Skip to main content

Differential Genotypes in Age-Related Macular Degeneration and Polypoidal Choroidal Vasculopathy: A Updated Meta-Analysis

  • Chapter
  • First Online:
Advances in Vision Research, Volume III

Part of the book series: Essentials in Ophthalmology ((ESSENTIALS))

  • 425 Accesses

Abstract

Neovascular age-related macular degeneration (nAMD) and polypoidal choroidal vasculopathy (PCV) have some shared risk factors and clinical manifestation, but there are also some different features. Genetic variants are an important risk factor for both conditions. In this chapter, we reported an updated meta-analysis comparing the genetic variants between PCV and nAMD. Totally 57 SNPs in 20 genes were investigated. Among them, 11 SNPs in ARMS2-HTRA1 and rs77466370 in FGD6 showed significant differences between PCV and nAMD, but the other SNPs had similar distribution between PCV and nAMD, including variants in CFH, VEGF, C2, CFB. These results suggest that PCV and nAMD shares the majority of genetic components, but the variants that distribute differently between these two conditions may explain the pathogenic and clinical difference of PCV and nAMD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mitchell P, Liew G, Gopinath B, Wong TY. Age-related macular degeneration. Lancet. 2018;392:1147–59. https://doi.org/10.1016/S0140-6736(18)31550-2.

    Article  PubMed  Google Scholar 

  2. Wong CW, et al. Age-related macular degeneration and polypoidal choroidal vasculopathy in Asians. Prog Retin Eye Res. 2016;53:107–39. https://doi.org/10.1016/j.preteyeres.2016.04.002.

    Article  PubMed  Google Scholar 

  3. Woo SJ, et al. Analysis of genetic and environmental risk factors and their interactions in Korean patients with age-related macular degeneration. PLoS One. 2015;10:e0132771. https://doi.org/10.1371/journal.pone.0132771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sakurada Y, Yoneyama S, Imasawa M, Iijima H. Systemic risk factors associated with polypoidal choroidal vasculopathy and neovascular age-related macular degeneration. Retina. 2013;33:841–5. https://doi.org/10.1097/IAE.0b013e31826ffe9d.

    Article  PubMed  Google Scholar 

  5. Yannuzzi LA, et al. Polypoidal choroidal vasculopathy and neovascularized age-related macular degeneration. Arch Ophthalmol. 1999;117:1503–10.

    Article  CAS  Google Scholar 

  6. Kikuchi M, et al. Elevated C-reactive protein levels in patients with polypoidal choroidal vasculopathy and patients with neovascular age-related macular degeneration. Ophthalmology. 2007;114:1722–7. https://doi.org/10.1016/j.ophtha.2006.12.021.

    Article  PubMed  Google Scholar 

  7. Laude A, et al. Polypoidal choroidal vasculopathy and neovascular age-related macular degeneration: same or different disease? Prog Retin Eye Res. 2010;29:19–29. https://doi.org/10.1016/j.preteyeres.2009.10.001.

    Article  PubMed  Google Scholar 

  8. Edwards AO, et al. Complement factor H polymorphism and age-related macular degeneration. Science. 2005;308:421–4. https://doi.org/10.1126/science.1110189.

    Article  CAS  PubMed  Google Scholar 

  9. Klein RJ, et al. Complement factor H polymorphism in age-related macular degeneration. Science. 2005;308:385–9. https://doi.org/10.1126/science.1109557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Arakawa S, et al. Genome-wide association study identifies two susceptibility loci for exudative age-related macular degeneration in the Japanese population. Nat Genet. 2011;43:1001–4. https://doi.org/10.1038/ng.938.

    Article  CAS  PubMed  Google Scholar 

  11. Lee KY, et al. Association analysis of CFH, C2, BF, and HTRA1 gene polymorphisms in Chinese patients with polypoidal choroidal vasculopathy. Invest Ophthalmol Vis Sci. 2008;49:2613–9. https://doi.org/10.1167/iovs.07-0860.

