Skip to main content

Oscillation-Preserving Integrators for Highly Oscillatory Systems of Second-Order ODEs

  • Chapter
  • First Online:
Geometric Integrators for Differential Equations with Highly Oscillatory Solutions
  • 562 Accesses

Abstract

In this chapter, from the point of view of Geometric Integration, i.e. the numerical solution of differential equations using integrators that preserve as many as possible the geometric/physical properties of them, we first introduce the concept of oscillation preservation for Runge–Kutta–Nyström (RKN)-type methods and then analyse the oscillation-preserving behaviour of RKN-type methods in detail. This chapter is also accompanied by numerical experiments which show the importance of the oscillation-preserving property for a numerical method, and the remarkable superiority of oscillation-preserving integrators for solving nonlinear multi-frequency highly oscillatory systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Petzold, L.R., Jay, L.O., Yen, J.: Numerical solution of highly oscillatory ordinary differential equations. Acta Numer. 7, 437–483 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cohen, D., Jahnke, T., Lorenz, K., et al.: Numerical integrators for highly oscillatory Hamiltonian systems: a review mielke A. In: Analysis, Modeling and Simulation of Multiscale Problems, pp. 553–576. Springer, Berlin (2006)

    Google Scholar 

  3. Brugnano, L.J., Montijano, I., Rández, L.: On the effectiveness of spectral methods for the numerical solution of multi-frequency highly oscillatory Hamiltonian problems. Numer. Algor. 81, 345–376 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  4. García-Archillay, B., Sanz-Serna, J.M., Skeel, R.D.: Long-time-step methods for oscillatory differential equations. SIAM J. Sci. Comput. 20, 930–963 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. González, A.B., Martín, P., Farto, J.M.: A new family of Runge–Kutta type methods for the numerical integration of perturbed oscillators. Numer. Math. 82, 635–646 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. van der Houwen, P.J., Sommeijer, B.P.: Explicit Runge–Kutta (–Nyström) methods with reduced phase errors for computing oscillating solution. SIAM J. Numer. Anal. 24, 595–617 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  7. Li, Y.W., Wu, X.: Functionally fitted energy-preserving methods for solving oscillatory nonlinear Hamiltonian systems. SIAM J. Numer. Anal. 54, 2036–2059 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Wang, B., Iserles, A., Wu, X.: Arbitrary-order trigonometric Fourier collocation methods for multi-frequency oscillatory systems. Found. Comput. Math. 16, 151–181 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bao, W.Z., Dong, X.C.: Analysis and comparison of numerical methods for the Klein-Gordon equation in the nonrelativistic limit regime. Numer. Math. 120, 189–229 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Mei, L., Liu, C., Wu, X.: An essential extension of the finite-energy condition for extended Runge–Kutta–Nyström integrators when applied to nonlinear wave equations. Commun. Comput. Phys. 22, 742–764 (2017)

    Article  MathSciNet  Google Scholar 

  11. Wang, B., Wu, X.: The formulation and analysis of energy-preserving schemes for solving high-dimensional nonlinear Klein-Gordon equations. IMA J. Numer. Anal. 39, 2016–2044 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  12. Nyström, E.J.: Uber die numerische Integration von differentialgleichungen. Acta. Soc. Sci. Fennicae 50(13), 1–54 (1925)

    MATH  Google Scholar 

  13. Wu, X., Wang, B.: Recent developments. In: Structure-Preserving Algorithms for Oscillatory Differential Equations. Springer Nature Singapore Pte Ltd., Singapore (2018)

    MATH  Google Scholar 

  14. Franco, J.M.: Runge–Kutta–Nyström methods adapted to the numerical integration of perturbed oscillators. Comput. Phys. Commun. 147, 770–787 (2002)

    Article  MATH  Google Scholar 

  15. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  16. Hochbruck, M., Lubich, C.h.: A Gautschi-type method for oscillatory second-order differential equations. Numer. Math. 83, 403–426 (1999)

