistance. ASAIO J 46:S47–S52. https://doi.org/10.1097/00002480-200011000-00037

    Article  CAS  PubMed  Google Scholar 

  • Donlan RM (2000b) Biofilm control in industrial water systems: approaching an old problem in new ways. In: Evans LV (ed) Biofilms: recent advances in their study and control. Harwood Academic Publishers, Amsterdam, pp 333–360

    Google Scholar 

  • Donlan RM (2008) Biofilms on central venous catheters: is eradication possible? Curr Top Microbiol Immunol 322:133–161

    CAS  PubMed  Google Scholar 

  • Dudman WF (1977) The role of surface polysaccharides in natural environments. In: Sutherland IW (ed) Surface carbohydrates of the prokaryotic cell. Academic Press, New York, pp 357–414

    Google Scholar 

  • Durack DT (1975) Experimental bacterial endocarditis. IV Structure and evolution of very early lesions. J Pathol 115:81–89. https://doi.org/10.1002/path.1711150204

    Article  CAS  PubMed  Google Scholar 

  • Dutta D, Willcox MD (2013) A laboratory assessment of factors that affect bacterial adhesion to contact lenses. Biology 2:1268–1281

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ehlers LJ, Bouwer EJ (1999) RP4 plasmid transfer among species of Pseudomonas in a biofilm reactor. Water Sci Technol 7:163–171. https://doi.org/10.1016/S0273-1223(99)00164-X

    Article  Google Scholar 

  • Engel T (1986) Low-energy atom scattering from surfaces. Science 234:327–333

    Article  CAS  PubMed  Google Scholar 

  • Espersen F, Wilkinson BJ, Gahrn-Hansen B, Thamdrup Rosdahl V, Clemmensen I (1990) Attachment of staphylococci to silicone catheters in vitro. APMIS 98:471–478

    Article  CAS  PubMed  Google Scholar 

  • Evans ML, Chorell E, Taylor JD, Ã…den J, Götheson A, Li F, Koch M, Sefer L, Matthews SJ, Wittung-Stafshede P, Almqvist F, Chapman MR (2015) The bacterial curli system possesses a potent and selective inhibitor of amyloid formation. Mol Cell 57:445–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falanga V (2000) Classifications for wound bed preparation and stimulation of chronic wounds. Wound Repair Regen 8:347–352

    Article  CAS  PubMed  Google Scholar 

  • Falkinham JO (2007) Growth in catheter biofilms and antibiotic resistance of Mycobacterium avium. J Med Microbiol 56:250–254

    Article  PubMed  Google Scholar 

  • Flemming H-C, Griegbe WJ, Mayer C (2000) Physico-chemical properties of biofilms. In: Evans LV (ed) Biofilms: recent advances in their study and control. Harwood Academic Publishers, Amsterdam, pp 19–34

    Chapter  Google Scholar 

  • Fletcher M (1980) Adherence of marine microorganisms to smooth surfaces. In: Beachey EH (ed) Bacterial adherence: receptors and recognition. Series B. Chapman and Hall, London, pp 345–374

    Chapter  Google Scholar 

  • Garrett TR, Bhakoo M, Zhang Z (2008) Bacterial adhesion and biofilms on surfaces. Prog Nat Sci 18:1049–1056

    Article  CAS  Google Scholar 

  • Geis G, Suerbaum S, Forsthoff B, Leying H, Opferkuch W (1993) Ultrastructure and biochemical studies of the flagellar sheath of Helicobacter pylori. J Med Microbiol 38:371–377

    Article  CAS  PubMed  Google Scholar 

  • Ghigo J-M (2001) Natural conjugative plasmids induce bacterial biofilm development. Nature 412:442–445. https://doi.org/10.1038/35086581

    Article  CAS  PubMed  Google Scholar 

  • Giormezis N, Kolonitsiou F, Makri A, Vogiatzi A, Christofidou M, Anastassiou ED, Spiliopoulou I (2015) Virulence factors among Staphylococcus lugdunensis are associated with infection sites and clonal spread. Eur J Clin Microbiol Infect Dis 34:773–778

    Article  CAS  PubMed  Google Scholar 

  • Gristina AG, Giridhar G, Gabriel BL, Naylor PT, Myrvik QN (1993) Cell biology and molecular mechanisms in artificial device infections. Int J Artif Organs 16:755–764

    Article  CAS  PubMed  Google Scholar 

  • Grkovic S (2002) Regulation of bacterial drug export systems. Microbiol Mol Biol Rev 66:671–701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu HS, Hou C, Yongyat S, De Tore Ren D (2013) Patterned biofilm formation reveals a mechanism for structural heterogeneity in bacterial biofilms. Langmuir 29(35):11145–11153

    Article  CAS  PubMed  Google Scholar 

  • Gupta PS, Sarkar B, Das S, Bhattacharjee P (2016) Tribedi, Biofilm, pathogenesis and prevention e a journey to break the wall: a review. Arch Microbiol 198(1):1–15

    Article  CAS  PubMed  Google Scholar 

  • Habash M, Reid G (1999) Microbial biofilms: their development and significance for medical device-related infections. J Clin Pharmacol 39(9):887–898

    Article  CAS  PubMed  Google Scholar 

  • Harshey RM (2003) Bacterial motility on a surface: many ways to a common goal. Annu Rev Microbiol 57:249–273

    Article  CAS  PubMed  Google Scholar 

  • Hausner M, Wuertz S (1999) High rates of conjugation in bacterial biofilms as determined by quantitative in situ analysis. Appl Environ Microbiol 65:3710–3713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heilmann C, GÓ§tz F (2009) Cell–cell communication and biofilm formation in gram-positive bacteria. In: Krämer R, Jung K (eds) Bacterial signaling. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany. https://doi.org/10.1002/9783527629237.ch1

    Chapter  Google Scholar 

  • Heilmann C, Hussain M, Peters G, Götz F (1997) Evidence for autolysin-mediated primary attachment of Staphylococcus epidermidis to a polystyrene surface. Mol Microbiol 24:1013–1024

    Article  CAS  PubMed  Google Scholar 

  • Hellstrtom J (1938) The significance of staphylococci in the development and treatment of renal and urethral stones. Br J Urol 10:348–372

    Article  Google Scholar 

  • Henke JM, Bassler BL (2004) Bacterial social engagements. Trends Cell Biol 14:648–656

    Article  CAS  PubMed  Google Scholar 

  • Henrichsen J (1972) Bacterial surface translocation: a survey and a classification. Bacteriol Rev 36:478–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herrmann M, Vaudanx PE, Pittet D (1988) Fibronectin, fibrinogen and laminin act as mediators of adherence of clinical staphylococcal isolates to foreign material. J Infect Dis 158:693–701

    Article  CAS  PubMed  Google Scholar 

  • Holmberg A, Rasmussen M (2016) Mature biofilms of Enterococcus faecalis and Enterococcus faecium are highly resistant to antibiotics. Diagn Microbiol Infect Dis 84:19–21

    Article  CAS  PubMed  Google Scholar 

  • Hood SK, Zottola EA (1997) Adherence to stainless steel by foodborne microorganisms during growth in model food systems. Int J Food Microbiol 37:145–153. https://doi.org/10.1016/S0168-1605(97)00071-8

    Article  CAS  PubMed  Google Scholar 

  • Hughes KT (2008) Coordinating assembly of a bacterial macromolecular machine. Nat Rev Microbiol 6:455–465

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hussain M, Wilcox MH, White PJ (1993) The slime of coagulase-negative staphylococci: biochemistry and relation to adherence. FEMS Microbiol Rev 104:191–208. https://doi.org/10.1111/j.1574-6968.1993.tb05867.x

    Article  CAS  Google Scholar 

  • Hyun H-K, Salehi S, Ferracane JL (2015) Biofilm formation affects surface properties of novel bioactive glass-containing composites. Dent Mater. www.intl.elsevierhealth.com/journals/dema

  • James GA, Beaudette L, Costerton JW (1995) Interspecies bacterial interactions in biofilms. J Ind Microbiol 15:257–262. https://doi.org/10.1007/BF01569978

    Article  CAS  Google Scholar 

  • Koch C, Hoiby N (1983) Pathogenesis of cystic fibrosis. Lancet 341:1065–1069

    Article  Google Scholar 

  • Kojima S, Blair DF (2004) The bacterial flagellar motor: structure and function of a complex molecular machine. Int Rev Cytol 233:93–134

    Article  CAS  PubMed  Google Scholar 

  • Kramer A, Schwebke I, Kampf G (2006) How long do nosocomial pathogens persist on inanimate surfaces? A systematic review. BMC Infect Dis 6:130. https://doi.org/10.1186/1471-2334-6-130. PMID: 16914034; PMCID: PMC1564025.

