Skip to main content

Studies on the Optical and Structural Properties of Exfoliated Graphene Oxide

  • Conference paper
  • First Online:
Modeling, Simulation and Optimization

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 206))

  • 738 Accesses

Abstract

Graphene oxide (GO) has attracted much attention because of its incredible physical, chemical, and electrical characteristics in the field of materials science. Herein, Hummer’s method is followed for synthesizing GO, that is characterized using optical, structural, and morphological techniques like UV–Visible absorption spectroscopy, Photoluminescence spectroscopy (PL), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The UV–visible absorption spectra shows the absorption peak located at 232 nm which originates from ππ* transition in the aromatic C–C bond. Optical energy gaps have been calculated using Tauc’s plot and found to be 3.34, 3.94, and 4.30 eV. The PL spectra shows a broad peak at 445 nm and its corresponding emission energy is found to be 2.77 eV. The interplanar spacing ~0.87 nm of exfoliated GO sheet was calculated from XRD spectra which suggest 2–3 number of sheets in the exfoliated structure. The SEM micrograph shows larger sheet structure with crumpled morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shahriary, L., Athawale, A.A.: Graphene oxide synthesized by using modified Hummers approach. Int. J. Renew. Energy Environ. Eng. 02(01), 58–63 (2014)

    Google Scholar 

  2. Saxena, S., Tyson, T.A., Shukla, S., Negusse, E., Chen, H., et al.: Investigation of structural and electronic properties of graphene oxide. Appl. Phys. Lett. 99, 013104 (2011)

    Article  Google Scholar 

  3. Mondal, K., Balasubramaniam, B., Gupta, A., Lahcen, A.A., Kwiatkowski M.: Carbon nanostructures for energy and sensing applications. J. Nanotechnol. 1–3 (2019)

    Google Scholar 

  4. Messaoud, N.B., Lahcen, A.A., Dridi, C., Amine, A.: Ultrasound assisted magnetic imprinted polymer combined sensor based on carbon black and gold nanoparticles for selective and sensitive electrochemical detection of bisphenol A. Sens. Actuators B: Chem. 276, 304–312 (2018)

    Article  Google Scholar 

  5. Sa, K., Mahakul, P.C., Saha, S., Vishwakarma, P.N., Nanda, K.K., Mahanandia, P.: Investigation of electrical, mechanical, and thermal properties of functionalized multiwalled carbon nanotubes-reduced graphene oxide/PMMA hybrid nanocomposites. Polym. Eng. Sci. 59(5), 1075–1083 (2019)

    Article  Google Scholar 

  6. Kwon, S., Lee, K.E., Lee, H., Koh, S.J., Ko, J.H., Kim, Y.H., Kim, S.O., Park, J.Y.: The effect of thickness and chemical reduction of graphene oxide on nanoscale friction. J. Phys. Chem. B. 122(2), 543–547 (2018)

    Article  Google Scholar 

  7. Biswal, S., Bhaskaram, D.S., Govindaraj, G.: Graphene oxide: structure and temperature dependent magnetic characterization. Mater. Res. Express 5(8), 086104 (2018)

    Article  Google Scholar 

  8. Feicht, P., Eigler, S.: Defects in graphene oxide as structural motifs. ChemNanoMat 4(3), 244–252 (2018)

    Article  Google Scholar 

  9. Britnell, L., et al.: Field-effect tunneling transistor based on vertical graphene heterostructures. Science 335, 947–950 (2012)

    Article  Google Scholar 

  10. Alam, S.N., Sharma, N., Kumar, L.: Synthesis of graphene oxide (GO) by modified Hummers method and its thermal reduction to obtain reduced graphene oxide (rGO). Graphene 6(1), 1–18 (2017)

    Article  Google Scholar 

  11. Yu, H., Zhang, B., Bulin, C., Li, R., Xing, R.: High-efficient synthesis of graphene oxide based on improved Hummers method. Sci. Rep. 6(1) (2016)

    Google Scholar 

  12. Chen, J., Yao, B., Li, C., Shi, G.: An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon 64, 225–229 (2013)

    Article  Google Scholar 

  13. Katsnelson, M.I.: Graphene: carbon in two dimensions. Mater. Today 10(1–2), 20–27 (2007)

    Article  Google Scholar 

  14. Baby, T.T., Ramaprabhu, S.: Investigation of thermal and electrical conductivity of graphene based nanofluids. J. Appl. Phys. 108, 124308950 (2010)

    Article  Google Scholar 

  15. Luo, L., Peng, T., Yuan, M., Sun, H., Dai, S., Wang, L.: Preparation of graphite oxide containing different oxygen-containing functional groups and the study of ammonia gas sensitivity. Sensors 18(11), 3745 (2018)

    Article  Google Scholar 

  16. Ma, Q., Zhu, X., Zhanga, D., Liu, S.F.: Graphene oxide—a surprisingly good nucleation seed and adhesion promotion agent for one-step ZnO lithography and optoelectronic applications. J. Mater. Chem. C 2(42), 8956–8961 (2014)