    Google Scholar 

  17. Li, Y.W., Wu, X.: Exponential integrators preserving first integrals or Lyapunov functions for conservative or dissipative systems. SIAM J. Sci. Comput. 38, 1876–1895 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mei, L., Wu, X.: The construction of arbitrary order ERKN methods based on group theory for solving oscillatory Hamiltonian systems with applications. J. Comput. Phys. 323, 171–190 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Tocino, A., Vigo-Aguiar, J.: Symplectic conditions for exponential fitting Runge–Kutta–Nyström methods. Math. Comput. Model. 42, 873–876 (2005)

    Article  MATH  Google Scholar 

  20. Wang, B., Meng, F., Fang, Y.: Efficient implementation of RKN-type Fourier collocation methods for second-order differential equations. Appl. Numer. Math. 119, 164–178 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wang, B., Wu, X.: A new high precision energy-preserving integrator for system of oscillatory second-order differential equations. Phys. Lett. A 376, 1185–1190 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wang, B., Wu, X.: Global error bounds of one-stage extended RKN integrators for semilinear wave equations. Numer. Algor. 81, 1203–1218 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wu, X., Wang, B., Shi, W.: Efficient energy-preserving integrators for oscillatory Hamiltonian systems. J. Comput. Phys. 235, 587–605 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wu, X., Wang, B., Xia, J.: Explicit symplectic multidimensional exponential fitting modified Runge–Kutta–Nyström methods. BIT Numer. Math. 52, 773–795 (2012)

    Article  MATH  Google Scholar 

  25. Wu, X., You, X., Shi, W., et al.: ERKN integrators for systems of oscillatory second-order differential equations. Comput. Phys. Commun. 181, 1873–1887 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Yang, H., Zeng, X., Wu, X., et al.: A simplified Nyström-tree theory for extended Runge–Kutta–Nyström integrators solving multi-frequency oscillatory systems. Comput. Phys. Commun. 185, 2841–2850 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. You, X., Zhao, J., Yang, H., et al.: Order conditions for RKN methods solving general second-order oscillatory systems. Numer. Algor. 66, 147–176 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zeng, X., Yang, H., Wu, X.: An improved tri-colored rooted-tree theory and order conditions for ERKN methods for general multi-frequency oscillatory systems. Numer. Algor. 75, 909–935 (2017)

    Article  MATH  Google Scholar 

  29. Wu, X., You, X., Xia, J.: Order conditions for ARKN methods solving oscillatory systems. Comput. Phys. Commun. 180, 2250–2257 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wu, X., You, X., Li, J.: Note on derivation of order conditions for ARKN methods for perturbed oscillators. Comput. Phys. Commun. 180, 1545–1549 (2009)

    Article  MathSciNet  Google Scholar 

  31. Li, J., Shi, W., Wu, X.: The existence of explicit symplectic ARKN methods with several stages and algebraic order greater than two. J. Comput. Appl. Math. 353, 204–209 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  32. Shi, W., Wu, X.: A note on symplectic and symmetric ARKN methods. Comput. Phys. Commun. 184, 2408–2411 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Franco, J.M.: New methods for oscillatory systems based on ARKN methods. Appl. Numer. Math. 56, 1040–1053 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  34. Filon, L.N.G.: On a quadrature formula for trigonometric integrals. Proc. Royal Soc. Edin. 49, 38–47 (1928)