    Article  PubMed  Google Scholar 

  12. Hayashi H, et al. CFH and ARMS2 variations in age-related macular degeneration, polypoidal choroidal vasculopathy, and retinal angiomatous proliferation. Invest Ophthalmol Vis Sci. 2010;51:5914–9. https://doi.org/10.1167/iovs.10-5554.

    Article  PubMed  Google Scholar 

  13. Tanaka K, et al. Associations of complement factor H (CFH) and age-related maculopathy susceptibility 2 (ARMS2) genotypes with subtypes of polypoidal choroidal vasculopathy. Invest Ophthalmol Vis Sci. 2011;52:7441–4. https://doi.org/10.1167/iovs.11-7546.

    Article  CAS  PubMed  Google Scholar 

  14. Gotoh N, et al. Haplotype analysis of the ARMS2/HTRA1 region in Japanese patients with typical neovascular age-related macular degeneration or polypoidal choroidal vasculopathy. Jpn J Ophthalmol. 2010;54:609–14.

    Article  Google Scholar 

  15. Lima LH, et al. Three major loci involved in age-related macular degeneration are also associated with polypoidal choroidal vasculopathy. Ophthalmology. 2010;117:1567–70. https://doi.org/10.1016/j.ophtha.2009.12.018.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chen H, et al. Genetic associations in polypoidal choroidal vasculopathy: a systematic review and meta-analysis. Mol Vis. 2012;18:816–29.

    PubMed  PubMed Central  Google Scholar 

  17. Gotoh N, et al. Apolipoprotein E polymorphisms in Japanese patients with polypoidal choroidal vasculopathy and exudative age-related macular degeneration. Am J Ophthalmol. 2004;138:567–73.

    Article  CAS  Google Scholar 

  18. Kondo N, Honda S, Ishibashi K, Tsukahara Y, Negi A. LOC387715/HTRA1 variants in polypoidal choroidal vasculopathy and age-related macular degeneration in a Japanese population. Am J Ophthalmol. 2007;144:608–12. https://doi.org/10.1016/j.ajo.2007.06.003.

    Article  CAS  PubMed  Google Scholar 

  19. Gotoh N, et al. Correlation between CFH Y402H and HTRA1 rs11200638 genotype to typical exudative age-related macular degeneration and polypoidal choroidal vasculopathy phenotype in the Japanese population. Clin Exp Ophthalmol. 2008;36:437–42.

    PubMed  Google Scholar 

  20. Kondo N, Honda S, Ishibashi K, Tsukahara Y, Negi A. Elastin gene polymorphisms in neovascular age-related macular degeneration and polypoidal choroidal vasculopathy. Investig Ophthalmol Vis Sci. 2008;49:1101–5.

    Article  Google Scholar 

  21. Bessho H, Kondo N, Honda S, Kuno SI, Negi A. Coding variant Met72Thr in the PEDF gene and risk of neovascular age-related macular degeneration and polypoidal choroidal vasculopathy. Mol Vis. 2009;15:1107–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Goto A, et al. Genetic analysis of typical wet-type age-related macular degeneration and polypoidal choroidal vasculopathy in Japanese population. J Ocul Biol Dis Infor. 2009;2:164–75. https://doi.org/10.1007/s12177-009-9047-1.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Gotoh N, et al. ARMS2 (LOC387715) variants in Japanese patients with exudative age-related macular degeneration and polypoidal choroidal vasculopathy. Am J Ophthalmol. 2009;147:1037–1041.e1032.

    Article  CAS  Google Scholar 

  24. Kondo N, Bessho H, Honda S, Negi A. SOD2 gene polymorphisms in neovascular age-related macular degeneration and polypoidal choroidal vasculopathy. Mol Vis. 2009;15:1819–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Hayashi H, et al. CFH and ARMS2 variations in age-related macular degeneration, polypoidal choroidal vasculopathy, and retinal angiomatous proliferation. Investig Ophthalmol Vis Sci. 2010;51:5914–9.

    Article  Google Scholar 

  26. Bessho H, Honda S, Kondo N, Negi A. The association of age-related maculopathy susceptibility 2 polymorphisms with phenotype in typical neovascular age-related macular degeneration and polypoidal choroidal vasculopathy. Mol Vis. 2011;17:977–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Fuse N, et al. Polymorphisms in ARMS2 (LOC387715) and LOXL1 genes in the Japanese with age-related macular degeneration. Am J Ophthalmol. 2011;151:550–6. https://doi.org/10.1016/j.ajo.2010.08.048.

    Article  CAS  PubMed  Google Scholar 

  28. Lima LH, et al. Elastin rs2301995 polymorphism is not associated with polypoidal choroidal vasculopathy in caucasians. Ophthalmic Genet. 2011;32:80–2. https://doi.org/10.3109/13816810.2010.544362.

    Article  CAS  PubMed  Google Scholar 

  29. Nakata I, et al. Association between the SERPING1 gene and age-related macular degeneration and polypoidal choroidal vasculopathy in Japanese. PLoS One. 2011; https://doi.org/10.1371/journal.pone.0019108.

  30. Sng CCA, et al. Toll-like receptor 3 polymorphism rs3775291 is not associated with choroidal neovascularization or polypoidal choroidal vasculopathy in Chinese subjects. Ophthalmic Res. 2011;45:191–6. https://doi.org/10.1159/000321387.

    Article  CAS  PubMed  Google Scholar 

  31. Yamashiro K, et al. Association of elastin gene polymorphism to age-related macular degeneration and polypoidal choroidal vasculopathy. Invest Ophthalmol Vis Sci. 2011;52:8780–4. https://doi.org/10.1167/iovs.11-8205.

    Article  CAS  PubMed  Google Scholar 

  32. Zhang X, et al. Association of genetic variation on chromosome 9p21 with polypoidal choroidal vasculopathy and neovascular age-related macular degeneration. Invest Ophthalmol Vis Sci. 2011;52:8063–7. https://doi.org/10.1167/iovs.11-7820.

    Article  CAS  PubMed  Google Scholar 

  33. Wu K, et al. Lack of association with PEDF Met72Thr variant in neovascular age-related macular degeneration and polypoidal choroidal vasculopathy in a Han Chinese population. Curr Eye Res. 2012;37:68–72. https://doi.org/10.3109/02713683.2011.618289.

    Article  CAS  PubMed  Google Scholar 

  34. Sakurada Y, Mabuchi F, Yoneyama S, Kubota T, Iijima H. Polymorphisms in ARMS2 (LOC387715) and LOXL1 GENES in the Japanese with age-related macular degeneration. Am J Ophthalmol. 2011;152:499.

    Article  Google Scholar 

  35. Tanaka K, et al. Analysis of candidate genes for age-related macular degeneration subtypes in the Japanese population. Mol Vis. 2011;17:2751–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Yanagisawa S, et al. Difference between age-related macular degeneration and polypoidal choroidal vasculopathy in the hereditary contribution of the A69S variant of the age-related maculopathy susceptibility 2 gene (ARMS2). Mol Vis. 2011;17:3574–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Bessho H, et al. The association of CD36 variants with polypoidal choroidal vasculopathy compared to typical neovascular age-related macular degeneration. Mol Vis. 2012;18:121–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Liang XY, et al. Differentiation of exudative age-related macular degeneration and polypoidal choroidal vasculopathy in the ARMS2/HTRA1 locus. Invest Ophthalmol Vis Sci. 2012;53:3175–82. https://doi.org/10.1167/iovs.11-8135.

    Article  CAS  PubMed  Google Scholar 

  39. Nakata I, et al. Association of genetic variants on 8p21 and 4q12 with age-related macular degeneration in Asian populations. Invest Ophthalmol Vis Sci. 2012;53:6576–81. https://doi.org/10.1167/iovs.12-10219.

    Article  CAS  PubMed  Google Scholar 

  40. Nakata I, et al. Significance of C2/CFB variants in age-related macular degeneration and polypoidal choroidal vasculopathy in a Japanese population. Invest Ophthalmol Vis Sci. 2012;53:794–8. https://doi.org/10.1167/iovs.11-8468.

    Article  CAS  PubMed  Google Scholar 

  41. Nishiguchi KM, et al. C9-R95X polymorphism in patients with neovascular age-related macular degeneration. Invest Ophthalmol Vis Sci. 2012;53:508–12. https://doi.org/10.1167/iovs.11-8425.

    Article  CAS  PubMed  Google Scholar 

  42. Zeng R, et al. An rs9621532 variant near the TIMP3 gene is not associated with neovascular age-related macular degeneration and polypoidal choroidal vasculopathy in a Chinese Han population. Ophthalmic Genet. 2012;33:139–43. https://doi.org/10.3109/13816810.2011.643440.

    Article  CAS  PubMed  Google Scholar 

  43. Zuo C, et al. COL1A2 polymorphic markers confer an increased risk of neovascular age-related macular degeneration in a Han Chinese population. Mol Vis. 2012;18:1787–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Cheng Y, et al. Genetic and functional dissection of ARMS2 in age-related macular degeneration and polypoidal choroidal vasculopathy. PLoS One. 2013;8:e53665. https://doi.org/10.1371/journal.pone.0053665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Guo J, et al. TOMM40 rs2075650 polymorphism shows no association with neovascular age-related macular degeneration or polypoidal choroidal vasculopathy in a Chinese population. Mol Vis. 2013;19:2050–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Liu K, et al. Associations of the C2-CFB-RDBP-SKIV2L locus with age-related macular degeneration and polypoidal choroidal vasculopathy. Ophthalmology. 2013;120:837–43. https://doi.org/10.1016/j.ophtha.2012.10.003.

    Article  PubMed  Google Scholar 

  47. Su Y, et al. Three variants of or near VEGF-A gene are not associated with neovascular age-related macular degeneration and polypoidal choroidal vasculopathy in a Han Chinese population. Ophthalmic Genet. 2013; https://doi.org/10.3109/13816810.2013.858753.

  48. Sun Y, et al. TNFRSF10A-LOC389641 rs13278062 but not REST-C4orf14-POLR2B-IGFBP7 rs1713985 was found associated with age-related macular degeneration in a Chinese population. Invest Ophthalmol Vis Sci. 2013;54:8199–203. https://doi.org/10.1167/iovs.13-12867.

    Article  CAS  PubMed  Google Scholar 

  49. Zhang X, et al. Different impact of high-density lipoprotein-related genetic variants on polypoidal choroidal vasculopathy and neovascular age-related macular degeneration in a Chinese Han population. Exp Eye Res. 2013;108:16–22. https://doi.org/10.1016/j.exer.2012.12.005.

    Article  CAS  PubMed  Google Scholar 

  50. Cheng Y, et al. Toll-like receptor 3 polymorphism is not associated with neovascular age-related macular degeneration and polypoidal choroidal vasculopathy in the Chinese. Genet Mol Res GMR. 2014;13:302–9. https://doi.org/10.4238/2014.January.17.15.

    Article  CAS  PubMed  Google Scholar 

  51. Huang L, et al. Different hereditary contribution of the CFH gene between polypoidal choroidal vasculopathy and age-related macular degeneration in Chinese Han people. Invest Ophthalmol Vis Sci. 2014;55:2534–8. https://doi.org/10.1167/iovs.13-13437.

    Article  CAS  PubMed  Google Scholar 

  52. Huang L, et al. rs4711751 and rs1999930 are not associated with neovascular age-related macular degeneration or polypoidal choroidal vasculopathy in the Chinese population. Ophthalmic Res. 2014;52:102–6. https://doi.org/10.1159/000362763.

    Article  CAS  PubMed  Google Scholar 

  53. Hata M, et al. Two-year visual outcome of ranibizumab in typical neovascular age-related macular degeneration and polypoidal choroidal vasculopathy. Graefes Arch Clin Exp Ophthalmol. 2014; https://doi.org/10.1007/s00417-014-2688-1.

  54. Ji Y, et al. Association of rs6982567 near GDF6 with neovascular age-related macular degeneration and polypoidal choroidal vasculopathy in a Han Chinese Cohort. BMC Ophthalmol. 2014;14:140.

    Article  Google Scholar 

  55. Li F, et al. ABCA1 rs1883025 polymorphism shows no association with neovascular age-related macular degeneration or polypoidal choroidal vasculopathy in a northern Chinese population. Ophthalmic Res. 2014;51:210–5. https://doi.org/10.1159/000357978.

    Article  CAS  PubMed  Google Scholar 

  56. Liang XY, et al. FPR1 interacts with CFH, HTRA1 and smoking in exudative age-related macular degeneration and polypoidal choroidal vasculopathy. Eye (Lond). 2014;28:1502–10. https://doi.org/10.1038/eye.2014.226.

    Article  CAS  Google Scholar 

  57. Liu K, et al. Genes in the high-density lipoprotein metabolic pathway in age-related macular degeneration and polypoidal choroidal vasculopathy. Ophthalmology. 2014;121:911–6. https://doi.org/10.1016/j.ophtha.2013.10.042.

    Article  PubMed  Google Scholar 

  58. Liu K, et al. Gender specific association of a complement component 3 polymorphism with polypoidal choroidal vasculopathy. Sci Rep. 2014;4:7018.

    Article  CAS  Google Scholar 

  59. Park DH, Shin JP, Kim IT. Association of plasma malondialdehyde with ARMS2 genetic variants and phenotypes in polypoidal choroidal vasculopathy and age-related macular degeneration. Retina. 2014;34:1167–76.

    Article  CAS  Google Scholar 

  60. Tanaka K, et al. Associations of complement factor B and complement component 2 genotypes with subtypes of polypoidal choroidal vasculopathy. BMC Ophthalmol. 2014;14:83. https://doi.org/10.1186/1471-2415-14-83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yang F, et al. Complement factor I polymorphism is not associated with neovascular age-related macular degeneration and polypoidal choroidal vasculopathy in a Chinese population. Ophthalmologica. 2014; https://doi.org/10.1159/000358241.

  62. Yoneyama S, et al. Genetic and clinical factors associated with reticular pseudodrusen in exudative age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol. 2014; https://doi.org/10.1007/s00417-014-2601-y.

  63. Yoneyama S, et al. Genetic variants in the SKIV2L gene in exudative age-related macular degeneration in the Japanese population. Ophthalmic Genet. 2014;2014:1–5. https://doi.org/10.3109/13816810.2014.921313.

    Article  CAS  Google Scholar 

  64. Zeng R, Zhang X, Wu K, Su Y, Wen F. MMP9 gene polymorphism is not associated with polypoidal choroidal vasculopathy and neovascular age-related macular degeneration in a Chinese Han population. Ophthalmic Genet. 2014;35:235–40. https://doi.org/10.3109/13816810.2014.952832.

    Article  CAS  PubMed  Google Scholar 

  65. Huang L, et al. Gene-gene interaction of CFH, ARMS2, and ARMS2/HTRA1 on the risk of neovascular age-related macular degeneration and polypoidal choroidal vasculopathy in Chinese population. Eye. 2015;29:691–8. https://doi.org/10.1038/eye.2015.32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Jia Chen L, et al. Association of the vascular endothelial growth factor genes with age-related macular degeneration and polypoidal choroidal vasculopathy. Investig Ophthalmol Vis Sci. 2015;56:786.

    Google Scholar 

  67. Jin E, et al. Evidence of a novel gene HERPUD1 in polypoidal choroidal vasculopathy. Int J Clin Exp Pathol. 2015;8:13928–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Meng Q, et al. Effect of high-density lipoprotein metabolic pathway gene variations and risk factors on neovascular age-related macular degeneration and polypoidal choroidal vasculopathy in China. PLoS One. 2015; https://doi.org/10.1371/journal.pone.0143924.

  69. Yu Y, et al. COL8A1 rs13095226 polymorphism shows no association with neovascular age-related macular degeneration or polypoidal choroidal vasculopathy in Chinese subjects. Int J Clin Exp Pathol. 2015;8:11635–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Huang L, et al. A missense variant in FGD6 confers increased risk of polypoidal choroidal vasculopathy. Nat Genet. 2016;48:640–7. https://doi.org/10.1038/ng.3546.

    Article  CAS  PubMed  Google Scholar 

  71. Ma L, et al. Association of ABCG1 with neovascular age-related macular degeneration and polypoidal choroidal vasculopathy in Chinese and Japanese. Invest Ophthalmol Vis Sci. 2016;57:5758–63. https://doi.org/10.1167/iovs.16-20175.

    Article  CAS  PubMed  Google Scholar 

  72. Ng TK, et al. HTRA1 promoter variant differentiates polypoidal choroidal vasculopathy from exudative age-related macular degeneration. Sci Rep. 2016; https://doi.org/10.1038/srep28639.

  73. Ye Z, et al. Associations of 6p21.3 region with age-related macular degeneration and polypoidal choroidal vasculopathy. Sci Rep. 2016;6:20914. https://doi.org/10.1038/srep20914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zuo C, et al. ENOS polymorphisms in neovascular age-related macular degeneration and polypoidal choroidal vasculopathy in a Chinese Han population. Ophthalmic Genet. 2016;37:394–9. https://doi.org/10.3109/13816810.2015.1107598.

    Article  CAS  PubMed  Google Scholar 

  75. Fan Q, et al. Shared genetic variants for polypoidal choroidal vasculopathy and typical neovascular age-related macular degeneration in east Asians. J Hum Genet. 2017;62:1049–55. https://doi.org/10.1038/jhg.2017.83.

    Article  PubMed  Google Scholar 

  76. Ma L, et al. Identification of ANGPT2 as a new gene for neovascular age-related macular degeneration and polypoidal choroidal vasculopathy in the Chinese and Japanese populations. Invest Ophthalmol Vis Sci. 2017; https://doi.org/10.1167/iovs.16-20575.

  77. Wen X, et al. Association of IGFN1 variant with polypoidal choroidal vasculopathy. J Gene Med. 2018; https://doi.org/10.1002/jgm.3007.

  78. Yoneyama S, et al. Genetic variants in the SKIV2L gene in exudative age-related macular degeneration in the Japanese population. Ophthalmic Genet. 2014;35:151–5. https://doi.org/10.3109/13816810.2014.921313.

    Article  CAS  PubMed  Google Scholar 

  79. Dewan A, et al. HTRA1 promoter polymorphism in wet age-related macular degeneration. Science. 2006;314:989–92. https://doi.org/10.1126/science.1133807.

    Article  CAS  PubMed  Google Scholar 

  80. Yang Z, et al. A variant of the HTRA1 gene increases susceptibility to age-related macular degeneration. Science. 2006;314:992–3. https://doi.org/10.1126/science.1133811.

    Article  CAS  PubMed  Google Scholar 

  81. Kanda A, et al. A variant of mitochondrial protein LOC387715/ARMS2, not HTRA1, is strongly associated with age-related macular degeneration. Proc Natl Acad Sci USA. 2007;104:16227–32. https://doi.org/10.1073/pnas.0703933104.

    Article  PubMed  Google Scholar 

  82. Oka C, et al. HtrA1 serine protease inhibits signaling mediated by Tgfβ family proteins. Development. 2004;131:1041–53. https://doi.org/10.1242/dev.00999.

    Article  CAS  PubMed  Google Scholar 

  83. Jones A, et al. Increased expression of multifunctional serine protease, HTRA1, in retinal pigment epithelium induces polypoidal choroidal vasculopathy in mice. Proc Natl Acad Sci USA. 2011;108:14578–83. https://doi.org/10.1073/pnas.1102853108.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, H., Ma, L., Liao, X., Chen, L.J., Pang, C.P. (2021). Differential Genotypes in Age-Related Macular Degeneration and Polypoidal Choroidal Vasculopathy: A Updated Meta-Analysis. In: Prakash, G., Iwata, T. (eds) Advances in Vision Research, Volume III. Essentials in Ophthalmology. Springer, Singapore. https://doi.org/10.1007/978-981-15-9184-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-9184-6_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-9183-9

  • Online ISBN: 978-981-15-9184-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics