Skip to main content

Consortium for Refractive Error and Myopia (CREAM): Vision, Mission, and Accomplishments

  • Chapter
  • First Online:
Advances in Vision Research, Volume III

Abstract

The Consortium for Refractive Error and Myopia (CREAM) is an international collaboration founded to increase knowledge on the genetic background of refractive error and myopia. The consortium was established in 2011 and consists of >50 studies from all over the world with epidemiological and genetic data on myopia endophenotypes. Due to these efforts, almost 200 genetic loci for refractive error and myopia have been identified. These genetic risk variants mostly carry low risk but are highly prevalent in the general population. The genetic loci are expressed in all retinal cell layers and play a role in different processes, e.g., in phototransduction or extracellular matrix remodeling. The work of CREAM over the years has implicated the major pathways in conferring susceptibility to myopia and supports the notion that myopia is caused by a light-dependent retina-to-sclera signaling cascade. The current genetic findings offer a world of new molecules involved in myopiagenesis. However, as the currently identified genetic loci explain only a fraction of the high heritability, further genetic advances are needed. It is recommended to expand large-scale, in-depth genetic studies using complementary big data analytics, to consider gene-environment effects by thorough measurements of environmental exposures, and to focus on subgroups with extreme phenotypes and high familial occurrence. Functional characterization of associated variants is simultaneously needed to bridge the knowledge gap between sequence variance and consequence for eye growth. The CREAM consortium will endeavor to play a pivotal role in these future developments.

Details of authors from “CREAM Consortium” are included in Appendix.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ALSPAC:

Avon Longitudinal Study of Parents and Children

AREDS:

Age-Related Eye Disease Study

BMES:

Blue Mountain Eye Study

CA repeats:

Cytosine–Adenine repeats

CREAM:

Consortium for Refractive Error and Myopia

GEWIS:

genome-environment-wide interaction studies

GCTA:

genome-wide complex trait analysis

GWAS:

genome-wide association studies

GxE:

gene–environment interaction

KORA:

Cooperative Health Research in the Region Augsburg

MR:

Mendelian randomization

nmol/l:

nanomole/liter

OMIM:

Online Mendelian Inheritance in Man database

SNP:

single-nucleotide polymorphism

SSGAC:

Social Science Genetic Association Consortium

WES:

whole-exome sequencing

WGS:

whole-genome sequencing

References

  1. Stambolian D. Genetic susceptibility and mechanisms for refractive error. Clin Genet. 2013;84:102–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tedja MS, Haarman AEG, Meester-Smoor MA, Kaprio J, Mackey DA, Guggenheim JA, et al. IMI – Myopia genetics report. Invest Ophthalmol Vis Sci. 2019;60(3):M89–M105.

    Google Scholar 

  3. Young FA. Transmission of refractive errors within Eskimo families. Optom Vis Sci. 1970;47:246–9.

    Article  Google Scholar 

  4. Angi MR, Clementi M, Sardei C, Piattelli E, Bisantis C. Heritability of myopic refractive errors in identical and fraternal twins. Graefes Arch Clin Exp Ophthalmol. 1993;231:580–5.

    Article  CAS  PubMed  Google Scholar 

  5. Teikari JM, Kaprio J, Koskenvuo MK, Vannas A. Heritability estimate for refractive errors--a population-based sample of adult twins. Genet Epidemiol. 1988;5:171–81.

    Article  CAS  PubMed  Google Scholar 

  6. Lyhne N, Sjølie AK, Kyvik KO, Green A. The importance of genes and environment for ocular refraction and its determiners: a population based study among 20–45 year old twins. Br J Ophthalmol. 2001;85:1470–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dirani M, Chamberlain M, Shekar SN, Islam AFM, Garoufalis P, Chen CY, Guymer RH, Baird PN. Heritability of refractive error and ocular biometrics: the Genes in Myopia (GEM) twin study. Invest Ophthalmol Vis Sci. 2006;47:4756–61.

    Article  PubMed  Google Scholar 

  8. Sanfilippo PG, Hewitt AW, Hammond CJ, Mackey DA. The heritability of ocular traits. Surv Ophthalmol. 2010;55:561–83.

    Article  PubMed  Google Scholar 

  9. Wojciechowski R, Congdon N, Bowie H, Munoz B, Gilbert D, West SK. Heritability of refractive error and familial aggregation of myopia in an elderly American population. Invest Ophthalmol Vis Sci. 2005;46:1588–92.

    Article  PubMed  Google Scholar 

  10. Teikari JM, Kaprio J, Koskenvuo MK, Vannas A. Heritability estimate for refractive errors--a population-based sample of adult twins. Genet Epidemiol. 1988;5:171–81.

    Article  CAS  PubMed  Google Scholar 

  11. Lyhne N, Sjølie AK, Kyvik KO, Green A. The importance of genes and environment for ocular refraction and its determiners: a population based study among 20–45 year old twins. Br J Ophthalmol. 2001;85:1470–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cordell HJ, Clayton DG. Genetic association studies. Lancet. 2005;366:1121–31.

    Article  PubMed  Google Scholar 

  13. Ku CS, Loy EY, Pawitan Y, Chia KS. The pursuit of genome-wide association studies: where are we now? J Hum Genet. 2010;55:195–206.

    Article  CAS  PubMed  Google Scholar 

  14. Li J, Zhang Q. Insight into the molecular genetics of myopia. Mol Vis. 2017;23:1048–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Lin LL, Chen CJ. A twin study on myopia in Chinese school children. Acta Ophthalmol Suppl. 1988;185:51–3.

    CAS  PubMed  Google Scholar 

  16. Sorsby A, Sheridan M, Leary GA (1962) Refraction and its components in twins. Medical research council, special report series no. 303.

    Google Scholar 

  17. Guggenheim JA. The heritability of high myopia: a reanalysis of Goldschmidt’s data. J Med Genet. 2000;37:227–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tedja MS, Wojciechowski R, Hysi PG, et al. Genome-wide association meta-analysis highlights light-induced signaling as a driver for refractive error. Nat Genet. 2018;50:834–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dirani M, Shekar SN, Baird PN. Evidence of shared genes in refraction and axial length: the Genes in Myopia (GEM) twin study. Invest Ophthalmol Vis Sci. 2008;49:4336–9.

    Article  PubMed  Google Scholar 

  20. Hammond CJ, Snieder H, Gilbert CE, Spector TD. Genes and environment in refractive error: the twin eye study. Invest Ophthalmol Vis Sci. 2001;42:1232–6.

    CAS  PubMed  Google Scholar 

  21. Guggenheim JA, Pong-Wong R, Haley CS, Gazzard G, Saw SM. Correlations in refractive errors between siblings in the Singapore Cohort Study of Risk factors for Myopia. Br J Ophthalmol. 2007;91:781–4.

    Article  PubMed  Google Scholar 

  22. Peet JA, Cotch M-F, Wojciechowski R, Bailey-Wilson JE, Stambolian D. Heritability and familial aggregation of refractive error in the Old Order Amish. Invest Ophthalmol Vis Sci. 2007;48:4002–6.

    Article  PubMed  Google Scholar 

  23. Klein AP, Suktitipat B, Duggal P, Lee KE, Klein R, Bailey-Wilson JE, Klein BEK. Heritability analysis of spherical equivalent, axial length, corneal curvature, and anterior chamber depth in the Beaver Dam Eye Study. Arch Ophthalmol. 2009;127:649–55.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lim LT, Gong Y, Ah-Kee EY, Xiao G, Zhang X, Yu S. Impact of parental history of myopia on the development of myopia in mainland china school-aged children. Ophthalmol Eye Dis. 2014;6:31–5.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Duke-Elder SS. The practice of refraction. Philadelphia: Blakiston; 1943.

    Book  Google Scholar 

  26. Young FA, Leary GA, Baldwin WR, West DC, Box RA, Harris E, Johnson C. The transmission of refractive errors within eskimo families. Am J Optom Arch Am Acad Optom. 1969;46:676–85.

    Article  CAS  PubMed  Google Scholar 

  27. Kim MH, Zhao D, Kim W, Lim D-H, Song Y-M, Guallar E, Cho J, Sung J, Chung E-S, Chung T-Y. Heritability of myopia and ocular biometrics in Koreans: the healthy twin study. Invest Ophthalmol Vis Sci. 2013;54:3644–9.

    Article  PubMed  Google Scholar 

  28. Guggenheim JA, Zhou X, Evans DM, et al. Coordinated genetic scaling of the human eye: shared determination of axial eye length and corneal curvature. Invest Ophthalmol Vis Sci. 2013;54:1715–21.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Chen CY-C, Scurrah KJ, Stankovich J, Garoufalis P, Dirani M, Pertile KK, Richardson AJ, Mitchell P, Baird PN. Heritability and shared environment estimates for myopia and associated ocular biometric traits: the Genes in Myopia (GEM) family study. Hum Genet. 2007;121:511–20.

    Article  PubMed  Google Scholar 

  30. Guggenheim JA, St Pourcain B, McMahon G, Timpson NJ, Evans DM, Williams C. Assumption-free estimation of the genetic contribution to refractive error across childhood. Mol Vis. 2015;21:621–32.

    PubMed  PubMed Central  Google Scholar 

  31. Rose KA, Morgan IG, Smith W, Mitchell P. High heritability of myopia does not preclude rapid changes in prevalence. Clin Experiment Ophthalmol. 2002;30:168–72.

    Article  PubMed  Google Scholar 

  32. Wojciechowski R. Nature and nurture: the complex genetics of myopia and refractive error. Clin Genet. 2011;79:301–20.

    Article  CAS  PubMed  Google Scholar 

  33. Dawn Teare M, Barrett JH. Genetic linkage studies. Lancet. 2005;366:1036–44.

    Article  CAS  PubMed  Google Scholar 

  34. Baird PN, Schäche M, Dirani M. The GEnes in Myopia (GEM) study in understanding the aetiology of refractive errors. Prog Retin Eye Res. 2010;29:520–42.

    Article  PubMed  Google Scholar 

  35. Hornbeak DM, Young TL. Myopia genetics: a review of current research and emerging trends. Curr Opin Ophthalmol. 2009;20:356–62.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Jacobi FK, Pusch CM. A decade in search of myopia genes. Front Biosci. 2010;15:359–72.

    Article  CAS  Google Scholar 

  37. Zhang Q, Guo X, Xiao X, Jia X, Li S, Hejtmancik JF. A new locus for autosomal dominant high myopia maps to 4q22-q27 between D4S1578 and D4S1612. Mol Vis. 2005;11:554–60.

    CAS  PubMed  Google Scholar 

  38. Young TL, Ronan SM, Alvear AB, Wildenberg SC, Oetting WS, Atwood LD, Wilkin DJ, King RA. A second locus for familial high myopia maps to chromosome 12q. Am J Hum Genet. 1998;63:1419–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Naiglin L, Gazagne C, Dallongeville F, Thalamas C, Idder A, Rascol O, Malecaze F, Calvas P. A genome wide scan for familial high myopia suggests a novel locus on chromosome 7q36. J Med Genet. 2002;39:118–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Paluru P, Ronan SM, Heon E, et al. New locus for autosomal dominant high myopia maps to the long arm of chromosome 17. Invest Ophthalmol Vis Sci. 2003;44:1830–6.

    Article  PubMed  Google Scholar 

  41. Nallasamy S, Paluru PC, Devoto M, Wasserman NF, Zhou J, Young TL. Genetic linkage study of high-grade myopia in a Hutterite population from South Dakota. Mol Vis. 2007;13:229–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Lam CY, Tam POS, Fan DSP, Fan BJ, Wang DY, Lee CWS, Pang CP, Lam DSC. A genome-wide scan maps a novel high myopia locus to 5p15. Invest Ophthalmol Vis Sci. 2008;49:3768–78.

    Article  PubMed  Google Scholar 

  43. Hawthorne FA, Young TL. Genetic contributions to myopic refractive error: Insights from human studies and supporting evidence from animal models. Exp Eye Res. 2013;114:141–9.

    Article  CAS  PubMed  Google Scholar 

  44. Stambolian D, Ibay G, Reider L, Dana D, Moy C, Schlifka M, Holmes T, Ciner E, Bailey-Wilson JE. Genomewide linkage scan for myopia susceptibility loci among Ashkenazi Jewish families shows evidence of linkage on chromosome 22q12. Am J Hum Genet. 2004;75:448–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wojciechowski R, Moy C, Ciner E, Ibay G, Reider L, Bailey-Wilson JE, Stambolian D. Genomewide scan in Ashkenazi Jewish families demonstrates evidence of linkage of ocular refraction to a QTL on chromosome 1p36. Hum Genet. 2006;119:389–99.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Wojciechowski R, Stambolian D, Ciner E, Ibay G, Holmes TN, Bailey-Wilson JE. Genomewide linkage scans for ocular refraction and meta-analysis of four populations in the Myopia Family Study. Invest Ophthalmol Vis Sci. 2009;50:2024–32.

    Article  PubMed  Google Scholar 

  47. Hammond CJ, Andrew T, Mak YT, Spector TD. A susceptibility locus for myopia in the normal population is linked to the PAX6 gene region on chromosome 11: a genomewide scan of dizygotic twins. Am J Hum Genet. 2004;75:294–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ciner E, Ibay G, Wojciechowski R, Dana D, Holmes TN, Bailey-Wilson JE, Stambolian D. Genome-wide scan of African-American and white families for linkage to myopia. Am J Ophthalmol. 2009;147:512–517.e2.

    Article  PubMed  Google Scholar 

  49. OMIM – Online Mendelian Inheritance in Man. https://www.omim.org/. Accessed 27 Jun 2018

  50. Home – Gene – NCBI. https://www.ncbi.nlm.nih.gov/gene/. Accessed 11 Sep 2018

  51. Hendriks M, VJM V, GHS B, Polling JR, Meester-Smoor MA, Hofman A, RD5000 Consortium, Kamermans M, Ingeborgh van den Born L, CCW K. Development of refractive errors-what can we learn from inherited retinal dystrophies? Am J Ophthalmol. 2017;182:81–9.