    Article  Google Scholar 

  17. Du, D., Song, H., Nie, Y., Sun, X., Chen, L., Ouyang, J.: Blue photoluminescence from chemically derived graphene oxide. Adv. Mater. 22, 505–509 (2010)

    Article  Google Scholar 

  18. Wilson, N.R., Pandey, P.A., Beanland, R., Young, R.J., Kinloch, I.A., Gong, L., Liu, Z., Suenaga, K., Rourke, J.P., York, S.J., Sloan, J.: Graphene oxide: structural analysis and application as a highly transparent support for electron microscopy. Am. Chem. Soc. 3(9), 2547–2556 (2009)

    Google Scholar 

  19. Blanton, T.N., Majumdar, D.: X-ray diffraction characterization of polymer intercalated graphite oxide. Powder Diffr. 27(2), 104–107 (2012)

    Article  Google Scholar 

  20. Yin, Z., Zeng, Z., Liu, J., He, Q., Chen, P., Zhang, H.: Memory devices using a mixture of MoS2 and graphene oxide as the active layer. Small 9(5), 727–731 (2012)

    Article  Google Scholar 

  21. Liu, T., Wu, W., Liao, K.-N., Sun, Q., Gong, X., Roy, V.A.L., Yu, Z.Z., Li, R.K.Y.: Fabrication of carboxymethyl cellulose and graphene oxide bio-nanocomposites for flexible nonvolatile resistive switching memory devices. Carbohyd. Polym. 214, 213–220 (2019)

    Article  Google Scholar 

  22. Li, L.: Tunable memristic characteristics based on graphene oxide charge-trap memory. Micromachines 10, 151 (2019)

    Article  Google Scholar 

  23. Pradhan, S.K., Xiao, B., Mishra, S., Killam, A., Pradhan, A.K.: Resistive switching behaviour of reduced graphene oxide memory cells for low power non-volatile device application. Sci. Rep. 6, 26763 (2016)

    Article  Google Scholar 

  24. Gogoi, K.K., Chowdhury, A.: Highly stable write-once-read-many times switching behavior of graphene oxide-polymer nanocomposites. AIP Conf. Proc. 2142, 150028 (2019)

    Article  Google Scholar 

  25. Gogoi, K.K., Chowdhury, A.: Electric field induced tunable memristive characteristics of exfoliated graphene oxide embedded polymer nanocomposites. J. Appl. Phys. 126, 025501 (2019)

    Article  Google Scholar 

  26. Das, R.C., Gogoi, K.K., Das, N.S., Chowdhury, A.: Optimization of quantum yield of highly luminescent graphene oxide quantum dots and their application in resistive memory devices. Semicond. Sci. Technol. 34(12), 125016 (2019)

    Article  Google Scholar 

  27. Lai, Q., Zhu, S., Luo, X., Zou, M., Huang, S.: Ultraviolet-visible spectroscopy of graphene oxides. AIP Adv. 2, 032146 (2012)

    Article  Google Scholar 

  28. Gogoi, K.K., Das, N.S., Chowdhury, A.: Tuning of electrical hysteresis in PMMA/GOs/PMMA multi-stacked devices. Mater. Res. Express 6, 085108 (2019)

    Article  Google Scholar 

  29. Chien, C.-T., Li, S.-S., Lai, W.-J., Yeh, Y.-C., Chen, H.-A., Chen, I.- S., Chen, L.-C., Chen, K.-H., Nemoto, T., Isoda, S., Chen, M., Fujita, T., Eda, G., Yamaguchi, H., Chhowalla, M., Chen, C.-W.: Tunable photoluminescence from graphene oxide. Angew. Chem. Int. Ed. 51(27), 6662–6666 (2012)

    Google Scholar 

  30. Gupta, R.K., Alahmed, Z.A., Yakuphanoglu, F.: Graphene oxide based low cost battery. Mater. Lett. 112, 75–77 (2013)

    Article  Google Scholar 

  31. Venugopal, G., Krishnamoorthy, K., Mohan, R., Kim, S.-J.: An investigation of the electrical transport properties of graphene-oxide thin films. Mater. Chem. Phys. 132(1), 29–33 (2012)

    Article  Google Scholar 

  32. Yang, H., Jiang, J., Zhou, W., Lai, L., Xi, L., Lam, Z., Shen, Y.M., Khezri, B., Yu, T.: Influences of graphene oxide support on the electrochemical performance of graphene oxide-MnO2 nanocomposites. Nanoscale Res. Lett. 6, 531 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to CIF, National Institute of Technology, Silchar for giving the opportunity for the characterization of material (XRD analysis).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avijit Chowdhury .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Das, N.S., Gogoi, K.K., Chowdhury, A. (2021). Studies on the Optical and Structural Properties of Exfoliated Graphene Oxide. In: Das, B., Patgiri, R., Bandyopadhyay, S., Balas, V.E. (eds) Modeling, Simulation and Optimization. Smart Innovation, Systems and Technologies, vol 206. Springer, Singapore. https://doi.org/10.1007/978-981-15-9829-6_36

Download citation

Publish with us

Policies and ethics