Skip to main content

Recent Trends in Surface Modification of Natural Fibres for Their Use in Green Composites

  • Chapter
  • First Online:
Green Composites

Abstract

Natural fibres have attracted the attention of researchers for application in several industries, such as automotive, construction and furniture, sports and music instruments, among others. The lower weight and relatively lower cost of natural fibres are the main aspects referred to as the reasons for the use of natural fibre composites in these applications. However, the main drawbacks of natural fibres are their poor compatibility with the matrix, relative high water absorption capacity, poor fire resistance and low durability. In order to surpass these undesirable characteristics, several fibre surface treatments have been examined by the researchers. This chapter presents an overview of recent developments in the use of different surface modification of natural fibres for their use in green composites. The main chemical and physical approaches used for surface modification of natural fibres are briefly discussed. In addition, recent studies on the effect of fibres treatment on the mechanical and thermal properties of natural fibre-reinforced composites are summarized. It is shown that the fibre modification methods have different efficacy in improvement of adhesion between the fibre and matrix and consequently in enhancement of mechanical and thermal properties of green composites. The selection of the appropriate fibre modification technique will depend on the particular fibre/matrix and the composite end-use application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pereira AL, Banea MD, Neto JS, Cavalcanti DK (2020) Mechanical and thermal characterization of natural intralaminar hybrid composites based on sisal. Polymers 12(4):866

    Article  CAS  Google Scholar 

  2. Lau K-t, Hung P-y, Zhu M-H, Hui D (2018) Properties of natural fibre composites for structural engineering applications. Compos B Eng 136:222–233

    Article  CAS  Google Scholar 

  3. Cavalcanti D, Banea M, Neto J, Lima R, da Silva L, Carbas R (2019) Mechanical characterization of intralaminar natural fibre-reinforced hybrid composites. Compos B Eng 175:107149

    Article  CAS  Google Scholar 

  4. de Queiroz H, Banea M, Cavalcanti D (2020) Experimental analysis of adhesively bonded joints in synthetic-and natural fibre-reinforced polymer composites. J Compos Mater 54(9):1245–1255

    Article  CAS  Google Scholar 

  5. Pickering KL, Efendy MA, Le TM (2016) A review of recent developments in natural fibre composites and their mechanical performance. Compos Part A Appl Sci Manuf 83:98–112

    Article  CAS  Google Scholar 

  6. Ali A, Shaker K, Nawab Y, Jabbar M, Hussain T, Militky J, Baheti V (2018) Hydrophobic treatment of natural fibers and their composites—a review. J Ind Text 47(8):2153–2183

    Article  CAS  Google Scholar 

  7. Al-Maharma AY, Al-Huniti N (2019) Critical review of the parameters affecting the effectiveness of moisture absorption treatments used for natural composites. J Compos Sci 3:1–27

    Google Scholar 

  8. Azwa Z, Yousif B, Manalo A, Karunasena W (2013) A review on the degradability of polymeric composites based on natural fibres. Mater Des 47:424–442

    Article  CAS  Google Scholar 

  9. Gholampour A, Ozbakkaloglu T (2020) A review of natural fiber composites: properties, modification and processing techniques, characterization, applications. J Mater Sci 1–64

    Google Scholar 

  10. John MJ, Anandjiwala RD (2008) Recent developments in chemical modification and characterization of natural fiber-reinforced composites. Polym Compos 29(2):187–207

    Article  CAS  Google Scholar 

  11. Kalia S, Kaith B, Kaur I (2009) Pretreatments of natural fibers and their application as reinforcing material in polymer composites—a review. Polym Eng Sci 49(7):1253–1272

    Article  CAS  Google Scholar 

  12. Koohestani B, Darban A, Mokhtari P, Yilmaz E, Darezereshki E (2019) Comparison of different natural fiber treatments: a literature review. Int J Environ Sci Technol 16(1):629–642

    Article  CAS  Google Scholar 

  13. Liu M, Thygesen A, Summerscales J, Meyer AS (2017) Targeted pre-treatment of hemp bast fibres for optimal performance in biocomposite materials: a review. Ind Crops Prod 108:660–683

    Article  CAS  Google Scholar 

  14. Mahzan S, Fitri M, Zaleha M (2017) UV radiation effect towards mechanical properties of natural fibre reinforced composite material: a review. In: IOP conference series: materials science and engineering, vol 1. IOP Publishing, p 012021