    Article  PubMed  PubMed Central  Google Scholar 

  • Laverty G, Gorman SP, Gilmore BF (2014) Biomolecular mechanisms of Pseudomonas aeruginosa and Escherichia coli biofilm formation. Pathogens 3:596–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leriche V, Sibille P, Carpentier B (2000) Use of an enzyme-linked lectin sorbent assay to monitor the shift in polysaccharide composition in bacterial biofilms. Appl Environ Microbiol 66:1851–1856. https://doi.org/10.1128/AEM.66.5.1851-1856.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewandowski Z (2000) Structure and function of biofilms. In: Evans LV (ed) Biofilms: recent advances in their study and control. Harwood Academic Publishers, Amsterdam, pp 1–17

    Google Scholar 

  • Lewis K (2008) Multidrug tolerance of biofilms and persister cells. Bacterial biofilms. Springer. Antimicrob Agents Chemother 51:1934–1938

    Google Scholar 

  • Lewis K (2012) Persister cells: molecular mechanisms related to antibiotic tolerance. In: Antibiotic resistance, vol 211. Springer, Berlin, Germany, pp 121–133

    Chapter  Google Scholar 

  • Li DQ, Lundberg F, Ljungh A (2001) Characterization of vitronectin binding proteins of Staphylococcus epidermidis. Curr Microbiol 42:361–367

    Article  CAS  PubMed  Google Scholar 

  • Mack D, Horstkotte MA, Rohde H, Knobloch JKM (2006) Coagulase-negative staphylococci. In: Pace JL, Rupp ME, Finch RG (eds) Biofilms, infection, and antimicrobial therapy. CRC Press, Boca Raton, pp 109–153

    Google Scholar 

  • Macnab RM (2003) How bacteria assemble flagella. Annu Rev Microbiol 57:77–100

    Article  CAS  PubMed  Google Scholar 

  • Makin SA, Beveridge TJ (1996) The influence of A-band and B-band lipopolysaccharide on the surface characteristics and adhesion of Pseudomonas aeruginosa to surfaces. Microbiology 142:299–307

    Article  CAS  PubMed  Google Scholar 

  • Marles-Wright J, Lewis RJ (2007) Stress responses of bacteria. Curr Opin Struct Biol 17:755–760

    Article  CAS  PubMed  Google Scholar 

  • Marrie TJ, Costerton JW (1983) A scanning and transmission electron microscopic study of the surface of intrauterine contraceptive devices. Am J Obstet Gynecot 146:384–394

    Article  CAS  Google Scholar 

  • Marrie TJ, Harding GKM, Ronald AR, Dikkema J, Lain J, Hoban S, Costerton JW (1979) Influence of antibody coating of Pseudomonas aeruginosa. J Infect Dis 19:357–361

    Article  Google Scholar 

  • Marsh PD, Moter A, Devine DA (2000) Dental plaque biofilms: communities, conflict and control. Periodontology 55:16–35

    Article  Google Scholar 

  • Mathee K, Ciofu O, Sternberg C, Lindum PW, Campbell JI, Jensen P, Johnsen AH, Givskov M, Ohman DE, Molin S et al (1999) Mucoid conversion of Pseudomonas aeruginosa by hydrogen peroxide: a mechanism for virulence activation in the cystic fibrosis lung. Microbiology 145:1349–1357

    Article  CAS  PubMed  Google Scholar 

  • Mattick JS (2002) Type IV pili and twitching motility. Annu Rev Microbiol 56:289–314

    Article  CAS  PubMed  Google Scholar 

  • McLaughlin-Borlace L, Stapleton F, Matheson M, Dart JKG (1998) Bacterial biofilm on contact lenses and lens storage cases in wearers with microbial keratitis. J Appl Microbiol 84:827–823

    Article  CAS  PubMed  Google Scholar 

  • Mendoza MT (2004) El papel del biofilm en el proceso infeccioso y la resistencia. Nova 2:71–80

    Article  Google Scholar 

  • Merz AJ, So M, Sheetz MP (2000) Pilus retraction powers bacterial twitching motility. Nature 407:98–102

    Article  CAS  PubMed  Google Scholar 

  • Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199

    Article  CAS  PubMed  Google Scholar 

  • Mitchell JG, Kogure K (2006) Bacterial motility: links to the environment and a driving force for microbial physics. FEMS Microbiol Ecol 55:3–16

