Skip to main content

Genetic Engineering for Enhancement of Biofuel Production in Microalgae

  • Chapter
  • First Online:
Biorefineries: A Step Towards Renewable and Clean Energy

Abstract

In recent decades, there has beenĀ a tremendous increase in fuel requirement all around the world. This has caused severe exploitation of conventional fuel resources leading to subsequent increase in the level of pollution owing to their consumption. There is a growing concern regarding exploration of alternate, safe sources of energy. Since the time immemorial, algae are known for producing a vast array of useful products, which has benefited the mankind. Algae also harbor high amount of biomolecules such as lipids and carbohydrates, which can be converted into biofuels. Therefore, algal biofuels have gained tremendous attention in past few years and several technologies related to algal biofuels have been developed. The major drawback in this area is the limited potential of algae to synthesize biomolecules to be converted into biofuels. Since, the demand of biofuels is very high and production is very low, therefore, genetic engineering technologies were explored to increase the yield of biofuels. In this chapter, we have discussed different types of biofuels produced from microalgae and recent genetic engineering-based studies employed for sustainable biofuel production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACCase:

Acetyl-CoA carboxylase

ACP:

Acyl carrier protein

BOD:

Biological oxygen demand

COD:

Chemical oxygen demand

DAG:

Diacylglycerol

DGAT:

Diacylglycerol acyltransferase

DHAP:

Dihydroxy acetone phosphate

FAs:

Fatty acids

G3P:

Glyceraldehyde-3-phosphate

GEMs:

Genome-scale metabolic models

GPAT:

Glycerol-3-phosphate acyltransferase

LPA:

Lysophosphatidic acid

LPAAT:

Lysophosphatidic acid acyltransferase

PA:

Phosphatidic acid

PAP:

Phosphatidic acid phosphohydrolase

PDK:

Pyruvate carboxylase kinase

RuBisCO:

Ribulose biphosphate carboxylase

SHF:

Separate hydrolysis and fermentation

SSF:

Synchronous saccharification and fermentation

TAGs:

Triacylglycerols

TAGs:

Triglycerides

References

  • Abdullah B, Muhammad SAFS, Shokravi Z, Ismail S, Kassim KA, Mahmood AN, Aziz MMA (2019) Fourth generation biofuel: a review on risks and mitigation strategies. Renew Sust Energ Rev 107:37ā€“50

    ArticleĀ  Google ScholarĀ 

  • Asada Y, Koike Y, Schnackenberg J, Miyake M, Uemura I, Miyake J (2000) Heterologous expression of clostridial hydrogenase in the cyanobacterium Synechococcus PCC7942. Biochim Biophys Acta (BBA) 1490:269ā€“278

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Ayala-Parra P, Liu Y, Field JA, Sierra-Alvarez R (2017) Nutrient recovery and biogas generation from the anaerobic digestion of waste biomass from algal biofuel production. Renew Energy 108:410ā€“416

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Baebprasert W, Jantaro S, Khetkorn W, Lindblad P, Incharoensakdi A (2011) Increased H2 production in the cyanobacterium Synechocystis sp. strain PCC 6803 by redirecting the electron supply via genetic engineering of the nitrate assimilation pathway. Metab Eng 13:610ā€“616

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Batyrova K, Hallenbeck PC (2017) Sustainability of biohydrogen production using engineered algae as a source. In: Biohydrogen production: sustainability of current technology and future perspective. Springer, New Delhi, pp 163ā€“180

    ChapterĀ  Google ScholarĀ 

  • Behera S, Singh R, Arora R, Sharma NK, Shukla M, Kumar S (2015) Scope of algae as third generation biofuels. Front Bioeng Biotechnol 2:90

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Borowitzka MA (2013) High-value products from microalgaeā€”their development and commercialisation. J Appl Phycol 25:743ā€“756

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Cao H, Zhang Z, Wu X, Miao X (2013) Direct biodiesel production from wet microalgae biomass of Chlorella pyrenoidosa through in situ transesterification. Biomed Res Int 2013:930686

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Cesaro A, Belgiorno V (2015) Combined biogas and bioethanol production: opportunities and challenges for industrial application. Energies 8:8121ā€“8144

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Chang CH, King PW, Ghirardi ML, Kim K (2007) Atomic resolution modeling of the ferredoxin:[FeFe] hydrogenase complex from Chlamydomonas reinhardtii. Biophys J 93:3034ā€“3045

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Chang W-C, Zheng H-Q, Chen C-NN (2016) Comparative transcriptome analysis reveals a potential photosynthate partitioning mechanism between lipid and starch biosynthetic pathways in green microalgae. Algal Res 16:54ā€“62

    ArticleĀ  Google ScholarĀ 

  • Chaturvedi V, Verma P (2013) An overview of key pretreatment processes employed for bioconversion of lignocellulosic biomass into biofuels and value added products. 3 Biotech 3:415ā€“431

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Chaudhary L, Pradhan P, Soni N, Singh P, Tiwari A (2014) Algae as a feedstock for bioethanol production: new entrance in biofuel world. Int J Chem Technol Res 6:1381ā€“1389

    Google ScholarĀ 

  • Chen CY, Zhao XQ, Yen HW, Ho SH, Cheng CL, Lee DJ, Bai FW, Chang JS (2013) Microalgae-based carbohydrates for biofuel production. Biochem Eng J 78:1ā€“10. https://doi.org/10.1016/j.bej.2013.03.006

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Chen J, Liu W, Hu D, Wang X, Balamurugan S, Alimujiang A, Yang W, Liu J, Li H (2017) Identification of a malonyl CoA-acyl carrier protein transacylase and its regulatory role in fatty acid biosynthesis in oleaginous microalga Nannochloropsis oceanica. Biotechnol Appl Biochem 64:620ā€“626

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294ā€“306. https://doi.org/10.1016/j.biotechadv.2007.02.001

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Choo M-Y, Oi LE, Ling TC, Ng E-P, Lee HV, Juan JC (2020) Conversion of microalgae biomass to biofuels, microalgae cultivation for biofuels production. Elsevier, Amsterdam. https://doi.org/10.1016/b978-0-12-817536-1.00010-2

    BookĀ  Google ScholarĀ 

  • Coleman RA, Lee DP (2004) Enzymes of triacylglycerol synthesis and their regulation. Prog Lipid Res 43:134ā€“176

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Cournac L, Guedeney G, Peltier G, Vignais PM (2004) Sustained photoevolution of molecular hydrogen in a mutant of Synechocystis sp. strain PCC 6803 deficient in the type I NADPH-dehydrogenase complex. J Bacteriol 186:1737ā€“1746

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Das D, Veziroglu TN (2008) Advances in biological hydrogen production processes. Int J Hydrog Energy 33:6046ā€“6057

    ArticleĀ  CASĀ  Google ScholarĀ 

  • De Bhowmick G, Koduru L, Sen R (2015) Metabolic pathway engineering towards enhancing microalgal lipid biosynthesis for biofuel applicationā€”a review. Renew Sust Energ Rev 50:1239ā€“1253

    ArticleĀ  CASĀ  Google ScholarĀ 

  • De Bhowmick G, Sarmah AK, Sen R (2019) Zero-waste algal biorefinery for bioenergy and biochar: a green leap towards achieving energy and environmental sustainability. Sci Total Environ 650:2467ā€“2482

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Deng X, Cai J, Fei X (2013) Involvement of phosphatidate phosphatase in the biosynthesis of triacylglycerols in Chlamydomonas reinhardtii. J Zhejiang Univ Sci B 14:1121ā€“1131

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Deng X, Cai J, Li Y, Fei X (2014) Expression and knockdown of the PEPC1 gene affect carbon flux in the biosynthesis of triacylglycerols by the green alga Chlamydomonas reinhardtii. Biotechnol Lett 36:2199ā€“2208

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Eroglu E, Melis A (2011) Photobiological hydrogen production: recent advances and state of the art. Bioresour Technol 102:8403ā€“8413

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Eroglu E, Melis A (2016) Microalgal hydrogen production research. Int J Hydrog Energy 41:12772ā€“12798

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Falkowski PG, Katz ME, Knoll AH, Quigg A, Raven JA, Schofield O, Taylor FJR (2004) The evolution of modern eukaryotic phytoplankton. Science 305:354ā€“360

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Fehling J, Stoecker D, Baldauf SL (2007) Photosynthesis and the eukaryote tree of life. In: Evolution of primary producers in the sea. Elsevier, Amsterdam, pp 75ā€“107

    ChapterĀ  Google ScholarĀ 

  • Ferro L (2019) Wastewater treatment and biomass generation by Nordic microalgae growth in subarctic climate and microbial interactions. UmeĆ„ University, UmeĆ„

    Google ScholarĀ 

  • Ghirardi ML (2015) Implementation of photobiological H2 production: the O2 sensitivity of hydrogenases. Photosynth Res 125:383ā€“393

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Gutthann F, Egert M, Marques A, Appel J (2007) Inhibition of respiration and nitrate assimilation enhances photohydrogen evolution under low oxygen concentrations in Synechocystis sp. PCC 6803. Biochim Biophys Acta (BBA) 1767:161ā€“169

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Hamed I (2016) The evolution and versatility of microalgal biotechnology: a review. Compr Rev Food Sci Food Saf 15:1104ā€“1123. https://doi.org/10.1111/1541-4337.12227

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Hanaki K, Portugal-Pereira J (2018) The effect of biofuel production on greenhouse gas emission reductions. In: Biofuels and sustainability. Springer, Berlin, pp 53ā€“71

    ChapterĀ  Google ScholarĀ 

  • Harun R, Danquah MK, Forde GM (2010) Microalgal biomass as a fermentation feedstock for bioethanol production. J Chem Technol Biotechnol 85:199ā€“203. https://doi.org/10.1002/jctb.2287

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Ho S-H, Chen C-Y, Lee D-J, Chang J-S (2011) Perspectives on microalgal CO2-emission mitigation systemsā€”a review. Biotechnol Adv 29:189ā€“198

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Hossain N, Mahlia TMI (2019) Progress in physicochemical parameters of microalgae cultivation for biofuel production. Crit Rev Biotechnol 39:835ā€“859. https://doi.org/10.1080/07388551.2019.1624945

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Hossain ABMS, Salleh A, Boyce AN, Chowdhury P, Naqiuddin M (2008) Biodiesel fuel production from algae as renewable energy. Am J Biochem Biotechnol 4:250ā€“254

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621ā€“639

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Iskandarov U, Sitnik S, Shtaida N, Didi-Cohen S, Leu S, Khozin-Goldberg I, Cohen Z, Boussiba S (2016) Cloning and characterization of a GPAT-like gene from the microalga Lobosphaera incisa (Trebouxiophyceae): overexpression in Chlamydomonas reinhardtii enhances TAG production. J Appl Phycol 28:907ā€“919

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Iwai M, Ikeda K, Shimojima M, Ohta H (2014) Enhancement of extraplastidic oil synthesis in Chlamydomonas reinhardtii using a type-2 diacylglycerol acyltransferase with a phosphorus starvationā€“inducible promoter. Plant Biotechnol J 12:808ā€“819

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Jagadevan S, Banerjee A, Banerjee C, Guria C, Tiwari R, Baweja M, Shukla P (2018) Recent developments in synthetic biology and metabolic engineering in microalgae towards biofuel production. Biotechnol Biofuels 11:1ā€“21. https://doi.org/10.1186/s13068-018-1181-1

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Jankowska E, Sahu AK, Oleskowicz-Popiel P (2017) Biogas from microalgae: review on microalgaeā€™s cultivation, harvesting and pretreatment for anaerobic digestion. Renew Sust Energ Rev 75:692ā€“709. https://doi.org/10.1016/j.rser.2016.11.045

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Khetkorn W, Lindblad P, Incharoensakdi A (2012) Inactivation of uptake hydrogenase leads to enhanced and sustained hydrogen production with high nitrogenase activity under high light exposure in the cyanobacterium Anabaena siamensis TISTR 8012. J Biol Eng 6:19

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Kim EJ, Kim S, Choi H-G, Han SJ (2020) Co-production of biodiesel and bioethanol using psychrophilic microalga Chlamydomonas sp. KNM0029C isolated from Arctic Sea ice. Biotechnol Biofuels 13:1ā€“13

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Kuila A, Sharma V (2017) Lignocellulosic biomass production and industrial applications. Wiley, Hoboken, NJ

    BookĀ  Google ScholarĀ 

  • Kumar M, Thakur IS (2018) Municipal secondary sludge as carbon source for production and characterization of biodiesel from oleaginous bacteria. Bioresour Technol Rep 4:106ā€“113

    ArticleĀ  Google ScholarĀ 

  • Kumar M, Khosla K, Thakur IS (2017) Optimization of process parameters for the production of biodiesel from carbon dioxide sequestering bacterium. JEES 3:43ā€“50

    ArticleĀ  Google ScholarĀ 

  • Lee S, Oh Y, Kim D, Kwon D, Lee C, Lee J (2011) Converting carbohydrates extracted from marine algae into ethanol using various ethanolic Escherichia coli strains. Appl Biochem Biotechnol 164:878ā€“888

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Li Y, Han D, Hu G, Dauvillee D, Sommerfeld M, Ball S, Hu Q (2010) Chlamydomonas starchless mutant defective in ADP-glucose pyrophosphorylase hyper-accumulates triacylglycerol. Metab Eng 12:387ā€“391

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Li Y, Chen Y-F, Chen P, Min M, Zhou W, Martinez B, Zhu J, Ruan R (2011) Characterization of a microalga Chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production. Bioresour Technol 102:5138ā€“5144

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Liang M-H, Jiang J-G (2013) Advancing oleaginous microorganisms to produce lipid via metabolic engineering technology. Prog Lipid Res 52:395ā€“408

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Lin H-D, Liu B-H, Kuo T-T, Tsai H-C, Feng T-Y, Huang C-C, Chien L-F (2013) Knockdown of PsbO leads to induction of HydA and production of photobiological H2 in the green alga Chlorella sp. DT. Bioresour Technol 143:154ā€“162

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Lindberg P, Devine E, Stensjƶ K, Lindblad P (2012) HupW protease specifically required for processing of the catalytic subunit of the uptake hydrogenase in the cyanobacterium Nostoc sp. strain PCC 7120. Appl Environ Microbiol 78:273ā€“276

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Lindblad P, Christensson K, Lindberg P, Fedorov A, Pinto F, Tsygankov A (2002) Photoproduction of H2 by wildtype Anabaena PCC 7120 and a hydrogen uptake deficient mutant: from laboratory experiments to outdoor culture. Int J Hydrog Energy 27:1271ā€“1281

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Liu Z-Y, Wang G-C, Zhou B-C (2008) Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresour Technol 99:4717ā€“4722

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Liu G, Liao Y, Wu Y, Ma X (2018) Synthesis gas production from microalgae gasification in the presence of Fe2O3 oxygen carrier and CaO additive. Appl Energy 212:955ā€“965

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Lung S, Weselake RJ (2006) Diacylglycerol acyltransferase: a key mediator of plant triacylglycerol synthesis. Lipids 41:1073ā€“1088

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Ma Y-H, Wang X, Niu Y-F, Yang Z-K, Zhang M-H, Wang Z-M, Yang W-D, Liu J-S, Li H-Y (2014) Antisense knockdown of pyruvate dehydrogenase kinase promotes the neutral lipid accumulation in the diatom Phaeodactylum tricornutum. Microb Cell Factories 13:100

    Google ScholarĀ 

  • Markou G, Nerantzis E (2013) Microalgae for high-value compounds and biofuels production: a review with focus on cultivation under stress conditions. Biotechnol Adv 31:1532ā€“1542

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14:217ā€“232. https://doi.org/10.1016/j.rser.2009.07.020

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Mathimani T, Uma L, Prabaharan D (2015) Homogeneous acid catalysed transesterification of marine microalga Chlorella sp. BDUG 91771 lipidā€“an efficient biodiesel yield and its characterization. Renew Energy 81:523ā€“533

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Medipally SR, Yusoff FM, Banerjee S, Shariff M (2015) Microalgae as sustainable renewable energy feedstock for biofuel production. BioMed Research International 2015:1ā€“13

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Melis A, Chen H-C (2005) Chloroplast sulfate transport in green algaeā€“genes, proteins and effects. Photosynth Res 86:299ā€“307

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Milledge JJ (2011) Commercial application of microalgae other than as biofuels: a brief review. Rev Environ Sci Biotechnol 10:31ā€“41

    ArticleĀ  Google ScholarĀ 

  • Mussgnug JH, Klassen V, SchlĆ¼ter A, Kruse O (2010) Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. J Biotechnol 150:51ā€“56

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Mutanda T, Ramesh D, Karthikeyan S, Kumari S, Anandraj A, Bux F (2011) Bioprospecting for hyper-lipid producing microalgal strains for sustainable biofuel production. Bioresour Technol 102:57ā€“70. https://doi.org/10.1016/j.biortech.2010.06.077

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Naik SN, Goud VV, Rout PK, Dalai AK (2010) Production of first and second generation biofuels: a comprehensive review. Renew Sust Energ Rev 14:578ā€“597

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Nguyen MT, Choi SP, Lee J, Lee JH, Sim SJ (2009) Hydrothermal acid pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. J Microbiol Biotechnol 19:161ā€“166

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Nguyen TY, Cai CM, Kumar R, Wyman CE (2017) Overcoming factors limiting high-solids fermentation of lignocellulosic biomass to ethanol. Proc Natl Acad Sci 114:11673ā€“11678

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Niu Y-F, Zhang M-H, Li D-W, Yang W-D, Liu J-S, Bai W-B, Li H-Y (2013) Improvement of neutral lipid and polyunsaturated fatty acid biosynthesis by overexpressing a type 2 diacylglycerol acyltransferase in marine diatom Phaeodactylum tricornutum. Mar Drugs 11:4558ā€“4569

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Offei F, Mensah M, Thygesen A, Kemausuor F (2018) Seaweed bioethanol production: a process selection review on hydrolysis and fermentation. Fermentation 4:99

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Oncel SS (2013) Microalgae for a macroenergy world. Renew Sust Energ Rev 26:241ā€“264. https://doi.org/10.1016/j.rser.2013.05.059

    ArticleĀ  Google ScholarĀ 

  • Oncel S, Kose A (2014) Comparison of tubular and panel type photobioreactors for biohydrogen production utilizing Chlamydomonas reinhardtii considering mixing time and light intensity. Bioresour Technol 151:265ā€“270

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • ƖzƧimen D, Ä°nan B, Biernat K (2015) An overview of bioethanol production from algae. In: Biofuelsā€”status and perspective. InTech, London

    Google ScholarĀ 

  • Prince RC, Kheshgi HS (2005) The photobiological production of hydrogen: potential efficiency and effectiveness as a renewable fuel. Crit Rev Microbiol 31(1):19ā€“31

    Google ScholarĀ 

  • Radakovits R, Jinkerson RE, Darzins A, Posewitz MC (2010) Genetic engineering of algae for enhanced biofuel production. Eukaryot Cell 9:486ā€“501

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Raja R, Hemaiswarya S, Kumar NA, Sridhar S, Rengasamy R (2008) A perspective on the biotechnological potential of microalgae. Crit Rev Microbiol 34:77ā€“88

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Raleiras P, Khanna N, Miranda H, MĆ©szĆ”ros LS, Krassen H, Ho F, Battchikova N, Aro E-M, Magnuson A, Lindblad P (2016) Turning around the electron flow in an uptake hydrogenase. EPR spectroscopy and in vivo activity of a designed mutant in HupSL from Nostoc punctiforme. Energy Environ Sci 9:581ā€“594

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Ras M, Lardon L, Bruno S, Bernet N, Steyer J-P (2011) Experimental study on a coupled process of production and anaerobic digestion of Chlorella vulgaris. Bioresour Technol 102:200ā€“206

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Richmond A (2004) Biological principles of mass cultivation. In: Handbook of microalgal culture: applied phycology. Wiley-Blackwell, Oxford, pp 125ā€“177

    Google ScholarĀ 

  • Saifuddin N, Aisswarya K, Juan YP, Priatharsini P (2015) Sequestration of high carbon dioxide concentration for induction of lipids in microalgae for biodiesel production. J Appl Sci 15:1045

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Samson R, Leduyt A (1986) Detailed study of anaerobic digestion of Spirulina maxima algal biomass. Biotechnol Bioeng 28:1014ā€“1023

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Scholz MJ, Riley MR, Cuello JL (2013) Acid hydrolysis and fermentation of microalgal starches to ethanol by the yeast Saccharomyces cerevisiae. Biomass Bioenergy 48:59ā€“65

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Shuba ES, Kifle D (2018) Microalgae to biofuels: ā€˜promisingā€™ alternative and renewable energy, review. Renew Sust Energ Rev 81:743ā€“755. https://doi.org/10.1016/j.rser.2017.08.042

    ArticleĀ  CASĀ  Google ScholarĀ 

  • SkjĆ„nes K, Rebours C, Lindblad P (2013) Potential for green microalgae to produce hydrogen, pharmaceuticals and other high value products in a combined process. Crit Rev Biotechnol 33:172ā€“215

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Solovchenko AE, Khozin-Goldberg I, Cohen Z, Merzlyak MN (2009) Carotenoid-to-chlorophyll ratio as a proxy for assay of total fatty acids and arachidonic acid content in the green microalga Parietochloris incisa. J Appl Phycol 21:361ā€“366

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Tang Y, Zhang Y, Rosenberg JN, Betenbaugh MJ, Wang F (2016) Optimization of one-step in situ transesterification method for accurate quantification of EPA in Nannochloropsis gaditana. Appl Sci 6:343

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Torzillo G, Scoma A, Faraloni C, Ena A, Johanningmeier U (2009) Increased hydrogen photoproduction by means of a sulfur-deprived Chlamydomonas reinhardtii D1 protein mutant. Int J Hydrog Energy 34:4529ā€“4536

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Trentacoste EM, Shrestha RP, Smith SR, GlĆ© C, Hartmann AC, Hildebrand M, Gerwick WH (2013) Metabolic engineering of lipid catabolism increases microalgal lipid accumulation without compromising growth. Proc Natl Acad Sci 110:19748ā€“19753

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Umdu ES, Tuncer M, Seker E (2009) Transesterification of Nannochloropsis oculata microalgaā€™s lipid to biodiesel on Al2O3 supported CaO and MgO catalysts. Bioresour Technol 100:2828ā€“2831

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Vardar-Schara G, Maeda T, Wood TK (2008) Metabolically engineered bacteria for producing hydrogen via fermentation. Microb Biotechnol 1:107ā€“125

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Vasudevan PT, Fu B (2010) Environmentally sustainable biofuels: advances in biodiesel research. Waste Biomass Valoriz 1:47ā€“63

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Vincent M, Pometto AL III, van Leeuwen JH (2014) Ethanol production via simultaneous saccharification and fermentation of sodium hydroxide treated corn Stover using Phanerochaete chrysosporium and Gloeophyllum trabeum. Bioresour Technol 158:1ā€“6

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Wei H, Shi Y, Ma X, Pan Y, Hu H, Li Y, Luo M, Gerken H, Liu J (2017) A type-I diacylglycerol acyltransferase modulates triacylglycerol biosynthesis and fatty acid composition in the oleaginous microalga, Nannochloropsis oceanica. Biotechnol Biofuels 10:174

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  • Work VH, Dā€™Adamo S, Radakovits R, Jinkerson RE, Posewitz MC (2012) Improving photosynthesis and metabolic networks for the competitive production of phototroph-derived biofuels. Curr Opin Biotechnol 23:290ā€“297. https://doi.org/10.1016/j.copbio.2011.11.022

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Wu N, Moreira C, Zhang Y, Doan N, Yang S, Phlips E, Svoronos S, Pullammanappallil P (2019) Techno-economic analysis of biogas production from microalgae through anaerobic digestion. IntechOpen, London

    BookĀ  Google ScholarĀ 

  • Xue J, Niu Y-F, Huang T, Yang W-D, Liu J-S, Li H-Y (2015) Genetic improvement of the microalga Phaeodactylum tricornutum for boosting neutral lipid accumulation. Metab Eng 27:1ā€“9

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Yamaoka Y, Achard D, Jang S, LegĆ©ret B, Kamisuki S, Ko D, Schulz-Raffelt M, Kim Y, Song W, Nishida I (2016) Identification of a Chlamydomonas plastidial 2-lysophosphatidic acid acyltransferase and its use to engineer microalgae with increased oil content. Plant Biotechnol J 14:2158ā€“2167

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Yoon JH, Shin JH, Kim M-S, Sim SJ, Park TH (2006) Evaluation of conversion efficiency of light to hydrogen energy by Anabaena variabilis. Int J Hydrog Energy 31:721ā€“727

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Zhao B, Su Y (2014) Process effect of microalgal-carbon dioxide fixation and biomass production: a review. Renew Sust Energ Rev 31:121ā€“132. https://doi.org/10.1016/j.rser.2013.11.054

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Zhou X, Yuan S, Chen R, Ochieng RM (2015) Sustainable production of energy from microalgae: review of culturing systems, economics, and modelling. J Renew Sustain Energy 7:12701

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Zhu B-H, Shi H-P, Yang G-P, Lv N-N, Yang M, Pan K-H (2016) Silencing UDP-glucose pyrophosphorylase gene in Phaeodactylum tricornutum affects carbon allocation. New Biotechnol 33:237ā€“244

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Zienkiewicz K, Zienkiewicz A, Poliner E, Du Z-Y, Vollheyde K, Herrfurth C, Marmon S, FarrĆ© EM, Feussner I, Benning C (2017) Nannochloropsis, a rich source of diacylglycerol acyltransferases for engineering of triacylglycerol content in different hosts. Biotechnol Biofuels 10:8

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

Download references

Competing Interests

All the authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradeep Verma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2020 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chaturvedi, V., Goswami, R.K., Verma, P. (2020). Genetic Engineering for Enhancement of Biofuel Production in Microalgae. In: Verma, P. (eds) Biorefineries: A Step Towards Renewable and Clean Energy. Clean Energy Production Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-15-9593-6_21

Download citation

Publish with us

Policies and ethics