    Article  MATH  Google Scholar 

  35. Iserles, A., Levin, D.: Asymptotic expansion and quadrature of composite highly oscillatory integrals. Math. Comput. 80, 279–296 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. Baker, T.S., Dormand, J.R., Gilmore, J.P., et al.: Continuous approximation with embedded Runge–Kutta methods. Appl. Numer. Math. 22, 51–62 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  37. Li, J., Wu, X.: Energy-preserving continuous stage extended Runge–Kutta–Nyström methods or oscillatory Hamiltonian systems. Appl. Numer. Math. 145, 469–487 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  38. Owren, B., Zennaro, M.: Order barriers for continuous explicit Runge–Kutta methods. Math. Comput. 56, 645–661 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  39. Owren, B., Zennaro, M.: Derivation of efficient, continuous, explicit Runge–Kutta methods. SIAM J. Sci. Stat. Comput. 13, 1488–1501 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  40. Papakostas, S.N., Tsitouras, C.: Highly continuous interpolants for one-step ODE solvers and their application to Runge–Kutta methods. SIAM J. Numer. Anal. 34, 22–47 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  41. Verner, J.H., Zennaro, M.: The orders of embedded continuous explicit Runge–Kutta methods. BIT Numer. Math. 35, 406–416 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  42. Deuflhard, P.: A study of extrapolation methods based on multistep schemes without parasitic solutions. Z. Angew. Math. Phys. 30, 177–189 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  43. Gautschi, W.: Numerical integration of ordinary differential equations based on trigonometric polynomials. Numer. Math. 3, 381–397 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  44. Grimm, V., Hochbruck, M.: Error analysis of exponential integrators for oscillatory second order differential equations. J. Phys. A 39, 5495 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  45. Hersch, J.: Contribution à la méthode des équations aux differences. ZAMP 9, 129–180 (1958)

    MATH  Google Scholar 

  46. Hochbruck, M., Ostermann, A.: Exponential integrators. Acta Numer. 19, 209–286 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  47. Grubmüller, H., Heller, H., Windemuth, A., et al.: Generalized Verlet algorithm for efficient molecular dynamics simulations with long-range interactions. Molecul. Simul. 6, 121–142 (1991)

    Article  Google Scholar 

  48. Lorenz, K., Jahnke, T., Lubich, C.: Adiabatic integrators for highly oscillatory second-order linear differential equations with time-varying eigen decomposition. BIT Numer. Math. 45, 91–115 (2005)

    Article  MATH  Google Scholar 

  49. Wu, X., Liu, K., Shi, W.: Structure-Preserving Algorithms for Oscillatory Differential Equations II. Springer, Heidelberg (2015)

    Book  MATH  Google Scholar 

  50. Feng, K.: On difference schemes and symplectic geometry. In: Proceedings of the 5th International Symposium on Differential Geometry & Differential Equations, pp. 42–58. Science Press, Beijing (1985)

    Google Scholar 

  51. Feng, K.: Difference schemes for Hamiltonian formalism and symplectic geometry. J. Comp. Math. 4, 279–289 (1986)

    MathSciNet  MATH  Google Scholar 

  52. Feng, K., Qin, M.: Symplectic Geometric Algorithms for Hamiltonian Systems. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  53. Sanz-Serna, J.M.: Runge–Kutta schemes for Hamiltonian systems. BIT Numer. Math. 28, 877–883 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  54. Wu, X., You, X., Wang, B.: Structure-Preserving Algorithms for Oscillatory Differential Equations. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

  55. Leimkuhler, B., Reich, S.: Simulating Hamiltonian Dynamics. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  56. Blanes, S., Casas, F.: A Concise Introduction to Geometric Numerical Integration. CRC Press, Taylor & Francis Group, Florida (2016)

    MATH  Google Scholar 

  57. McLachlan, R.I., Quispel, G.R.W.: Geometric integrators for ODEs. J. Phys. A 39, 5251 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  58. McLachlan, R.I., Quispel, G.R.W., Tse, P.S.P.: Linearization-preserving self-adjoint and symplectic integrators. BIT Numer. Math. 49, 177–197 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  59. Sanz-Serna, J.M.: Symplectic integrators for Hamiltonian problems: an overview. Acta Numer. 1, 243–286 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  60. Sanz-Serna, J.M., Calvo, M.P.: Numerical Hamiltonian Problems. Chapman & Hall, London (1994)

    Book  MATH  Google Scholar 

  61. Hairer, E.: Energy-preserving variant of collocation methods. Am. J. Numer. Anal. Ind. Appl. Math. 5, 73–84 (2010)

    MathSciNet  MATH  Google Scholar 

  62. Hairer, E., Nörsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I: Nonstiff Problems. Springer, Berlin (1993)

    MATH  Google Scholar 

  63. Iserles, A.: A First Course in the Numerical Analysis of Differential Equations, 2nd edn. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  64. Wright, K.: Some relationships between implicit Runge–Kutta, collocation and Lanczost methods, and their stability properties. BIT Numer. Math. 10, 217–227 (1970)