    Article  PubMed  Google Scholar 

  52. Mutti DO, Cooper ME, O’Brien S, Jones LA, Marazita ML, Murray JC, Zadnik K. Candidate gene and locus analysis of myopia. Mol Vis. 2007;13:1012–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Metlapally R, Li Y-J, Tran-Viet K-N, et al. COL1A1 and COL2A1 genes and myopia susceptibility: evidence of association and suggestive linkage to the COL2A1 locus. Invest Ophthalmol Vis Sci. 2009;50:4080–6.

    Article  PubMed  Google Scholar 

  54. Fan Q, Verhoeven VJM, Wojciechowski R, et al. Meta-analysis of gene-environment-wide association scans accounting for education level identifies additional loci for refractive error. Nat Commun. 2016;7:11008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Flitcroft DI, Loughman J, Wildsoet CF, Williams C, Guggenheim JA, for the CREAM Consortium. Novel myopia genes and pathways identified from syndromic forms of myopia. Invest Ophthalmol Vis Sci. 2018;59:338–48.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Lin H-J, Wan L, Tsai Y, Tsai Y-Y, Fan S-S, Tsai C-H, Tsai F-J. The TGFbeta1 gene codon 10 polymorphism contributes to the genetic predisposition to high myopia. Mol Vis. 2006;12:698–703.

    CAS  PubMed  Google Scholar 

  57. Lin H-J, Wan L, Tsai Y, Liu S-C, Chen W-C, Tsai S-W, Tsai F-J. Sclera-related gene polymorphisms in high myopia. Mol Vis. 2009;15:1655–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Lam DSC, Lee WS, Leung YF, Tam POS, Fan DSP, Fan BJ, Pang CP. TGFbeta-induced factor: a candidate gene for high myopia. Invest Ophthalmol Vis Sci. 2003;44:1012–5.

    Article  PubMed  Google Scholar 

  59. Veerappan S, Pertile KK, AFM I, Schäche M, Chen CY, Mitchell P, Dirani M, Baird PN. Role of the hepatocyte growth factor gene in Refractive error. Ophthalmology. 2010;117:239–245.e2.

    Article  PubMed  Google Scholar 

  60. Han W, Yap MKH, Wang J, Yip SP. Family-based association analysis of hepatocyte growth factor (HGF) gene polymorphisms in high myopia. Invest Ophthalmol Vis Sci. 2006;47:2291–9.

    Article  PubMed  Google Scholar 

  61. Khor CC, Grignani R, Ng DPK, Toh KY, Chia K-S, Tan D, Goh DLM, Saw S-M (2009) cMET and refractive error progression in children. Ophthalmology 116:1469–74, 1474.e1

    Google Scholar 

  62. Khor CC, Fan Q, Goh L, Tan D, Young TL, Li Y-J, Seielstad M, Goh DLM, Saw SM. Support for TGFB1 as a susceptibility gene for high myopia in individuals of Chinese descent. Arch Ophthalmol. 2010;128:1081–4.

    Article  CAS  PubMed  Google Scholar 

  63. Metlapally R, Ki C-S, Li Y-J, et al. Genetic association of insulin-like growth factor-1 polymorphisms with high-grade myopia in an international family cohort. Invest Ophthalmol Vis Sci. 2010;51:4476–9.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Hall NF, Gale CR, Ye S, Martyn CN. Myopia and polymorphisms in genes for matrix metalloproteinases. Invest Ophthalmol Vis Sci. 2009;50:2632–6.

    Article  PubMed  Google Scholar 

  65. Wojciechowski R, Yee SS, Simpson CL, Bailey-Wilson JE, Stambolian D. Matrix metalloproteinases and educational attainment in refractive error: evidence of gene-environment interactions in the age-related eye disease study. Ophthalmology. 2013;120:298–305.

    Article  PubMed  Google Scholar 

  66. Wang I-J, Chiang T-H, Shih Y-F, Hsiao CK, Lu S-C, Hou Y-C, Lin LL-K. The association of single nucleotide polymorphisms in the 5’-regulatory region of the lumican gene with susceptibility to high myopia in Taiwan. Mol Vis. 2006;12:852–7.

    CAS  PubMed  Google Scholar 

  67. Chen K-C, Hsi E, Hu C-Y, Chou W-W, Liang C-L, Juo S-HH. MicroRNA-328 may influence myopia development by mediating the PAX6 gene. Invest Ophthalmol Vis Sci. 2012;53:2732–9.

    Article  CAS  PubMed  Google Scholar 

  68. Tang SM, Rong SS, Young AL, Tam POS, Pang CP, Chen LJ. PAX6 gene associated with high myopia: a meta-analysis. Optom Vis Sci. 2014;91:419–29.

    Article  PubMed  Google Scholar 

  69. Li M, Zhai L, Zeng S, Peng Q, Wang J, Deng Y, Xie L, He Y, Li T. Lack of association between LUM rs3759223 polymorphism and high myopia. Optom Vis Sci. 2014;91:707–12.

    Article  PubMed  Google Scholar 

  70. Zhang D, Zeng G, Hu J, McCormick K, Shi Y, Gong B. Association of IGF1 polymorphism rs6214 with high myopia: A systematic review and meta-analysis. Ophthalmic Genet. 2017;38:434–9.

    Article  PubMed  CAS  Google Scholar 

  71. Dewan A, Liu M, Hartman S, et al. HTRA1 promoter polymorphism in wet age-related macular degeneration. Science. 2006;314:989–92.

    Article  CAS  PubMed  Google Scholar 

  72. Park J-H, Wacholder S, Gail MH, Peters U, Jacobs KB, Chanock SJ, Chatterjee N. Estimation of effect size distribution from genome-wide association studies and implications for future discoveries. Nat Genet. 2010;42:570–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Nakanishi H, Yamada R, Gotoh N, et al. A genome-wide association analysis identified a novel susceptible locus for pathological myopia at 11q24.1. PLoS Genet. 2009;5:e1000660.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Li Y-J, Goh L, Khor C-C, et al. Genome-wide association studies reveal genetic variants in CTNND2 for high myopia in Singapore Chinese. Ophthalmology. 2011;118:368–75.

    Article  PubMed  Google Scholar 

  75. Liu J, Zhang H-X. Polymorphism in the 11q24.1 genomic region is associated with myopia: a comprehensive genetic study in Chinese and Japanese populations. Mol Vis. 2014;20:352–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Lu B, Jiang D, Wang P, Gao Y, Sun W, Xiao X, Li S, Jia X, Guo X, Zhang Q. Replication study supports CTNND2 as a susceptibility gene for high myopia. Invest Ophthalmol Vis Sci. 2011;52:8258–61.

    Article  CAS  PubMed  Google Scholar 

  77. Yu Z, Zhou J, Chen X, Zhou X, Sun X, Chu R. Polymorphisms in theCTNND2Gene and 11q24.1 Genomic Region Are Associated with Pathological Myopia in a Chinese Population. Ophthalmologica. 2012;228:123–9.

    Article  CAS  PubMed  Google Scholar 

  78. Li Z, Qu J, Xu X, et al. A genome-wide association study reveals association between common variants in an intergenic region of 4q25 and high-grade myopia in the Chinese Han population. Hum Mol Genet. 2011;20:2861–8.

    Article  CAS  PubMed  Google Scholar 

  79. Shi Y, Qu J, Zhang D, et al. Genetic variants at 13q12.12 are associated with high myopia in the Han Chinese population. Am J Hum Genet. 2011;88:805–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Shi Y, Gong B, Chen L, et al. A genome-wide meta-analysis identifies two novel loci associated with high myopia in the Han Chinese population. Hum Mol Genet. 2013;22:2325–33.

    Article  CAS  PubMed  Google Scholar 

  81. Khor CC, Miyake M, Chen LJ, et al. Genome-wide association study identifies ZFHX1B as a susceptibility locus for severe myopia. Hum Mol Genet. 2013;22:5288–94.

    Article  CAS  PubMed  Google Scholar 

  82. Hosoda Y, Yoshikawa M, Miyake M, et al. CCDC102B confers risk of low vision and blindness in high myopia. Nat Commun. 2018;9:1782.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Meng W, Butterworth J, Bradley DT, Hughes AE, Soler V, Calvas P, Malecaze F. A genome-wide association study provides evidence for association of chromosome 8p23 (MYP10) and 10q21.1 (MYP15) with high myopia in the French Population. Invest Ophthalmol Vis Sci. 2012;53:7983–8.

    Article  CAS  PubMed  Google Scholar 

  84. Pickrell JK, Berisa T, Liu JZ, Ségurel L, Tung JY, Hinds DA. Detection and interpretation of shared genetic influences on 42 human traits. Nat Genet. 2016;48:709–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Solouki AM, Verhoeven VJM, van Duijn CM, et al. A genome-wide association study identifies a susceptibility locus for refractive errors and myopia at 15q14. Nat Genet. 2010;42:897–901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hysi PG, Young TL, Mackey DA, et al. A genome-wide association study for myopia and refractive error identifies a susceptibility locus at 15q25. Nat Genet. 2010;42:902–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Stambolian D, Wojciechowski R, Oexle K, et al. Meta-analysis of genome-wide association studies in five cohorts reveals common variants in RBFOX1, a regulator of tissue-specific splicing, associated with refractive error. Hum Mol Genet. 2013;22:2754–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Verhoeven VJM, Hysi PG, Saw S-M, et al. Large scale international replication and meta-analysis study confirms association of the 15q14 locus with myopia. The CREAM consortium. Hum Genet. 2012;131:1467–80.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Schache M, Richardson AJ, Mitchell P, et al. Genetic association of refractive error and axial length with 15q14 but not 15q25 in the blue mountains eye study cohort. Ophthalmology. 2013;120:292–7.

    Article  PubMed  Google Scholar 

  90. Simpson CL, Wojciechowski R, Yee SS, Soni P, Bailey-Wilson JE, Stambolian D. Regional replication of association with refractive error on 15q14 and 15q25 in the age-related eye disease study cohort. Mol Vis. 2013;19:2173–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. International HapMap Consortium. The international hapmap project. Nature. 2003;426:789–96.

    Article  CAS  Google Scholar 

  92. Verhoeven VJM, Hysi PG, Wojciechowski R, et al. Genome-wide meta-analyses of multiancestry cohorts identify multiple new susceptibility loci for refractive error and myopia. Nat Genet. 2013;45:314–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. 1000 Genomes Project Consortium, Abecasis GR, Auton A, Brooks LD, MA DP, Durbin RM, Handsaker RE, Kang HM, Marth GT, GA MV. An integrated map of genetic variation from 1,092 human genomes. Nature. 2012;491:56–65.

    Article  CAS  Google Scholar 

  94. Kiefer AK, Tung JY, Do CB, Hinds DA, Mountain JL, Francke U, Eriksson N. Genome-wide analysis points to roles for extracellular matrix remodeling, the visual cycle, and neuronal development in myopia. PLoS Genet. 2013;9:e1003299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wojciechowski R, Hysi PG. Focusing in on the complex genetics of myopia. PLoS Genet. 2013;9:e1003442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Oishi M, Yamashiro K, Miyake M, et al. Association between ZIC2, RASGRF1, and SHISA6 genes and high myopia in Japanese subjects. Invest Ophthalmol Vis Sci. 2013;54:7492–7.

    Article  CAS  PubMed  Google Scholar 

  97. Simpson CL, Wojciechowski R, Oexle K, et al. Genome-wide meta-analysis of myopia and hyperopia provides evidence for replication of 11 loci. PLoS One. 2014;9:e107110.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Cheng C-Y, Schache M, Ikram MK, et al. Nine loci for ocular axial length identified through genome-wide association studies, including shared loci with refractive error. Am J Hum Genet. 2013;93:264–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Liao X, Yap MKH, Leung KH, Kao PYP, Liu LQ, Yip SP. Genetic Association Study of Polymorphisms with High Myopia. Biomed Res Int. 2017;2017:3024156.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Tideman JWL, Fan Q, Polling JR, et al. When do myopia genes have their effect? Comparison of genetic risks between children and adults. Genet Epidemiol. 2016;40:756–66.

    Article  PubMed  Google Scholar 

  101. Yoshikawa M, Yamashiro K, Miyake M, et al. Comprehensive replication of the relationship between myopia-related genes and refractive errors in a large Japanese cohort. Invest Ophthalmol Vis Sci. 2014;55:7343–54.

    Article  CAS  PubMed  Google Scholar 

  102. Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI, Brown MA, Yang J. 10 years of GWAS discovery: biology, function, and translation. Am J Hum Genet. 2017;101:5–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Fan Q, Barathi VA, Cheng C-Y, et al. Genetic variants on chromosome 1q41 influence ocular axial length and high myopia. PLoS Genet. 2012;8:e1002753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Mishra A, Yazar S, Hewitt AW, et al. Genetic variants near PDGFRA are associated with corneal curvature in Australians. Invest Ophthalmol Vis Sci. 2012;53:7131–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Guggenheim JA, McMahon G, Kemp JP, et al. A genome-wide association study for corneal curvature identifies the platelet-derived growth factor receptor α gene as a quantitative trait locus for eye size in white Europeans. Mol Vis. 2013;19:243–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Han S, Chen P, Fan Q, et al. Association of variants in FRAP1 and PDGFRA with corneal curvature in Asian populations from Singapore. Hum Mol Genet. 2011;20:3693–8.

    Article  CAS  PubMed  Google Scholar 

  107. Chen P, Miyake M, Fan Q, et al. CMPK1 and RBP3 are associated with corneal curvature in Asian populations. Hum Mol Genet. 2014;23:6129–36.

    Article  CAS  PubMed  Google Scholar 

  108. Miyake M, Nagahama Study Group, Yamashiro K, et al. Identification of myopia-associated WNT7B polymorphisms provides insights into the mechanism underlying the development of myopia. Nat Commun. 2015;6:6689. https://doi.org/10.1038/ncomms7689.

    Article  CAS  PubMed  Google Scholar 

  109. Hutcheson G. Dummy variable coding. In: The SAGE dictionary of quantitative management research. Los Angeles: SAGE. p. 99–102.

    Google Scholar 

  110. Hysi PG, Choquet H, Khawaja AP, et al. Meta-analysis of 542, 934 subjects of European ancestry identifies new genes and mechanisms predisposing to refractive error and myopia. Nature Genet. 2020;52:401–7.

    Google Scholar 

  111. Hysi PG, Mahroo OA, Cumberland P, Wojciechowski R, Williams KM, Young TL, Mackey DA, Rahi JS, Hammond CJ. Common mechanisms underlying refractive error identified in functional analysis of gene lists from genome-wide association study results in 2 European British cohorts. JAMA Ophthalmol. 2014;132:50–6.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Chandra A, Mitry D, Wright A, Campbell H, Charteris DG. Genome-wide association studies: applications and insights gained in Ophthalmology. Eye. 2014;28:1066–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Hysi PG, Wojciechowski R, Rahi JS, Hammond CJ. Genome-wide association studies of refractive error and myopia, lessons learned, and implications for the future. Invest Ophthalmol Vis Sci. 2014;55:3344–51.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Pers TH, Genetic Investigation of ANthropometric Traits (GIANT) Consortium, Karjalainen JM, et al. Biological interpretation of genome-wide association studies using predicted gene functions. Nat Commun. 2015;6:5890. https://doi.org/10.1038/ncomms6890.

    Article  CAS  PubMed  Google Scholar 

  115. Fan Q, Zhou X, Khor C-C, et al. Genome-wide meta-analysis of five Asian cohorts identifies PDGFRA as a susceptibility locus for corneal astigmatism. PLoS Genet. 2011;7:e1002402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Shah RL, Li Q, Zhao W, et al. A genome-wide association study of corneal astigmatism: The CREAM Consortium. Mol Vis. 2018;24:127–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Shah RL, Biobank Eye UK, Vision Consortium, Guggenheim JA. Genome-wide association studies for corneal and refractive astigmatism in UK Biobank demonstrate a shared role for myopia susceptibility loci. Hum Genet. 2018;137:881–96. https://doi.org/10.1007/s00439-018-1942-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Napolitano F, Di Iorio V, Testa F, et al. Autosomal-dominant myopia associated to a novel P4HA2 missense variant and defective collagen hydroxylation. Clin Genet. 2018;93:982–91.

    Article  CAS  PubMed  Google Scholar 

  119. Zhao F, Wu J, Xue A, Su Y, Wang X, Lu X, Zhou Z, Qu J, Zhou X. Exome sequencing reveals CCDC111 mutation associated with high myopia. Hum Genet. 2013;132:913–21.

    Article  CAS  PubMed  Google Scholar 

  120. Wang B, Liu Y, Chen S, et al. A Novel Potentially Causative Variant of NDUFAF7 Revealed by Mutation Screening in a Chinese Family With Pathologic Myopia. Invest Ophthalmol Vis Sci. 2017;58:4182–92.

    Article  CAS  PubMed  Google Scholar 

  121. Feng L, Zhou D, Zhang Z, He L, Liu Y, Yang Y. Exome sequencing identifies a novel UNC5D mutation in a severe myopic anisometropia family: A case report. Medicine. 2017;96:e7138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Tran-Viet K-N, Powell C, Barathi VA, et al. Mutations in SCO2 are associated with autosomal-dominant high-grade myopia. Am J Hum Genet. 2013;92:820–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Jin Z-B, Wu J, Huang X-F, et al. Trio-based exome sequencing arrests de novo mutations in early-onset high myopia. Proc Natl Acad Sci U S A. 2017;114:4219–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Xiao X, Li S, Jia X, Guo X, Zhang Q. X-linked heterozygous mutations in cause female-limited early onset high myopia. Mol Vis. 2016;22:1257–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Li J, Gao B, Xiao X, Li S, Jia X, Sun W, Guo X, Zhang Q. Exome sequencing identified null mutations in LOXL3 associated with early-onset high myopia. Mol Vis. 2016;22:161–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Guo H, Jin X, Zhu T, et al. SLC39A5 mutations interfering with the BMP/TGF-β pathway in non-syndromic high myopia. J Med Genet. 2014;51:518–25.

    Article  CAS  PubMed  Google Scholar 

  127. Aldahmesh MA, Khan AO, Alkuraya H, et al. Mutations in LRPAP1 are associated with severe myopia in humans. Am J Hum Genet. 2013;93:313–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Shi Y, Li Y, Zhang D, et al. Exome sequencing identifies ZNF644 mutations in high myopia. PLoS Genet. 2011;7:e1002084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Jiang D, Li J, Xiao X, Li S, Jia X, Sun W, Guo X, Zhang Q. Detection of mutations in LRPAP1, CTSH, LEPREL1, ZNF644, SLC39A5, and SCO2 in 298 families with early-onset high myopia by exome sequencing. Invest Ophthalmol Vis Sci. 2014;56:339–45.

    Article  PubMed  CAS  Google Scholar 

  130. Sun W, Huang L, Xu Y, Xiao X, Li S, Jia X, Gao B, Wang P, Guo X, Zhang Q. Exome sequencing on 298 probands with early-onset high Myopia: approximately one-fourth show potential pathogenic mutations in RetNet genes. Invest Ophthalmol Vis Sci. 2015;56:8365–72.

    Article  CAS  PubMed  Google Scholar 

  131. Kloss BA, Tompson SW, Whisenhunt KN, Quow KL, Huang SJ, Pavelec DM, Rosenberg T, Young TL. Exome Sequence Analysis of 14 Families With High Myopia. Invest Ophthalmol Vis Sci. 2017;58:1982–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Benonisdottir S, Oddsson A, Helgason A, et al. Epigenetic and genetic components of height regulation. Nat Commun. 2016;7:13490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Morgan I, Rose K. How genetic is school myopia? Prog Retin Eye Res. 2005;24:1–38.

    Article  PubMed  Google Scholar 

  134. Morgan IG, Ohno-Matsui K, Saw S-M. Myopia. Lancet. 2012;379:1739–48.

    Article  PubMed  Google Scholar 

  135. Dolgin E. The myopia boom. Nature. 2015;519:276–8.

    Article  CAS  PubMed  Google Scholar 

  136. Vitale S, Sperduto RD, Ferris FL 3rd. Increased prevalence of myopia in the United States between 1971-1972 and 1999-2004. Arch Ophthalmol. 2009;127:1632–9.

    Article  PubMed  Google Scholar 

  137. Williams KM, Bertelsen G, Cumberland P, et al. Increasing Prevalence of Myopia in Europe and the Impact of Education. Ophthalmology. 2015;122:1489–97.

    Article  PubMed  Google Scholar 

  138. Mirshahi A, Ponto KA, Hoehn R, Zwiener I, Zeller T, Lackner K, Beutel ME, Pfeiffer N. Myopia and level of education: results from the Gutenberg Health Study. Ophthalmology. 2014;121:2047–52.

    Article  PubMed  Google Scholar 

  139. Morgan IG, Rose KA. Myopia and international educational performance. Ophthalmic Physiol Opt. 2013;33:329–38.

    Article  PubMed  Google Scholar 

  140. Ramessur R, Williams KM, Hammond CJ. Risk factors for myopia in a discordant monozygotic twin study. Ophthalmic Physiol Opt. 2015;35:643–51.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Wojciechowski R, Bailey-Wilson JE, Stambolian D. Association of matrix metalloproteinase gene polymorphisms with refractive error in Amish and Ashkenazi families. Invest Ophthalmol Vis Sci. 2010;51:4989–95.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Tkatchenko AV, Tkatchenko TV, Guggenheim JA, et al. APLP2 Regulates Refractive Error and Myopia Development in Mice and Humans. PLoS Genet. 2015;11:e1005432.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Fan Q, Wojciechowski R, Kamran Ikram M, et al. Education influences the association between genetic variants and refractive error: a meta-analysis of five Singapore studies. Hum Mol Genet. 2014;23:546–54.

    Article  CAS  PubMed  Google Scholar 

  144. VJM V, GHS B, Consortium for Refractive Error and Myopia (CREAM), Rivadeneira F, Uitterlinden AG, Vingerling JR, Hofman A, CCW K. Education influences the role of genetics in myopia. Eur J Epidemiol. 2013;28:973–80.

    Article  CAS  Google Scholar 

  145. Fan Q, Guo X, Tideman JWL, et al. Childhood gene-environment interactions and age-dependent effects of genetic variants associated with refractive error and myopia: The CREAM Consortium. Sci Rep. 2016;6:25853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Ebrahim S, Davey Smith G. Mendelian randomization: can genetic epidemiology help redress the failures of observational epidemiology? Hum Genet. 2008;123:15–33.

    Article  PubMed  Google Scholar 

  147. Smith GD, Ebrahim S. Mendelian randomization: prospects, potentials, and limitations. Int J Epidemiol. 2004;33:30–42.

    Article  PubMed  Google Scholar 

  148. Mokry LE, Ahmad O, Forgetta V, Thanassoulis G, Richards JB. Mendelian randomisation applied to drug development in cardiovascular disease: a review. J Med Genet. 2015;52:71–9.

    Article  CAS  PubMed  Google Scholar 

  149. Cuellar-Partida G, Lu Y, Kho PF, et al. Assessing the Genetic Predisposition of Education on Myopia: A Mendelian Randomization Study. Genet Epidemiol. 2016;40:66–72.

    Article  PubMed  Google Scholar 

  150. Mountjoy E, Davies NM, Plotnikov D, Smith GD, Rodriguez S, Williams CE, Guggenheim JA, Atan D. Education and myopia: assessing the direction of causality by mendelian randomisation. BMJ. 2018;361:k2022.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Choi JA, Han K, Park Y-M, La TY. Low serum 25-hydroxyvitamin D is associated with myopia in Korean adolescents. Invest Ophthalmol Vis Sci. 2014;55:2041–7.

    Article  CAS  PubMed  Google Scholar 

  152. Mutti DO, Marks AR. Blood levels of vitamin D in teens and young adults with myopia. Optom Vis Sci. 2011;88:377–82.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Tideman JWL, Polling JR, Voortman T, Jaddoe VWV, Uitterlinden AG, Hofman A, Vingerling JR, Franco OH, Klaver CCW. Low serum vitamin D is associated with axial length and risk of myopia in young children. Eur J Epidemiol. 2016;31:491–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Dupont C, Armant DR, Brenner CA. Epigenetics: definition, mechanisms and clinical perspective. Semin Reprod Med. 2009;27:351–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Teperino R, Lempradl A, Pospisilik JA. Bridging epigenomics and complex disease: the basics. Cell Mol Life Sci. 2013;70:1609–21.

    Article  CAS  PubMed  Google Scholar 

  156. Li M, Zauhar RJ, Grazal C, Curcio CA, DeAngelis MM, Stambolian D. RNA expression in human retina. Hum Mol Genet. 2017;26:R68–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Zhou X, Ji F, An J, et al. Experimental murine myopia induces collagen type Iα1 (COL1A1) DNA methylation and altered COL1A1 messenger RNA expression in sclera. Mol Vis. 2012;18:1312–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Zhu X-J, Zhou P, Zhang K-K, Yang J, Luo Y, Lu Y. Epigenetic regulation of αA-crystallin in high myopia-induced dark nuclear cataract. PLoS One. 2013;8:e81900.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Jiang B, Huo Y, Gu Y, Wang J. The role of microRNAs in myopia. Graefes Arch Clin Exp Ophthalmol. 2017;255:7–13.

    Article  CAS  PubMed  Google Scholar 

  160. Liang C-L, Hsi E, Chen K-C, Pan Y-R, Wang Y-S, Juo S-HH. A functional polymorphism at 3’UTR of the PAX6 gene may confer risk for extreme myopia in the Chinese. Invest Ophthalmol Vis Sci. 2011;52:3500–5.

    Article  CAS  PubMed  Google Scholar 

  161. Lechner J, Bae HA, Guduric-Fuchs J, et al. Mutational analysis of MIR184 in sporadic keratoconus and myopia. Invest Ophthalmol Vis Sci. 2013;54:5266–72.

    Article  CAS  PubMed  Google Scholar 

  162. Xie M, Li Y, Wu J, Wu J. Genetic variants in MiR-29a associated with high myopia. Ophthalmic Genet. 2016;37:456–8.

    Article  PubMed  Google Scholar 

  163. Liu H-P, Lin Y-J, Lin W-Y, Wan L, Sheu JJ-C, Lin H-J, Tsai Y, Tsai C-H, Tsai F-J. A novel genetic variant of BMP2K contributes to high myopia. J Clin Lab Anal. 2009;23:362–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Lin H-J, Wan L, Tsai Y, Chen W-C, Tsai S-W, Tsai F-J. Muscarinic acetylcholine receptor 1 gene polymorphisms associated with high myopia. Mol Vis. 2009;15:1774–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Lin H-J, Wan L, Chen W-C, Lin J-M, Lin C-J, Tsai F-J. Muscarinic acetylcholine receptor 3 is dominant in myopia progression. Invest Ophthalmol Vis Sci. 2012;53:6519–25.

    Article  CAS  PubMed  Google Scholar 

  166. Guggenheim JA, Zayats T, Hammond C, Young TL. Lumican and muscarinic acetylcholine receptor 1 gene polymorphisms associated with high myopia. Eye. 2010;24:1411–2. author reply 1412

    Article  CAS  PubMed  Google Scholar 

  167. Inamori Y, Ota M, Inoko H, Okada E, Nishizaki R, Shiota T, Mok J, Oka A, Ohno S, Mizuki N. The COL1A1 gene and high myopia susceptibility in Japanese. Hum Genet. 2007;122:151–7.