    Article  CAS  PubMed  Google Scholar 

  • Moran C, Grussemeyer CA, Spalding JR, Benjamin DK Jr, Reed SD (2009) Candida albicans and non-albicans bloodstream infections in adult and pediatric patients: comparison of mortality and costs. Pediatr Infect Dis J 28:433–435

    Article  PubMed  PubMed Central  Google Scholar 

  • Muller E, Hubner J, Gutierrez N (1993) Isolation and characterization of transposon mutants of Staphylococcus epidermidis deficient in capsular polysaccharide/adhesion and slime. Infect Immun 61(2):551–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murdoch H, Taylor D, Dickinson J, Walker JT, Perrett D, Raven NDH, Sutton JM (2006) Surface decontamination of surgical instruments: an ongoing dilemma. J Hosp Infect 63:432–438

    Article  CAS  PubMed  Google Scholar 

  • Murga R, Forster TS, Brown E, Pruckler JM, Fields BS, Donlan RM (2001) The role of biofilms in the survival of Legionella pneumophila in a model potable water system. Microbiology 147:3121–3126

    Article  CAS  PubMed  Google Scholar 

  • Murphy EC, Janulczyk R, Karlsson C, MÓ§rgelin M, Frick IM (2014) Identification of pili on the surface of Finegoldia magna—a Gram positive anaerobic cocci. Anaerobe 27:40–49

    Article  CAS  PubMed  Google Scholar 

  • Neut DC (2007) The role of small-colony variants in failure to diagnose and treat biofilm infections in orthopedics. Acta Orthop 78:299–308

    Article  PubMed  Google Scholar 

  • Nickel JC (1987) An ecological study of infected urinary stone genesis in an animal model. Br J Urol 59:21–30

    Article  CAS  PubMed  Google Scholar 

  • Oppenheimer-Shaanan Y, Steinberg N, Kolodkin-Gal I (2013) Small molecules are natural triggers for the disassembly of biofilms. Trends Microbiol 21(11):594–601

    Article  CAS  PubMed  Google Scholar 

  • Osterman IA, Dikhtyar YY, Bogdanov AA, Dontsova OA, Sergiev PV (2015) Regulation of flagellar gene expression in bacteria. Biochemistry (Mosc) 80:1447–1456

    Article  CAS  Google Scholar 

  • Otter JA, Vickery K, Walker JT, Delancey Pulcini E, Stoodley P, Goldenberg SD, Salkeld JAG, Chewins J, Yezli S, Edgeworth JD (2015) Surface-attached cells, biofilms and biocide susceptibility: implications for hospital cleaning and disinfection. J Hosp Infect 89:16–27

    Article  CAS  PubMed  Google Scholar 

  • Patti JM, Allen BL, Mcgavin MJ, Höök M (1994a) MSCRAMM-mediated adherence of microorganisms to host tissues. Annu Rev Microbiol 48:585–617

    Article  CAS  PubMed  Google Scholar 

  • Patti JM, Bremell T, Krajewska-Pietrasik D, Abdelnour A, Tarkowski A, Rydén C, Höök M (1994b) The Staphylococcus aureus collagen adhesin is a virulence determinant in experimental septic arthritis. Infect Immun 62:152–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paul K, Erhardt M, Hirano T, Blair DF, Hughes KT (2008) Energy source of flagellar type III secretion. Nature 451:489–492

    Article  CAS  PubMed  Google Scholar 

  • Pesavento C, Becker G, Sommerfeldt N, Possling A, Tschowri N, Mehlis A, Hengge R (2008) Inverse regulatory coordination of motility and curli-mediated adhesion in Escherichia coli. Genes Dev 22:2434–2446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porter SL, Wadhams GH, Armitage JP (2011) Signal processing in complex chemotaxis pathways. Nat Rev Microbiol 9:153–165

    Article  CAS  PubMed  Google Scholar 

  • Povolotsky TL, Hengge R (2015) Genome-based comparison of c-di-GMP signaling in pathogenic and commensal Escherichia coli strains. J Bacteriol 198(1):111–126

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pulcini E (2001) The effects of initial adhesion events on the physiology of Pseudomonas aeruginosa [Ph.D. dissertation]. Montana State University, Bozeman, MT

    Google Scholar 

  • Pulverer G, Quie P, Peters G (eds) (1987) Pathogenesis and clinical significance of coagulase-negative staphylococci. Zentralbl Bakteriol. Mikobiol. Hyg. (A) Suppl 16. Gustav Fischer, Stuttgart

    Google Scholar 

  • Raad II, Sabbagh MF, Rand KH, Sherertz RJ (1992) Quantitative tip culture methods and the diagnosis of central venous catheter-related infections. Diagn Microbiol Infect Dis 15:13–20. https://doi.org/10.1016/0732-8893(92)90052-U

    Article  CAS  PubMed  Google Scholar 

  • Ramsugit S, Pillay M (2015) Pili of Mycobacterium tuberculosis: current knowledge and future prospects. Arch Microbiol 197:737–744

    Article  CAS  PubMed  Google Scholar 

  • Roberts AP, Pratten J, Wilson M, Mullany P (1999) Transfer of a conjugative transposon, Tn5397 in a model oral biofilm. FEMS Microbiol Lett 177:636. https://doi.org/10.1111/j.1574-6968.1999.tb13714.x

    Article  Google Scholar 

  • Rodrigues L, Banat IM, Teixeira J (2007) Strategies for the prevention of microbial biofilm formation on silicone rubber voice prostheses. J Biomed Mater Res B Appl Biomater 81(2):358–370

    Article  PubMed  CAS  Google Scholar 

  • Rohit Ruhal HA (2015) A multivariate approach to correlate bacterial surface properties to biofilm formation by lipopolysaccharide mutants of Pseudomonas aeruginosa. Colloids Surf B: Biointerfaces 127:182–191

    Article  PubMed  CAS  Google Scholar 

  • Samaranayake LP, Anil S, Hashem M, Vellappally S, Cheung BP (2015) Human serum potentiates the expression of genes associated with antifungal drug resistance in C. albicans biofilms on central venous catheters. Mycopathologia 179:195–204

    Article  CAS  PubMed  Google Scholar 

  • Sauer K, Camper AK, Ehrlich GD, Costerton JW, Davies DG (2002) Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol 184:1140–1154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sedgley CM, Lee EH, Martin MJ, Flannagan SE (2008) Antibiotic resistance gene transfer between Streptococcus gordonii and Enterococcus faecalis in root canals of teeth ex vivo. J Endod 34:570–574

    Article  PubMed  Google Scholar 

  • Shigeru Fujimura TS (2015) Antimicrobial efficacy of combined clarithromycin plus daptomycin against biofilms-formed methicillin-resistant Staphylococcus aureus on titanium medical devices. J Infect Chemother 21:756–759

    Article  PubMed  CAS  Google Scholar 

  • Silverman M, Simon M (1974) Flagellar rotation and the mechanism of bacterial motility. Nature 249:73–74

    Article  CAS  PubMed  Google Scholar 

  • Skerker JM, Berg HC (2001) Direct observation of extension and retraction of type IV pili. Proc Natl Acad Sci U S A 98:6901–6904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soto GE, Hultgren SJ (1999) Bacterial adhesins: common themes and variations in architecture and assembly. J Bacteriol 181:1059–1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stark RM, Gerwig GJ, Pitman RS, Potts LF, Williams NA, Greenman J (1999) Biofilm formation by Helicobacter pylori. Lett Appl Microbiol 28:121–126. https://doi.org/10.1046/j.1365-2672.1999.00481.x

    Article  CAS  PubMed  Google Scholar 

  • Stewart PS, Camper AK, Handran SD, Huang C-T, Warnecke M (1997) Spatial distribution and coexistence of Klebsiella pneumoniae and Pseudomonas aeruginosa in biofilms. Microb Ecol 33:2–10. https://doi.org/10.1007/s002489900002

    Article  CAS  PubMed  Google Scholar 

  • Stickler DJ (1996) Bacterial biofilms and the encrustation of urethral catheters. Biofouling 94:293–305

    Article  Google Scholar 

  • Stickler DJ, Morris NS, McLean RJC, Fuqua C (1998) Biofilms on indwelling urethral catheters produce quorum-sensing signal molecules in situ and in vitro. Appl Environ Microbiol 64:3486–3490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stoodley P, Boyle JD, Dodds I, Lappin-Scott HM (1997) Consensus model of biofilm structure. In: Wimpenny JWT, Gilbert PS, Lappin-Scott HM, Jones M (eds) Biofilms: community interactions and control. Bioline, Cardiff, UK, pp 1–9

    Google Scholar 

  • Subbaraman LN, Borazjani R, Zhu H, Zhao Z, Jones L, Willcox MD (2011) Influence of protein deposition on bacterial adhesion to contact lenses. Optom Vis Sci 88:959–966

    Article  PubMed  Google Scholar 

  • Subramanian P, Shanmugam N, Sivaraman U, Kumar S, Selvaraj S (2012) Antibiotic resistance pattern of biofilm-forming uropathogens isolated from catheterised patients in Pondicherry, India. Aust Med J 5:344–348

    Article  Google Scholar 

  • Suman E, Varghese B, Joseph N, Nisha K, Kotian MS (2013) The bacterial biofilms in dialysis water systems and the effect of the sub inhibitory concentrations of chlorine on them. J Clin Diagn Res 7(5):849–852. https://doi.org/10.7860/JCDR/2013/5118.2956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sutherland IW (2001) Biofilm exopolysaccharides: a strong and sticky framework. Microbiology 147:3–9

    Article  CAS  PubMed  Google Scholar 

  • Tolker-Nielsen T, Molin S (2000) Spatial organization of microbial biofilm communities. Microb Ecol 40:75–84

    Google Scholar 

  • Tunney MM, Jones DS, Gorman SP (1999) Biofilm and biofilm-related encrustations of urinary tract devices. In: Doyle RJ (ed) Methods in enzymology, Biofilms, vol 310. Academic Press, San Diego, pp 558–566

    Google Scholar 

  • U.S. Department of Health and Human Services (1996) Public Health Service: National nosocomial infections surveillance (NNIS) report. Data summary from October 1986–April 1996, issued May. Am J Infect Control 24:380–388

    Article  Google Scholar 

  • Vandaux P, Pittet D, Haeberli A (1989) Host factors selectively increase staphylococcal adherence on inserted catheters: a role for fibronectin and fibrinogen or fibrin. J Infect Dis 160:865–875

    Article  Google Scholar 

  • Vaudaux PE, Lew DP, Waldvogel FA (1994) Host factors predisposing to and influencing therapy of foreign body infections. In: Bisno AL, Waldvogel FA (eds) Infections associated with indwelling medical devices. American Society for Microbiology, Washington DC, pp 1–29

    Google Scholar 

  • Veerachamy S, Yarlagadda T, Manivasagam G, Yarlagadda PK (2014) Bacterial adherence and biofilm formation on medical implants: a review. Proc Inst Mech Eng H 228(10):1083–1099

    Article  PubMed  Google Scholar 

  • Wadhams GH, Armitage JP (2004) Making sense of it all: bacterial chemotaxis. Nat Rev Mol Cell Biol 5:1024–1037

    Article  CAS  PubMed  Google Scholar 

  • Watnick PI, Kolter R (1999) Steps in the development of a vibrio cholerae El Tor biofilm. Mol Microbiol 34:586–595. https://doi.org/10.1046/j.1365-2958.1999.016234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weigel LM, Donlan RM, Shin DH, Jensen B, Clark NC, Mcdougal LK, Zhu W, Musser KA, Thompson J, Kohlerschmidt D, Dumas N, Limberger RJ, Patel JB (2007) High-level vancomycin-resistant Staphylococcus aureus isolates associated with a polymicrobial biofilm. Antimicrob. Agents Chemother 51:231–238

    Article  CAS  Google Scholar 

  • Wirtanen G, Alanko T, Mattila-Sandholm T (1996) Evaluation of epifluorescence image analysis of biofilm growth on stainless steel surfaces. Colloids Surf B: Biointerfaces 5:319–326. https://doi.org/10.1016/0927-7765(95)01226-5

    Article  CAS  Google Scholar 

  • Xie H, Cook GS, Costerton JW, Bruce G, Rose TM, Lamont RJ (2000) Intergeneric communication in dental plaque biofilms. J Bacteriol 182:7067–7069. https://doi.org/10.1128/JB.182.24.7067-7069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yung-Hua L, Lau PCY, Lee JH, Ellen RP, Cvitkovitch DG (2001) Natural genetic transformation of Streptococcus mutans growing in biofilms. J Bacteriol 183:897–908. https://doi.org/10.1128/JB.183.3.897-908.2001

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lahiri, D. et al. (2021). Biofilm on Medical Appliances. In: Ray, R.R., Nag, M., Lahiri, D. (eds) Biofilm-Mediated Diseases: Causes and Controls. Springer, Singapore. https://doi.org/10.1007/978-981-16-0745-5_7

Download citation

Publish with us

Policies and ethics