    Article  MATH  Google Scholar 

  65. Celledoni, E., McLachlan, R.I., Owren, B., et al.: Energy-preserving integrators and the structure of B-series. Found. Comput. Math. 10, 673–693 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  66. Hairer, E., Lubich, C.: Long-time energy conservation of numerical methods for oscillatory differential equations. SIAM J. Numer. Anal. 38, 414–441 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  67. McLachlan, R.I., Quispel, G.R.W., Robidoux, N.: Geometric integration using discrete gradients. Philos. Trans. R. Soc. A 357, 1021–1046 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  68. Quispel, G.R.W., McLaren, D.I.: A new class of energy-preserving numerical integration methods. J. Phys. A Math. Theor. 41, 045206 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  69. Grimm, V.: On error bounds for the Gautschi-type exponential integrator applied to oscillatory second-order differential equations. Numer. Math. 100, 71–89 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  70. Drazin, P.J., Johnson, R.S.: Solitons: An Introduction. Cambridge University Press, Cambridge (1989)

    Book  MATH  Google Scholar 

  71. Bratsos, A.G.: On the numerical solution of the Klein-Gordon equation. Numer. Methods Partial Differ. Equ. 25, 939–951 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  72. Liu, C., Wu, X.: The boundness of the operator-valued functions for multidimensional nonlinear wave equations with applications. Appl. Math. Lett. 74, 60–67 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  73. Liu, C., Iserles, A., Wu, X.: Symmetric and arbitrarily high-order Birkhoff-Hermite time integrators and their long-time behavior for solving nonlinear Klein-Gordon equations. J. Comput. Phys. 356, 1–30 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  74. Liu, C., Wu, X.: Arbitrarily high-order time-stepping schemes based on the operator spectrum theory for high-dimensional nonlinear Klein–Gordon equations. J. Comput. Phys. 340, 243–275 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  75. Wu, X., Liu, C.: An integral formula adapted to different boundary conditions for arbitrarily high-dimensional nonlinear Klein–Gordon equations with its applications. J. Math. Phys. 57, 021504 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  76. Wu, X., Wang, B.: Multidimensional adapted Runge–Kutta–Nyström methods for oscillatory systems. Comput. Phys. Commun. 181, 1955–1962 (2010)

    Article  MATH  Google Scholar 

  77. Wang, B., Yang, H., Meng, F.: Sixth order symplectic and symmetric explicit ERKN schemes for solving multi-frequency oscillatory nonlinear Hamiltonian equations. Calcolo 54, 117–140 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  78. Kovacic, I., Brennan, M.J.: The Duffing Equation: Nonlinear Oscillators. Wiley, Hoboken (2011)

    Book  MATH  Google Scholar 

  79. Liu, K., Shi, W., Wu, X.: An extended discrete gradient formula for oscillatory Hamiltonian systems. J. Phys. A Math. Theor. 46, 165203 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  80. Abramowitz, M., Stegun, I.A.: Handbook of Mathematcal Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards, Washington (1964)

    MATH  Google Scholar 

  81. Schiesser, W.E., Griffiths, G.W.: A Compendium of Partial Differential Equation Models: Method of Lines Analysis with Matlab. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  82. Liu, K., Wu, X., Shi, W.: Extended phase properties and stability analysis of RKN-type integrators for solving general oscillatory second-order initial value problems. Numer. Algor. 77, 37–56 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  83. Wu, X., Wang, B., Mei, L.: Oscillation-preserving algorithms for efficiently solving highly oscillatory second-order ODEs. Numer. Algor. 86, 693–727 (2021)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wu, X., Wang, B. (2021). Oscillation-Preserving Integrators for Highly Oscillatory Systems of Second-Order ODEs. In: Geometric Integrators for Differential Equations with Highly Oscillatory Solutions. Springer, Singapore. https://doi.org/10.1007/978-981-16-0147-7_1

Download citation

Publish with us

Policies and ethics