    Google Scholar 

  15. Sood M, Dwivedi G (2018) Effect of fiber treatment on flexural properties of natural fiber reinforced composites: a review. Egyptian J Petroleum 27(4):775–783

    Article  Google Scholar 

  16. Zhou Y, Fan M, Chen L (2016) Interface and bonding mechanisms of plant fibre composites: an overview. Compos B Eng 101:31–45

    Article  CAS  Google Scholar 

  17. de Araujo Alves Lima R, Kawasaki Cavalcanti D, de Souza e Silva Neto J, Meneses da Costa H, Banea MD (2020) Effect of surface treatments on interfacial properties of natural intralaminar hybrid composites. Polym Compos 41(1):314–325

    Google Scholar 

  18. Verma A, Parashar A, Jain N, Singh V, Rangappa SM, Siengchin S (2020) Surface modification techniques for the preparation of different novel biofibers for composites. In: Biofibers and biopolymers for biocomposites. Springer, pp 1–34

    Google Scholar 

  19. Sullins T, Pillay S, Komus A, Ning H (2017) Hemp fiber reinforced polypropylene composites: the effects of material treatments. Compos B Eng 114:15–22

    Article  CAS  Google Scholar 

  20. Marques MDV, Melo RP, Araujo RD, Lunz JD, Aguiar VD (2015) Improvement of mechanical properties of natural fiber-polypropylene composites using successive alkaline treatments. J Appl Polym Sci 132(12):41710

    Google Scholar 

  21. Brodowsky H, Mäder E (2012) Jute fibre/epoxy composites: Surface properties and interfacial adhesion. Compos Sci Technol 72(10):1160–1166

    Article  CAS  Google Scholar 

  22. Cai M, Takagi H, Nakagaito AN, Li Y, Waterhouse GI (2016) Effect of alkali treatment on interfacial bonding in abaca fiber-reinforced composites. Compos Part A Appl Sci Manuf 90:589–597

    Article  CAS  Google Scholar 

  23. Fiore V, Di Bella G, Valenza A (2015) The effect of alkaline treatment on mechanical properties of kenaf fibers and their epoxy composites. Compos B Eng 68:14–21

    Article  CAS  Google Scholar 

  24. Fiore V, Scalici T, Nicoletti F, Vitale G, Prestipino M, Valenza A (2016) A new eco-friendly chemical treatment of natural fibres: effect of sodium bicarbonate on properties of sisal fibre and its epoxy composites. Compos Part B Eng 85:150–160

    Article  CAS  Google Scholar 

  25. Aydın M, Tozlu H, Kemaloglu S, Aytac A, Ozkoc G (2011) Effects of alkali treatment on the properties of short flax fiber–poly (lactic acid) eco-composites. J Polym Environ 19(1):11–17

    Article  CAS  Google Scholar 

  26. Wang F, Lu M, Zhou S, Lu Z (2019) Effect of fiber surface modification on the interfacial adhesion and thermo-mechanical performance of unidirectional epoxy-based composites reinforced with bamboo fibers. Molecules (Basel, Switzerland) 24(15)

    Google Scholar 

  27. Alsaeed T, Yousif BF, Ku H (2013) The potential of using date palm fibres as reinforcement for polymeric composites. Mater Des 43:177–184

    Article  CAS  Google Scholar 

  28. Ferreira DP, Cruz J, Fangueiro R (2019) Surface modification of natural fibers in polymer composites. In: Green composites for automotive applications. Elsevier, pp 3–41

    Google Scholar 

  29. Neto J, Lima R, Cavalcanti D, Souza J, Aguiar R, Banea M (2019) Effect of chemical treatment on the thermal properties of hybrid natural fiber-reinforced composites. J Appl Polym Sci 136(10):47154

    Article  CAS  Google Scholar 

  30. Sepe R, Bollino F, Boccarusso L, Caputo F (2018) Influence of chemical treatments on mechanical properties of hemp fiber reinforced composites. Compos B Eng 133:210–217

    Article  CAS  Google Scholar 

  31. Zaman HU, Khan RA (2019) Acetylation used for natural fiber/polymer composites. J Thermoplastic Compos Mater. https://doi.org/10.1177/0892705719838000

  32. Bledzki A, Mamun A, Lucka-Gabor M, Gutowski V (2008) The effects of acetylation on properties of flax fibre and its polypropylene composites. Express Polym Lett 2(6):413–422

    Article  CAS  Google Scholar 

  33. Amiandamhen S, Meincken M, Tyhoda L (2020) Natural fibre modification and its influence on fibre-matrix interfacial properties in biocomposite materials. Fibers Polym 21:677–689

    Article  CAS  Google Scholar 

  34. Kalia S, Kaushik VK, Sharma RK (2011) Effect of benzoylation and graft copolymerization on morphology, thermal stability, and crystallinity of sisal fibers. J Nat Fibers 8(1):27–38

    Article  CAS  Google Scholar 

  35. Vinayagamoorthy R (2019) Influence of fiber surface modifications on the mechanical behavior of Vetiveria zizanioides reinforced polymer composites. J Nat Fibers 16(2):163–174

    Article  CAS  Google Scholar 

  36. Goriparthi BK, Suman KNS, Mohan Rao N (2012) Effect of fiber surface treatments on mechanical and abrasive wear performance of polylactide/jute composites. Compos A Appl Sci Manuf 43(10):1800–1808

    Article  CAS  Google Scholar 

  37. Baykus O, Mutlu A, Doğan M (2016) The effect of pre-impregnation with maleated coupling agents on mechanical and water absorption properties of jute fabric reinforced polypropylene and polyethylene biocomposites. J Compos Mater 50(2):257–267

    Article  Google Scholar 

  38. González-López ME, Pérez-Fonseca AA, Cisneros-López EO, Manríquez-González R, Ramírez-Arreola DE, Rodrigue D, Robledo-Ortíz JR (2019) Effect of maleated PLA on the properties of rotomolded PLA-agave fiber biocomposites. J Polym Environ 27(1):61–73

    Article  CAS  Google Scholar 

  39. Tayfun U, Dogan M, Bayramli E (2017) Investigations of the flax fiber/thermoplastic polyurethane eco-composites: influence of isocyanate modification of flax fiber surface. Polym Compos 38(12):2874–2880

    Article  CAS  Google Scholar 

  40. Premalatha N, Saravanakumar SS, Sanjay MR, Siengchin S, Khan A (2019) Structural and thermal properties of chemically modified luffa cylindrica fibers. J Nat Fibers 1–7. https://doi.org/10.1080/15440478.2019.1678546

  41. Zafeiropoulos NE, Williams DR, Baillie CA, Matthews FL (2002) Engineering and characterisation of the interface in flax fibre/polypropylene composite materials. Part I. Development and investigation of surface treatments. Compos Part A Appl Sci Manuf 33(8):1083–1093

    Google Scholar 

  42. Beg MDH, Pickering KL (2008) Mechanical performance of Kraft fibre reinforced polypropylene composites: influence of fibre length, fibre beating and hygrothermal ageing. Compos A Appl Sci Manuf 39(11):1748–1755

    Article  CAS  Google Scholar 

  43. Latif R, Wakeel S, Zaman Khan N, Noor Siddiquee A, Lal Verma S, Akhtar Khan Z (2019) Surface treatments of plant fibers and their effects on mechanical properties of fiber-reinforced composites: a review. J Reinf Plast Compos 38(1):15–30

    Article  CAS  Google Scholar 

  44. Praveen K, Thomas S, Grohens Y, Mozetič M, Junkar I, Primc G, Gorjanc M (2016) Investigations of plasma induced effects on the surface properties of lignocellulosic natural coir fibres. Appl Surf Sci 368:146–156

    Article  CAS  Google Scholar 

  45. Enciso B, Abenojar J, Martínez M (2017) Influence of plasma treatment on the adhesion between a polymeric matrix and natural fibres. Cellulose 24(4):1791–1801

    Article  CAS  Google Scholar 

  46. Gassan J, Gutowski VS (2000) Effects of corona discharge and UV treatment on the properties of jute-fibre expoxy composites. Compos Sci Technol 60(15):2857–2863

    Article  CAS  Google Scholar 

  47. Oudrhiri Hassani F, Merbahi N, Oushabi A, Elfadili MH, Kammouni A, Oueldna N (2020) Effects of corona discharge treatment on surface and mechanical properties of Aloe Vera fibers. Mat Today: Proc 24(1):46–51

    Google Scholar 

  48. Benedetto RMD, Gelfuso MV, Thomazini D (2015) Influence of UV radiation on the physical-chemical and mechanical properties of banana fiber. Mater Res 18:265–272

    Article  CAS  Google Scholar 

  49. Rong MZ, Zhang MQ, Liu Y, Yang GC, Zeng HM (2001) The effect of fiber treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites. Compos Sci Technol 61(10):1437–1447

    Article  CAS  Google Scholar 

  50. Fiore V, Scalici T, Valenza A (2018) Effect of sodium bicarbonate treatment on mechanical properties of flax-reinforced epoxy composite materials. J Compos Mater 52(8):1061–1072

    Article  CAS  Google Scholar 

  51. Chin SC, Tee KF, Tong FS, Ong HR, Gimbun J (2020) Thermal and mechanical properties of bamboo fiber reinforced composites. Mater Today Commun 23:100876

    Article  CAS  Google Scholar 

  52. Bodur MS, Bakkal M, Sonmez HE (2016) The effects of different chemical treatment methods on the mechanical and thermal properties of textile fiber reinforced polymer composites. J Compos Mater 50(27):3817–3830

    Article  CAS  Google Scholar 

  53. Datta J, Kopczyńska P (2015) Effect of kenaf fibre modification on morphology and mechanical properties of thermoplastic polyurethane materials. Ind Crops Prod 74:566–576

    Article  CAS  Google Scholar 

  54. Gupta M, Singh R (2019) PLA-coated sisal fibre-reinforced polyester composite: water absorption, static and dynamic mechanical properties. J Compos Mater 53(1):65–72

    Article  CAS  Google Scholar 

  55. Yu T, Jiang N, Li Y (2014) Study on short ramie fiber/poly(lactic acid) composites compatibilized by maleic anhydride. Compos A Appl Sci Manuf 64:139–146

    Article  CAS  Google Scholar 

  56. Zin MH, Abdan K, Norizan MN (2019) The effect of different fiber loading on flexural and thermal properties of banana/pineapple leaf (PALF)/glass hybrid composite. In: Structural health monitoring of biocomposites, fibre-reinforced composites and hybrid composites. Elsevier, pp 1–17

    Google Scholar 

  57. Chen H, Zhang W, Wang X, Wang H, Wu Y, Zhong T, Fei B (2018) Effect of alkali treatment on wettability and thermal stability of individual bamboo fibers. J Wood Sci 64(4):398–405

    Article  CAS  Google Scholar 

  58. Jena PK, Mohanty JR, Nayak S (2020) Effect of surface modification of vetiver fibers on their physical and thermal properties. J Nat Fibers 1–12. https://doi.org/10.1080/15440478.2020.1726249

  59. Gupta M (2020) Investigations on jute fibre-reinforced polyester composites: Effect of alkali treatment and poly (lactic acid) coating. J Ind Text 49(7):923–942

    Article  CAS  Google Scholar 

  60. Chung T-J, Park J-W, Lee H-J, Kwon H-J, Kim H-J, Lee Y-K, Tai Yin Tze W (2018) The improvement of mechanical properties, thermal stability, and water absorption resistance of an eco-friendly PLA/kenaf biocomposite using acetylation. Appl Sci 8(3):376

    Article  CAS  Google Scholar 

  61. Asaithambi B, Ganesan GS, Ananda Kumar S (2017) Banana/sisal fibers reinforced poly (lactic acid) hybrid biocomposites; influence of chemical modification of BSF towards thermal properties. Polym Compos 38(6):1053–1062

    Article  CAS  Google Scholar 

  62. Jabbar A, Militký J, Wiener J, Karahan M (2016) Static and dynamic mechanical properties of novel treated jute/green epoxy composites. Text Res J 86(9):960–974

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariana D. Banea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Banea, M.D., Neto, J.S.S., Cavalcanti, D.K.K. (2021). Recent Trends in Surface Modification of Natural Fibres for Their Use in Green Composites. In: Thomas, S., Balakrishnan, P. (eds) Green Composites. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-15-9643-8_12

Download citation

Publish with us

Policies and ethics