Skip to main content

Bioenergy-Byproducts Based Electrodes for Flexible Supercapacitors

  • Chapter
  • First Online:
Biorefineries: A Step Towards Renewable and Clean Energy

Part of the book series: Clean Energy Production Technologies ((CEPT))

  • 570 Accesses

Abstract

Among the various electrochemical energy storage devices, supercapacitor is a significant one due to its high power density, excellent charge/discharge mechanism, and longer lifespan. Supercapacitors have the application in various fields including digital communication devices, electric vehicles, and portable devices. In the recent times, flexible supercapacitors have acquired greater attention due to the higher demands for flexible, wearable, and portable electronic devices. Continuous investigations have been carried out in the past several years on the electrode materials of flexible supercapacitors to achieve excellent electrochemical performance. Among the different electrode materials which have been studied till now, biomass-derived carbon showed potentiality owing to its porous structure, large specific surface area, good chemical stability and electrical properties, low cost, and easy processing. In this chapter, various biomass and biowastes from which carbon materials can be derived were discussed along with the energy storage principle and electrochemical performances of flexible supercapacitor electrodes prepared from these biomass-derived carbons of different precursors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

EDLC:

Electric double layer capacitor

PC:

Pseudocapacitor

CNT:

Carbon nanotube

ESR:

Equivalent series resistance

ACs:

Activated carbons

EIS:

Electrochemical impedance spectroscopy

CV:

Cyclic voltammetry

GCD:

Galvanostatic charge-discharge

MTBC:

Micro-tube bundle carbon

PVA:

Polyvinyl alcohol

PVDF:

Polyvinylidene fluoride

PVDF-HFP:

Polyvinylidene fluoride-co-hexafluoropropylene

SPE:

Solid polymer electrolyte

GPE:

Gel polymer electrolyte

PAA:

Poly polyacrylate

PEO:

Polyethylene oxide

PAN:

Polyacrylonitrile

References

  • Abou Raya MA, Shalaby MT, Hafez SA, Alshimaa MH (2014) Chemical composition and nutritional potential of some mushroom varieties cultivated in Egypt. J Food Dairy Sci 5:421–434

    Article  Google Scholar 

  • Arbia W, Arbia L, Adour L, Amrane A (2013) Chitin extraction from crustacean shells using biological methods—a review. Food Technol Biotechnol 51:12–25

    Google Scholar 

  • Arroyo J, Farkas V, Sanz AB, Cabib E (2016) Strengthening the fungal cell wall through chitin–glucan cross-links: effects on morphogenesis and cell integrity. Cell Microbiol 18:1239–1250

    Article  CAS  PubMed  Google Scholar 

  • Arsene MA, Bilba K, Savastano H, Ghavami K (2013) Treatments of non-wood plant fibres used as reinforcement in composite materials. Mater Res 16:903–923

    Article  Google Scholar 

  • Ba H, Wang W, Pronkin S, Romero T, Baaziz W, Nguyen-Dinh L, Chu W, Ersen O, Pham-Huu C (2018) Biosourced foam-like activated carbon materials as high-performance supercapacitor. Adv Sustain Syst 2(2):1700123

    Article  CAS  Google Scholar 

  • Bi Z, Kong Q, Cao Y, Sun G, Su F, Wei X, Li X, Ahmad A, Xie L, Chen CM (2019) Biomass-derived porous carbon materials with different dimensions for supercapacitor electrodes: a review. J Mater Chem A 7(27):16028–16045

    Article  CAS  Google Scholar 

  • Cagnon B, Py X, Guillot A, Stoeckli F, Chambat G (2009) Contributions of hemicellulose, cellulose and lignin to the mass and the porous properties of chars and steam activated carbons from various lignocellulosic precursors. Bioresour Technol 100:292–298

    Article  CAS  PubMed  Google Scholar 

  • Cheng Q, Tang J, Ma J, Zhang H, Shinya N, Qin LC (2011) Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density. Phys Chem Chem Phys 13(39):17615–17624

    Article  CAS  PubMed  Google Scholar 

  • Cheng P, Gao S, Zang P, Yang X, Bai Y, Xu H, Liu Z, Lei Z (2015) Hierarchically porous carbon by activation of shiitake mushroom for capacitive energy storage. Carbon 93:315–324

    Article  CAS  Google Scholar 

  • Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications. Kluwer Academic/Plenum, New York

    Book  Google Scholar 

  • Dai C, Wan J, Geng W, Song S, Ma F, Shao J (2017) KOH direct treatment of kombucha and in situ activation to prepare hierarchical porous carbon for high-performance supercapacitor electrodes. J Solid State Electrochem 21:2929–2938

    Article  CAS  Google Scholar 

  • Elmouwahidi A, Zapata-Benabithe Z, Carrasco-Marin F, Mareno-Castilla C (2012) Activated carbons from KOH-activated of argon (Argania spinosa) seed shells as supercapacitor electrodes. Bioresour Technol 111:185–190

    Article  CAS  PubMed  Google Scholar 

  • Frackowiak E, Abbas Q, Beguin F (2013) Carbon/carbon supercapacitors. J Energy Chem 22(2):226–240

    Article  CAS  Google Scholar 

  • Ganesan A, Mukherjee R, Raj J, Shaijumon MM (2014) Nanoporous rice husk derived carbon for gas storage and high performance electrochemical energy storage. J Porous Mater 21(5):839–847

    Article  CAS  Google Scholar 

  • Halper MS, Ellenbogen JC (2006) Supercapacitors: a brief overview. MITRE Nanosystems Group, McLean, VA

    Google Scholar 

  • Hao R, Lan H, Kuang C, Wang H, Guo L (2018) Superior potassium storage in chitin-derived natural nitrogen-doped carbon nanofibers. Carbon 128:224–230

    Article  CAS  Google Scholar 

  • Hassan SNAM, Ishak MAM, Ismail K, Ali SN, Yusop MF (2014) Comparison study of rubber seed shell and Kernel (Hevea brasiliensis) as raw material for bio-oil production. Energy Procedia 52:610–617

    Article  CAS  Google Scholar 

  • Iro ZS, Subramani C, Dash SS (2016) A Brief Review on Electrode Materials for Supercapacitor. Int J Electrochem Sci 11(12):10628–10643

    Article  CAS  Google Scholar 

  • Jahirul MI, Rasul MG, Chowdhury AA, Ashwath N (2012) Biofuels production through biomass pyrolysis -a technological review. Energies 5:4952–5001

    Article  CAS  Google Scholar 

  • Jiménez-Cordero D, Heras F, Gilarranz MA, Raymundo-Piñero E (2014) Grape seed carbons for studying the influence of texture on supercapacitor behaviour in aqueous electrolytes. Carbon 71:127–138

    Article  CAS  Google Scholar 

  • Kaempgen M, Chan CK, Ma J, Cui Y, Gruner G (2009) Printable thin film supercapacitors using single-walled carbon nanotubes. Nano Lett 9(5):1872–1876

    Article  CAS  PubMed  Google Scholar 

  • Kalac P (2009) Chemical composition and nutritional value of European species of wild growing mushrooms: a review. Food Chem 113:9–16

    Article  CAS  Google Scholar 

  • Kalyani P, Anitha A (2013) Refuse derived energy – tea derived boric acid activated carbon as an electrode material for electrochemical capacitors. Port Electrochim Acta 31(3):165–174

    Article  CAS  Google Scholar 

  • Kang YR, Li YL, Hou F, Wen YY, Su D (2012) Fabrication of electric papers of graphene nanosheet shelled cellulose fibres by dispersion and infiltration as flexible electrodes for energy storage. Nanoscale 4:3248–3253

    Article  CAS  PubMed  Google Scholar 

  • Kannappan S, Kaliyappa K, Maniand RK, Pandian AS, Yange H, Lee YS, Jang JH, Lu W (2018) Thiolated-graphene-based supercapacitors with high energy density and stable cycling performance. Carbon 134:326–333

    Article  CAS  Google Scholar 

  • Khanna VK (2019) Flexible electronics: energy devices and applications, 3rd edn. IOP Publishing, Bristol, UK

    Google Scholar 

  • Khu LV, Cu DV, Thuy LTT (2016) Investigation of the capacitive properties of activated carbon prepared from corn Cob in Na2SO4 and K2SO4 electrolytes. Can Chem Trans 4(3):302–315

    CAS  Google Scholar 

  • Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35(11):1350–1375

    Article  CAS  Google Scholar 

  • Lang JW, Yan XB, Liu WW, Wang RT, Xue QJ (2012) Influence of nitric acid modification of ordered mesoporous carbon materials on their capacitive performances in different aqueous electrolytes. J Power Sources 204:220–229

    Article  CAS  Google Scholar 

  • Łatoszynska AA, Zukowska GZ, Rutkowska IA, Taberna PL, Simon P, Kulesza PJ, Wieczorek W (2015) Non-aqueous gel polymer electrolyte with phosphoric acid ester and its application for quasi solid-state supercapacitors. J Power Sources 274:1147–1154

    Article  CAS  Google Scholar 

  • Latshaw WL, Miller EC (1924) Elemental composition of the corn plant. J Agric Res 27:845–861

    CAS  Google Scholar 

  • Li Z, Zhang L, Amirkhiz BS, Tan X, Xu Z, Wang H, Olsen BC, Holt CMB, Mitlin D (2012) Carbonized chicken eggshell membranes with 3D architectures as high-performance electrode materials for supercapacitors. Adv Energy Mater 2:431–437

    Article  CAS  Google Scholar 

  • Liu C, Yu Z, Neff D, Zhamu A, Jang BZ (2010) Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett 10(12):4863–4868

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Zheng M, Xiao Y, Yang Y, Yang L, Liu Y, Lei B, Dong H, Zhang H, Fu H (2013) Micro-tube bundle carbon derived from Paulownia sawdust for hybrid supercapacitor electrodes. ACS Appl Mater Interfaces 5(11):4667–4677

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Zhang L, Qi P, Zhu M, Wang G, Ma Y, Guo X, Chen H, Zhang B, Zhao Z, Dai B, Yu F (2016) Nitrogen-doped banana peel–derived porous carbon foam as binder-free electrode for supercapacitors. Nanomaterials 6(1):18

    Article  PubMed Central  CAS  Google Scholar 

  • Liu A, Kovacik P, Peard N, Tian W, Goktas H, Lau J, Dunn B, Gleason KK (2017) Monolithic flexible supercapacitors integrated into single sheets of paper and membrane via vapor printing. Adv Mater 29(19):1606091

    Article  CAS  Google Scholar 

  • Liu Y, Chen J, Cui B, Yin P, Zhang C (2018) Design and preparation of biomass-derived carbon materials for supercapacitors: a review. C – J Carbon Res 4(4):53

    Article  CAS  Google Scholar 

  • Liu L, Li Y, Fan S (2019) Preparation of KOH and H3PO4 modified biochar and its application in methylene blue removal from aqueous solution. Processes 7(12):891

    Article  CAS  Google Scholar 

  • Lu X, Yu M, Wang G, Tong Y, Li Y (2014) Flexible solid-state supercapacitors: design, fabrication and applications. Energy Environ Sci 7(7):2160–2181

    Article  Google Scholar 

  • Lv W, Tang DM, He YB, You CH, Shi ZQ, Chen XC, Chen CM, Hou PX, Liu C, Yang QH (2009) Low-temperature exfoliated graphenes: vacuum-promoted exfoliation and electrochemical energy storage. ACS Nano 3(11):3730–3736

    Article  CAS  PubMed  Google Scholar 

  • Ma G, Li J, Sun K, Peng H, Feng E, Lei Z (2017) Tea-leaves based nitrogen-doped porous carbons for high-performance supercapacitors electrode. J Solid State Electrochem 21:525–535

    Article  CAS  Google Scholar 

  • Mabbott GA (1983) An introduction to cyclic voltammetry. J Chem Educ 60(9):697

    Article  CAS  Google Scholar 

  • Madhu R, Veeramani V, Chen S (2014) Heteroatom-enriched and renewable banana-stem-derived porous carbon for the electrochemical determination of nitrite in various water samples. Sci Rep 4:4679

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McDonald-Wharry J, Manley-Harris M, Pickering K (2015) A comparison of the charring and carbonisation of oxygen-rich precursors with the thermal reduction of graphene oxide. Philos Mag 95:4054–4077

    Article  CAS  Google Scholar 

  • McKittrick J, Chen PY, Bodde SG, Yang W, Novitskaya EE, Meyers MA (2012) The structure, functions, and mechanical properties of keratin. Jom 64(4):449–468

    Article  Google Scholar 

  • Miskam A, Zainal ZA, Yusof IM (2009) Characterization of sawdust residues for cyclone gasifier. J Appl Sci 9(12):2294–2300

    Article  CAS  Google Scholar 

  • Moon K, Li Z, Yao Y, Lin Z, Liang Q, Agar J, Song M, Liu M, Wong CP (2010) Graphene for ultracapacitors. In 2010 proceedings of 60th electronic components and technology conference (ECTC), IEEE. pp. 1323–1328

    Google Scholar 

  • Nataliya M, Sudhakar YM, Selvakumar M (2013) Activated carbon derived from natural sources and electrochemical capacitance of double layer. Indian J Chem Technol 20:392–399

    Google Scholar 

  • Negroiu, R., Svasta, P., Pirvu, C., Vasile, A., Marghescu, C. 2017. Electrochemical impedance spectroscopy for different types of supercapacitors. In 2017 40th international spring seminar on electronics technology (ISSE), IEEE. pp. 1–4

    Google Scholar 

  • Niu Z, Liu L, Sherrell P, Chen J, Chen X (2013) Flexible supercapacitors-development of bendable carbon architectures. In: Nanotechnology for sustainable energy. American Chemical Society, Washington, pp 101–104

    Chapter  Google Scholar 

  • Orozco RS, Hernandez PB, Morales GR, Nunez FU, Villafuerte JO, Lugo VL, Ramirez NF, Diaz CEB, Vazquez PC (2014) Characterization of Lignocellulosic fruit waste as an alternative feedstock for bioethanol production. Bioresources 9:1873–1885

    Google Scholar 

  • Palchoudhury S, Ramasamy K, Gupta RK, Gupta A (2019) Flexible supercapacitors: a materials perspective. Front Mater 5:83

    Article  Google Scholar 

  • Pandolfo AG, Hollenkamp AF (2006) Carbon properties and their role in supercapacitors. J Power Sources 157(1):11–27

    Article  CAS  Google Scholar 

  • Percot A, Viton C, Domard A (2003) Optimization of chitin extraction from shrimp shells. Biomacromolecules 4(1):12–18

    Article  CAS  PubMed  Google Scholar 

  • Pineda-Insuasti JA, Soto-Arroyave CP, Ramos-Sanchez LB (2014) Stoichiometry equation to describe the growth of the Pleurotus ostreatus ceba-gliie-po-010606 strain. Biotecnol Apl 31(1):43–47

    Google Scholar 

  • Pope MA, Korkut S, Punckt C, Aksay IA (2013) Supercapacitor electrodes produced through evaporative consolidation of graphene oxide-water-ionic liquid gels. J Electrochem Soc 160(10):A1653–A1660

    Article  CAS  Google Scholar 

  • Qian W, Sun F, Xu Y, Qiu L, Liu C, Wang S, Yan F (2014) Human hair-derived carbon flakes for electrochemical supercapacitors. Energy Environ Sci 7(1):379–386

    Article  CAS  Google Scholar 

  • Qu WH, Xu YY, Lu AH, Zhang XQ, Li WC (2015) Converting biowaste corncob residue into high value added porous carbon for supercapacitor electrodes. Bioresour Technol 189:285–291

    Article  CAS  PubMed  Google Scholar 

  • Rahib Y, Elorf A, Sarh B, Bonnamy S, Chaoufi J, Ezahri M (2019) Experimental analysis on thermal characteristics of argan nut shell (ANS) biomass as a green energy resource. Int J Renewable Energy Res 9(4):1606–1615

    Google Scholar 

  • Ramachandran R, Mani V, Chen SM, Saraswathi R, Lou BS (2013) Recent trends in graphene based electrode materials for energy storage devices and sensors applications. Int J Electrochem Sci 8(10):11680–11694

    CAS  Google Scholar 

  • Ranaweera CK, Kahol PK, Ghimire M, Mishra SR, Gupta RK (2017) Orange-peel-derived carbon: designing sustainable and high-performance supercapacitor electrodes. C-J Carbon Res 3(3):25

    Article  CAS  Google Scholar 

  • Rutherford DW, Wershaw RL, Cox LG (2005) Changes in composition and porosity occurring during the thermal degradation of wood and wood components. US Department of the Interior, US Geological Survey

    Google Scholar 

  • Searle S, Malins C (2015) A reassessment of global bioenergy potential in 2050. Gcb Bioenergy 7(2):328–336

    Article  Google Scholar 

  • Sekhon SS (2003) Conductivity behaviour of polymer gel electrolytes: role of polymer. Bull Mater Sci 26(3):321–328

    Article  CAS  Google Scholar 

  • Senthilkumar ST, Selvan RK (2015) Flexible fiber supercapacitor using biowaste-derived porous carbon. ChemElectroChem 2(8):1111–1116

    Article  CAS  Google Scholar 

  • Shi S, Xu C, Yang C, Li J, Du H, Li B, Kang F (2013) Flexible supercapacitors. Particuology 11(4):371–377

    Article  Google Scholar 

  • Slesinski A, Matei-Ghimbeu C, Fic K, Béguin F, Frackowiak E (2018) Self-buffered pH at carbon surfaces in aqueous supercapacitors. Carbon 129:758–765

    Article  CAS  Google Scholar 

  • Subramani K, Sudhan N, Karnan M, Sathish M (2017) Orange peel derived activated carbon for fabrication of high-energy and high-rate supercapacitors. ChemistrySelect 2(35):11384–11392

    Article  CAS  Google Scholar 

  • Subramanian V, Luo C, Stephan AM, Nahm KS, Thomas S, Wei B (2007) Supercapacitors from activated carbon derived from banana fibers. J Phys Chem C 111:7527–7531

    Article  CAS  Google Scholar 

  • Syarif NI, Tribidasari A, Wibowo W (2012) Direct synthesis carbon/metal oxide composites for electrochemical capacitors electrode. Int Trans J Eng Manag Appl Sci Technol 3:21

    CAS  Google Scholar 

  • Tamilarasan P, Mishra AK, Ramaprabhu S (2011) Graphene/ionic liquid binary electrode material for high performance supercapacitor. In 2011 proceedings of international conference on nanoscience, technology and societal implications, IEEE. pp. 1–5

    Google Scholar 

  • Thambidurai A, Lourdusamy JK, John JV, Ganesan S (2014) Preparation and electrochemical behaviour of biomass based porous carbons as electrodes for supercapacitors - a comparative investigation. Korean J Chem Eng 31(2):268–275

    Article  CAS  Google Scholar 

  • Torchała K, Kierzek K, Machnikowski J (2012) Capacitance behavior of KOH activated mesocarbon microbeads in different aqueous electrolytes. Electrochim Acta 86:260–267

    Article  CAS  Google Scholar 

  • Tseng RL (2006) Mesopore control of high surface area NaOH-activated carbon. J Colloid Interface Sci 303(2):494–502

    Article  CAS  PubMed  Google Scholar 

  • Van Aardenne JA, Dentener FJ, Olivier JGJ, Goldewijk CK, Lelieveld J (2001) A 1× 1 resolution data set of historical anthropogenic trace gas emissions for the period 1890–1990. Glob Biogeochem Cycles 15(4):909–928

    Article  Google Scholar 

  • Wang C, Sun L, Zhou Y, Wan P, Zhang X, Qiu J (2013) P/N co-doped microporous carbons from H3PO4-doped polyaniline by in situ activation for supercapacitors. Carbon 59:537–546

    Article  CAS  Google Scholar 

  • Wang X, Kong D, Zhang Y, Wang B, Li X, Qiu T, Song Q, Ning J, Song Y, Zhi L (2016) All-biomaterial supercapacitor derived from bacterial cellulose. Nanoscale 8(17):9146–9150

    Article  CAS  PubMed  Google Scholar 

  • Wei-Jiang SI, Xiao-Zhong WU, Wei X, Jin Z, Shu-Ping Z (2011) Bagasse-based nanoporous carbon for supercapacitor application. J Inorg Mater 26(1):107–113

    Article  CAS  Google Scholar 

  • Wu H, Wang X, Jiang L, Wu C, Zhao Q, Liu X, Yi L (2013) The effects of electrolyte on the supercapacitive performance of activated calcium carbide-derived carbon. J Power Sources 226:202–209

    Article  CAS  Google Scholar 

  • Xu H, Gao B, Cao H, Chen X, Yu L, Wu K, Sun L, Peng X, Fu J (2014) Nanoporous activated carbon derived from rice husk for high performance supercapacitor. J Nanomater 2014:714010

    Google Scholar 

  • Yan J, Liu J, Fan Z, Wei T, Zhang L (2012) High-performance supercapacitor electrodes based on highly corrugated graphene sheets. Carbon 50(6):2179–2188

    Article  CAS  Google Scholar 

  • Yang S, Zhang K (2018) Converting corncob to activated porous carbon for supercapacitor application. Nanomaterials 8(4):181

    Article  PubMed Central  CAS  Google Scholar 

  • Yin JZ, Zhou LX (2008) Analysis of nutritional components of 4 kinds of wild edible fungi in Yunnan. Food Res Dev 29:133–136

    Google Scholar 

  • Yu C, Masarapu C, Rong J, Wei B, Jiang H (2009) Stretchable supercapacitors based on buckled single-walled carbon nanotube macrofilms. Adv Mater 21:4793–4797

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Wang Y, Li L, Li H, Shang Y (2017) Soft and wrinkled carbon membranes derived from petals for flexible supercapacitors. Sci Rep 7:45378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zequine C, Ranaweera CK, Wang Z, Singh S, Tripathi P, Srivastava ON, Gupta BK, Ramasamy K, Kahol PK, Dvornic PR, Gupta RK (2016) High performance and flexible supercapacitors based on carbonized bamboo fibers for wide temperature applications. Sci Rep 6:31704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zequine C, Ranaweera CK, Wang Z, Dvornic PR, Kahol PK, Singh S, Tripathi P, Srivastava ON, Singh S, Gupta BK, Gupta G, Gupta RK (2017) High-performance flexible supercapacitors obtained via recycled jute: bio-waste to energy storage approach. Sci Rep 7(1):1–12

    Article  CAS  Google Scholar 

  • Zhang Y, Feng H, Wu X, Wang L, Zhang A, Xia T, Dong H, Li X, Zhang L (2009) Progress of electrochemical capacitor electrode materials: A review. Int J Hydrogen Energy 34(11):4889–4899

    Article  CAS  Google Scholar 

  • Zhang X, Wang X, Jiang L, Wu H, Wu C, Su J (2012) Effect of aqueous electrolytes on the electrochemical behaviors of supercapacitors based on hierarchically porous carbons. J Power Sources 216:290–296

    Article  CAS  Google Scholar 

  • Zhang Y, Ma Z, Zhang Q, Wang J, Ma Q, Yang Y, Luo X, Zhang W (2017) Comparison of the physicochemical characteristics of bio-char pyrolyzed from moso bamboo and rice husk with different pyrolysis temperatures. Bioresources 12(3):4652–4669

    CAS  Google Scholar 

  • Zhao JC, Tang B, Cao J, Feng JC, Liu P, Zhao J, Xu JL (2012) Effect of hydrothermal temperature on the structure and electrochemical performance of manganese compound/ordered mesoporous carbon composites for supercapacitors. Mater Manuf Processes 27:119

    Article  CAS  Google Scholar 

  • Zhong C, Deng Y, Hu W, Qiao J, Zhang L, Zhang J (2015) A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem Soc Rev 44(21):7484–7539

    Article  CAS  PubMed  Google Scholar 

  • Zhou LX, Yin JZ (2008) Yunnan wild edible Boletus nutrition analysis and evaluation. Edible Fungi 4:61–62

    Google Scholar 

  • Zhu H, Wang X, Yang F, Yang X (2011) Promising carbon for supercapacitors derived from fungi. Adv Mater 23(24):2745–2748

    Article  CAS  PubMed  Google Scholar 

Download references

Competing Interests

All the authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rupam Kataki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bora, N., Narzari, R., Bhuyan, N., Kataki, R. (2020). Bioenergy-Byproducts Based Electrodes for Flexible Supercapacitors. In: Verma, P. (eds) Biorefineries: A Step Towards Renewable and Clean Energy. Clean Energy Production Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-15-9593-6_17

Download citation

Publish with us

Policies and ethics