    Article  CAS  PubMed  Google Scholar 

  168. Ho DWH, Yap MKH, Ng PW, Fung WY, Yip SP. Association of high myopia with crystallin beta A4 (CRYBA4) gene polymorphisms in the linkage-identified MYP6 locus. PLoS One. 2012;7:e40238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Yanovitch T, Li Y-J, Metlapally R, Abbott D, Viet K-NT, Young TL. Hepatocyte growth factor and myopia: genetic association analyses in a Caucasian population. Mol Vis. 2009;15:1028–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Chen ZT-Y, Wang I-J, Shih Y-F, Lin LL-K. The association of haplotype at the lumican gene with high myopia susceptibility in Taiwanese patients. Ophthalmology. 2009;116:1920–7.

    Article  PubMed  Google Scholar 

  171. Lin H-J, Wan L, Tsai Y, Chen W-C, Tsai S-W, Tsai F-J. The association between lumican gene polymorphisms and high myopia. Eye. 2010;24:1093–101.

    Article  CAS  PubMed  Google Scholar 

  172. Andrew T, Maniatis N, Carbonaro F, Liew SHM, Lau W, Spector TD, Hammond CJ. Identification and replication of three novel myopia common susceptibility gene loci on chromosome 3q26 using linkage and linkage disequilibrium mapping. PLoS Genet. 2008;4:e1000220.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Zou Y-C, Lei J-H, Wang Y, Xu S. Correlation between polymorphisms in the MFN1 gene and myopia in Chinese population. Int J Ophthalmol. 2015;8:1126–30.

    PubMed  PubMed Central  Google Scholar 

  174. Tang WC, Yip SP, Lo KK, Ng PW, Choi PS, Lee SY, Yap MKH. Linkage and association of myocilin (MYOC) polymorphisms with high myopia in a Chinese population. Mol Vis. 2007;13:534–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Vatavuk Z, Skunca Herman J, Bencić G, et al. Common variant in myocilin gene is associated with high myopia in isolated population of Korcula Island, Croatia. Croat Med J. 2009;50:17–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Zayats T, Yanovitch T, Creer RC, McMahon G, Li Y-J, Young TL, Guggenheim JA. Myocilin polymorphisms and high myopia in subjects of European origin. Mol Vis. 2009;15:213–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Tsai Y-Y, Chiang C-C, Lin H-J, Lin J-M, Wan L, Tsai F-J. A PAX6 gene polymorphism is associated with genetic predisposition to extreme myopia. Eye. 2008;22:576–81.

    Article  CAS  PubMed  Google Scholar 

  178. Ng TK, Lam CY, Lam DSC, Chiang SWY, Tam POS, Wang DY, Fan BJ, Yam GH-F, Fan DSP, Pang CP. AC and AG dinucleotide repeats in the PAX6 P1 promoter are associated with high myopia. Mol Vis. 2009;15:2239–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Han W, Leung KH, Fung WY, Mak JYY, Li YM, Yap MKH, Yip SP. Association of PAX6 polymorphisms with high myopia in Han Chinese nuclear families. Invest Ophthalmol Vis Sci. 2009;50:47–56.

    Article  PubMed  Google Scholar 

  180. Miyake M, Yamashiro K, Nakanishi H, et al. Association of paired box 6 with high myopia in Japanese. Mol Vis. 2012;18:2726–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Kanemaki N, Meguro A, Yamane T, Takeuchi M, Okada E, Iijima Y, Mizuki N. Study of association of PAX6 polymorphisms with susceptibility to high myopia in a Japanese population. Clin Ophthalmol. 2015;9:2005–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Zha Y, Leung KH, Lo KK, Fung WY, Ng PW, Shi M-G, Yap MKH, Yip SP. TGFB1 as a susceptibility gene for high myopia: a replication study with new findings. Arch Ophthalmol. 2009;127:541–8.

    Article  CAS  PubMed  Google Scholar 

  183. Rasool S, Ahmed I, Dar R, Ayub SG, Rashid S, Jan T, Ahmed T, Naikoo NA, Andrabi KI. Contribution of TGFβ1 codon 10 polymorphism to high myopia in an ethnic Kashmiri population from India. Biochem Genet. 2013;51:323–33.

    Article  CAS  PubMed  Google Scholar 

  184. Ahmed I, Rasool S, Jan T, Qureshi T, Naykoo NA, Andrabi KI. TGIF1 is a potential candidate gene for high myopia in ethnic Kashmiri population. Curr Eye Res. 2014;39:282–90.

    Article  CAS  PubMed  Google Scholar 

  185. Zhao YY, Zhang FJ, Zhu SQ, Duan H, Li Y, Zhou ZJ, Ma WX, Li Wang N. The association of a single nucleotide polymorphism in the promoter region of the LAMA1 gene with susceptibility to Chinese high myopia. Mol Vis. 2011;17:1003–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Nishizaki R, Ota M, Inoko H, Meguro A, Shiota T, Okada E, Mok J, Oka A, Ohno S, Mizuki N. New susceptibility locus for high myopia is linked to the uromodulin-like 1 (UMODL1) gene region on chromosome 21q22.3. Eye. 2009;23:222–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank all CREAM study participants, their relatives, and the staff at the recruitment centers for their invaluable contributions.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Virginie J. M. Verhoeven .

Editor information

Editors and Affiliations

CREAM Membership List

CREAM Membership List

26.1.1 The CREAM Consortium

Joan E. Bailey-Wilson1, Paul Nigel Baird2, Amutha Barathi Veluchamy3-5, Ginevra Biino6, Kathryn P. Burdon7, Harry Campbell8, Li Jia Chen9, Ching-Yu Cheng10-12, Emily Y. Chew13, Jamie E. Craig14, Phillippa M. Cumberland15, Margaret M. Deangelis16, Cécile Delcourt17, Xiaohu Ding18, Cornelia M. van Duijn19, David M. Evans20-22, Qiao Fan23, Maurizio Fossarello24, Paul J. Foster25, Puya Gharahkhani26, Adriana I. Iglesias19,27,28, Jeremy A. Guggenheim29, Xiaobo Guo18,30, Annechien E.G. Haarman19,28, Toomas Haller31, Christopher J. Hammond32, Xikun Han26, Caroline Hayward33, Mingguang He2,18, Alex W. Hewitt2,7,34, Quan Hoang3,35, Pirro G. Hysi32, Robert P. Igo Jr.36, Sudha K. Iyengar36-38, Jost B. Jonas39,40, Mika Kähönen41,42, Jaakko Kaprio43,44, Anthony P. Khawaja25,45, Caroline C. W. Klaver19,28,46, Barbara E. Klein47, Ronald Klein47, Jonathan H. Lass36,37, Kris Lee47, Terho Lehtimäki48,49, Deyana Lewis1, Qing Li50, Shi-Ming Li40, Leo-Pekka Lyytikäinen48,49, Stuart MacGregor26, David A. Mackey2,7,34, Nicholas G. Martin51, Akira Meguro52, Andres Metspalu31, Candace Middlebrooks1, Masahiro Miyake53, Nobuhisa Mizuki52, Anthony Musolf1, Stefan Nickels54, Konrad Oexle55, Chi Pui Pang9, Olavi Pärssinen56,57, Andrew D. Paterson58, Norbert Pfeiffer54, Ozren Polasek59,60, Jugnoo S. Rahi15,25,61, Olli Raitakari62,63, Igor Rudan8, Srujana Sahebjada2, Seang-Mei Saw64,65, Dwight Stambolian66, Claire L. Simpson1,67, E-Shyong Tai65, Milly S. Tedja19,28, J. Willem L. Tideman19,28, Akitaka Tsujikawa53, Virginie J.M. Verhoeven19,27,28, Veronique Vitart33, Ningli Wang40, Juho Wedenoja43,68, Wen Bin Wei69, Cathy Williams22, Katie M. Williams32, James F. Wilson8,33, Robert Wojciechowski1,70,71, Ya Xing Wang40, Kenji Yamashiro72, Jason C. S. Yam9, Maurice K.H. Yap73, Seyhan Yazar34, Shea Ping Yip74, Terri L. Young47, Xiangtian Zhou75

Affiliations

  1. 1.

    Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA.

  2. 2.

    Centre for Eye Research Australia, Ophthalmology, Department of Surgery, University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Australia.

  3. 3.

    Singapore Eye Research Institute, Singapore National Eye Centre, Singapore.

  4. 4.

    Duke-NUS Medical School, Singapore, Singapore.

  5. 5.

    Department of Ophthalmology, National University Health Systems, National University of Singapore, Singapore.

  6. 6.

    Institute of Molecular Genetics, National Research Council of Italy, Pavia, Italy.

  7. 7.

    Department of Ophthalmology, Menzies Institute of Medical Research, University of Tasmania, Hobart, Australia.

  8. 8.

    Centre for Global Health Research, Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK.

  9. 9.

    Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong Eye Hospital, Kowloon, Hong Kong.

  10. 10.

    Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.

  11. 11.

    Ocular Epidemiology Research Group, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore.

  12. 12.

    Ophthalmology and Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore.

  13. 13.

    Division of Epidemiology and Clinical Applications, National Eye Institute/National Institutes of Health, Bethesda, USA.

  14. 14.

    Department of Ophthalmology, Flinders University, Adelaide, Australia.

  15. 15.

    Great Ormond Street Institute of Child Health, University College London, London, UK.

  16. 16.

    Department of Ophthalmology and Visual Sciences, John Moran Eye Center, University of Utah, Salt Lake City, Utah, USA.

  17. 17.

    Université de Bordeaux, Inserm, Bordeaux Population Health Research Center, team LEHA, UMR 1219, F-33000 Bordeaux, France.

  18. 18.

    State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.

  19. 19.

    Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands.

  20. 20.

    Translational Research Institute, University of Queensland Diamantina Institute, Brisbane, Queensland, Australia.

  21. 21.

    MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK.

  22. 22.

    Department of Population Health Sciences, Bristol Medical School, Bristol, UK.

  23. 23.

    Centre for Quantitative Medicine, DUKE-National University of Singapore, Singapore.

  24. 24.

    University Hospital ‘San Giovanni di Dio’, Cagliari, Italy.

  25. 25.

    NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK.

  26. 26.

    Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia.

  27. 27.

    Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands.

  28. 28.

    Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands.

  29. 29.

    School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK.

  30. 30.

    Department of Statistical Science, School of Mathematics, Sun Yat-Sen University, Guangzhou, China.

  31. 31.

    Institute of Genomics, University of Tartu, Tartu, Estonia.

  32. 32.

    Section of Academic Ophthalmology, School of Life Course Sciences, King's College London, London, UK.

  33. 33.

    MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK.

  34. 34.

    Centre for Ophthalmology and Visual Science, Lions Eye Institute, University of Western Australia, Perth, Australia.

  35. 35.

    Department of Ophthalmology, Columbia University, New York, USA.

  36. 36.

    Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA.

  37. 37.

    Department of Ophthalmology and Visual Sciences, Case Western Reserve University and University Hospitals Eye Institute, Cleveland, Ohio, USA.

  38. 38.

    Department of Genetics, Case Western Reserve University, Cleveland, Ohio, USA.

  39. 39.

    Department of Ophthalmology, Medical Faculty Mannheim of the Ruprecht-Karls-University of Heidelberg, Mannheim, Germany.

  40. 40.

    Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Institute of Ophthalmology, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Capital Medical University, Beijing, China.

  41. 41.

    Department of Clinical Physiology, Tampere University Hospital and School of Medicine, University of Tampere, Tampere, Finland.

  42. 42.

    Finnish Cardiovascular Research Center, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland.

  43. 43.

    Department of Public Health, University of Helsinki, Helsinki, Finland.

  44. 44.

    Institute for Molecular Medicine Finland FIMM, HiLIFE Unit, University of Helsinki, Helsinki, Finland.

  45. 45.

    Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.

  46. 46.

    Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands.

  47. 47.

    Department of Ophthalmology and Visual Sciences, University of Wisconsin–Madison, Madison, Wisconsin, USA.

  48. 48.

    Department of Clinical Chemistry, Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Life Sciences, University of Tampere.

  49. 49.

    Department of Clinical Chemistry, Fimlab Laboratories, University of Tampere, Tampere, Finland.

  50. 50.

    National Human Genome Research Institute, National Institutes of Health, Baltimore, USA.

  51. 51.

    Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Australia.

  52. 52.

    Department of Ophthalmology, Yokohama City University School of Medicine, Yokohama, Kanagawa, Japan.

  53. 53.

    Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan.

  54. 54.

    Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.

  55. 55.

    Institute of Neurogenomics, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany.

  56. 56.

    Department of Ophthalmology, Central Hospital of Central Finland, Jyväskylä, Finland.

  57. 57.

    Gerontology Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland.

  58. 58.

    Program in Genetics and Genome Biology, Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada.

  59. 59.

    Gen-info Ltd, Zagreb, Croatia.

  60. 60.

    University of Split School of Medicine, Soltanska 2, Split, Croatia.

  61. 61.

    Ulverscroft Vision Research Group, University College London, London, UK.

  62. 62.

    Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland.

  63. 63.

    Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland.

  64. 64.

    Myopia Research Group, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore.

  65. 65.

    Saw Swee Hock School of Public Health, National University Health Systems, National University of Singapore, Singapore.

  66. 66.

    Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.

  67. 67.

    Department of Genetics, Genomics and Informatics, University of Tennessee Health Sciences Center, Memphis, Tennessee.

  68. 68.

    Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.

  69. 69.

    Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology and Visual Sciences Key Lab, Beijing Tongren Hospital, Capital Medical University, Beijing, China.

  70. 70.

    Department of Epidemiology and Medicine, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.

  71. 71.

    Wilmer Eye Institute, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA.

  72. 72.

    Department of Ophthalmology, Otsu Red Cross Hospital, Nagara, Japan.

  73. 73.

    Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong, Hong Kong.

  74. 74.

    Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong.

  75. 75.

    School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, China.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Haarman, A.E.G. et al. (2021). Consortium for Refractive Error and Myopia (CREAM): Vision, Mission, and Accomplishments. In: Prakash, G., Iwata, T. (eds) Advances in Vision Research, Volume III. Essentials in Ophthalmology. Springer, Singapore. https://doi.org/10.1007/978-981-15-9184-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-9184-6_26

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-9183-9

  • Online ISBN: 978-981-15-9184-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics