Skip to main content

Magnetisation Transport in XXZ Spin Chains

  • Conference paper
  • First Online:
IRC-SET 2020

Abstract

At the macroscopic scale we observe that transport between two regions is proportional to the difference of concentration between them, otherwise known as Fick’s law. It is however not trivial to understand how this macroscopic and phenomenological law emerges from the microscopic laws of nature. Here, by studying the magnetization transport in one-dimensional quantum spin chains, we show two effects that contribute to the emergence of this law: interaction between the constituting elements as well as the presence of decohering processes. This is important for better understanding the behavior of transport at the nanoscale and to produce novel nano/quantum transport devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fourier, J. (2009). Equation of the Movement of Heat. In A. Freeman (Trans.), The Analytical Theory of Heat (Cambridge Library Collection—Mathematics, pp. 85–130). Cambridge: Cambridge University Press.

    Google Scholar 

  2. Fick, A. (1855). “Ueber Diffusion”. Annalen der Physik (in German). 94 (1): 59–86.

    Article  ADS  Google Scholar 

  3. G.T. Landi, E. Novais, M.J. de Oliveira, and D. Karevski, Phys. Rev. E 90, 042142 (2014).

    Article  ADS  Google Scholar 

  4. L. Zhang, Y. Yan, C.-Q. Wu, J.-S. Wang, and B. Li, Phys. Rev. B 80, 172301 (2009).

    Article  ADS  Google Scholar 

  5. T. Werlang, M. A. Marchiori, M. F. Cornelio, and D. Valente, Phys. Rev. E 89, 062109 (2014).

    Article  ADS  Google Scholar 

  6. M. Terraneo, M. Peyrard, and G. Casati, Phys. Rev. Lett. 88, 094302 (2002).

    Article  ADS  Google Scholar 

  7. N. Li, J. Ren, L. Wang, G. Zhang, P. Hänggi, and B. Li, Rev. Mod. Phys. 84, 1045 (2012).

    Article  ADS  Google Scholar 

  8. G. Benenti, G. Casati, C. Mejía-Monasterio, and M. Peyrard, From thermal rectifiers to thermoelectric devices, in Thermal transport in low dimensions, S. Lepri (Ed.), Lecture Notes in Physics 921 (Springer, 2016).

    Google Scholar 

  9. Breunig, O., Garst, M., Klümper, A., Rohrkamp, J., Turnbull, M. and Lorenz, T., Science Advances, 3(12), sp.eaao3773. (2017)

    Google Scholar 

  10. R. Toskovic, R. van den Berg, A. Spinelli, I. S. Eliens, B.van den Toorn, B. Bryant, J.-S. Caux, and A. F. Otte, Nat. Phys. 12, 656 (2016).

    Google Scholar 

  11. M. Endres, H. Bernien, A. Keesling, H. Levine, E. R.Anschuetz, A. Krajenbrink, C. Senko, V. Vuletic, M. Greiner, and M. D. Lukin, Science 354, 1024 (2016).

    Article  ADS  Google Scholar 

  12. D. Barredo, S. de Leseleuc, V. Lienhard, T. Lahaye, and A. Browaeys, Science 354, 1021 (2016).

    Article  ADS  Google Scholar 

  13. Giulio Casati, Joseph Ford, Franco Vivaldi, and William M. Visscher, Phys. Rev. Lett. 53, 1120 (1984)

    Article  ADS  Google Scholar 

  14. B. Li, L. Wang, and G. Casati, Phys. Rev. Lett. 93, 184301 (2004).

    Article  ADS  Google Scholar 

  15. V. Balachandran, G. Benenti, E. Pereira, G. Casati, and D. Poletti, Phys. Rev. Lett. 120, 200603 (2018).

    Article  ADS  Google Scholar 

  16. G. Lindblad, Commun. Math. Phys. 48, 119 (1976).

    Article  ADS  Google Scholar 

  17. V. Gorini, A. Kossakowski, and E.C.G. Sudarshan, J. Math. Phys. 17, 821 (1976).

    Article  ADS  Google Scholar 

  18. H.-P. Breuer, and F. Petruccione, The theory of open quantum systems, (Oxford University Press, Oxford, 2002)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinamr Athavle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chaudhary, A., Yeoh Kai Xiang, C., Athavle, V., Bo, X., Poletti, D. (2021). Magnetisation Transport in XXZ Spin Chains. In: Guo, H., Ren, H., Kim, N. (eds) IRC-SET 2020. Springer, Singapore. https://doi.org/10.1007/978-981-15-9472-4_18

Download citation

Publish with us

Policies and ethics