Skip to main content

Somatic Embryogenesis and Alternative In Vitro Techniques

  • Chapter
  • First Online:
Tea: Genome and Genetics
  • 302 Accesses

Abstract

Genetic engineering through in vitro manipulation of cell seems to be an additional tool for overcoming some of the problems of tea breeding. The prerequisite step for such a technology is an efficient in vitro plant regeneration system. Somatic embryogenesis is considered to be the most efficient regeneration system of tea (Jain and Newton 1990). However, the efficacy of such a system for plant regeneration depends on the efficiency of multiplication and conversion rate of somatic embryos. The advantage of somatic embryogenesis is the development of adventitious embryos from explant tissue without an intervening callus phase which helps in maintaining genetic fidelity (Bano et al. 1991). Therefore, it has a tremendous potential in clonal propagation (Mondal et al. 2001a) and most importantly through genetic transformation of tea (Mondal et al. 1999, 2001b). It has been successfully used for artificial seed production (Mondal et al. 2000; Mondal 2002) and some interspecific hybrid crosses of Camellia (Nadamitsu et al. 1986), where immature somatic embryos were rescued and cultured before abortion. It can also be used for disease-free plant production and androgenic or haploid plant production of tea (Chen and Liao 1982). In tea, somatic embryogenesis is the only alternative pathway to conventional micropropagation due to little or no success on neoformation of adventitious buds or protoplast/suspension cultures (Deka et al. 2006). The various factors, which govern the somatic embryogenesis of tea and related species, have been summarized concisely in Table 4.1 and described below.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham GC, Raman K (1986) Somatic embryogenesis in tissue culture of immature cotyledons of tea (Camellia sinensis). In: Somers DA, Gengenbach BG, Biesboor DD, Hackett WP, Green CE (eds) International congress of plant tissue and cell culture. University of Minnesota, Minneapolis, MN, p 294

    Google Scholar 

  • Akula A, Akula C (1999) Somatic embryogenesis in tea (Camellia sinensis (L) O Kuntze). In: Jain SM, Gupta PK, Newton RJ (eds) Somatic embryogenesis in woody plants, vol 5, pp 239–259

    Chapter  Google Scholar 

  • Akula A, Dodd WA (1998) Direct somatic embryogenesis in a selected tea clone, TRI-2025 (Camellia sinensis (L).O. Kuntze) from nodal segment. Plant Cell Rep 17:804–809

    Article  CAS  PubMed  Google Scholar 

  • Akula A, Akula C, Bateson M (2000) Betaine a novel candidate for rapid induction of somatic embryogenesis in tea (Camellia sinensis (L.) O. Kuntze). Plant Growth Regul 30:241–246

    Article  CAS  Google Scholar 

  • Ammirato PV (1985) Patterns of development in culture. In: Henke RR, Hughes KW, Constantin MP, Hollaender A (eds) Tissue culture in forestry and agriculture. Plenum, New York, pp 9–29

    Chapter  Google Scholar 

  • Aoshima Y (2005) Efficient embryogenesis in the callus of tea (Camellia sinensis ) enhanced by the osmotic stress or antibiotics treatment. Plant Biotech 22:277–280

    Article  CAS  Google Scholar 

  • Arulpragasam PV, Latiff R, Seneviratne P (1988) Studies on the tissue culture of tea (Camellia sinensis (L.) O. Kuntze). 3. Regeneration of plants from cotyledon callus. Sri Lanka J Tea Sci 57:20–23

    Google Scholar 

  • Avgioglu A, Knox RB (1989) Storage lipid accumulation by zygotic and somatic embryo in culture. Ann Bot 63:409–412

    Article  Google Scholar 

  • Bag N, Palni LMS, Nandi SK (1997) Mass propagation of tea using tissue culture methods. Physiol Mol Biol Plants 3:99–103

    Google Scholar 

  • Bagratishvili DG, Zaprometov MN, Butenko RG (1979) Obtaining a cell suspension culture from the tea plant. Fiziol Rast 26:449–451

    CAS  Google Scholar 

  • Balasubramanian S, Marimuthu S, Rajkumar R, Haridas V (2000a) Somatic embryogenesis and multiple shoot induction in Camellia sinensis (L.) O. Kuntze. J Plant Crop 28:44–49

    Google Scholar 

  • Balasubramanian S, Marimuthu S, Rajkumar R, Balasaravanan T (2000b) Isolation, culture and fusion of protoplast in tea. In: Muraleedharan N, Rajkumar R (eds) Recent advance in plants crops research. Allied Publishers, New Delhi, pp 3–9

    Google Scholar 

  • Ballester A, Janeiro LV, Vieitez AM (1997) Cold storage of shoot cultures and alginate encapsulation of shoot tips of Camellia japonica and Camellia reticulata Lindley. Sci Hortic 71:67–78

    Article  Google Scholar 

  • Bano Z, Rajaratnam S, Mohanty BD (1991) Somatic embryogenesis in cotyledon culture of tea (Thea sinensis L.). J Hort Sci 66:465–470

    Article  Google Scholar 

  • Barciela J, Vieitez AM (1993) Anatomical sequence and morphometric analysis during somatic embryogenesis on cultured cotyledon explants of Camellia japonica L. Ann Bot 71:395–404

    Article  Google Scholar 

  • Barciela J, Vieitz AM (1993) Anatomical sequence and morphometric analysis during somatic embryogenesis on cultured cotyledon explants of Camellia japonica L. Ann Bot 71:395–404

    Article  Google Scholar 

  • Bennett WY, Scheibert P (1982) In vitro generation of callus and plantlets from cotyledons of Camellia japonica. Camellia J 37:12–15

    Google Scholar 

  • Beretta D, Vanoli M, Eccher T (1987) The influence of glucose, vitamins and IBA on rooting of Camellia shoots in vitro. In: Abstract from the symposium on vegetative propagation of woody species, Pisa, Italy, p 105

    Google Scholar 

  • Bhatia CR, Murty GSS, Mouli C, Kale DM (1986) Nuclear techniques and in vitro culture for plant improvement. In: Proceedings on the International Symposium on nuclear techniques and in vitro culture for plant improvement. IAEE, FAO and UN, Vienna, 19–23 August, pp 419–427

    Google Scholar 

  • Bhattacharya A, Nagar PK, Ahuja PS (2002) Seed development in Camellia sinensis (L.) O. Kuntze. Seed Sci Res 12:39–46

    Article  Google Scholar 

  • Bhattacharya A, Nagar PK, Ahuja PS (2004) Changes in endogenous indole-3-acetic acid and some biochemical parameters during seed development in Camellia sinensis (L.) O. Kuntze. Acta Physiol Plant 26:399–404

    Article  CAS  Google Scholar 

  • Chandel KPS, Chaudhury R, Radhamani J, Malik SK (1995) Desiccation and freezing sensitivity in recalcitrant seeds of tea, cocoa and jackfruit. Ann Bot 76:443–450

    Google Scholar 

  • Chandel KPS, Chaudhury R, Radhamani J, Malik SK (2005) Desiccation and freezing sensitivity in recalcitrant seeds of tea, cocoa and jackfruit. Ann Bot 76:443–450

    Article  Google Scholar 

  • Chaudhaury R, Lakhanpal S, Chandel KPS (1990) Germination and desiccation tolerance of tea (Camellia sinensis (L.) O. Kuntze) seeds and feasibility of cryopreservation. Sri Lanka J Tea Sci 59:89–94

    Google Scholar 

  • Chaudhury R, Radhamani J, Chandel KPS (1991) Preliminary observation in the cryopreservation of desiccated embryonic axes of tea (Camellia sinensis L.O.Kuntze) seeds for genetic conservation. Cryo Lett 12:31–36

    Google Scholar 

  • Chen Z, Liao H (1982) Obtaining plantlet through anther culture of tea plants. Zhongguo Chaye 4:6–7

    CAS  Google Scholar 

  • Chen Z, Liao H (1983) A success in bringing out tea plants from the anthers. China Tea 5:6–7

    Google Scholar 

  • Das SC (1992) Non-conventional techniques of regenerating polyploids in tea. In: Proc. 31st Tocklai Conf., TRA, Jorhat, India, pp 26–30

    Google Scholar 

  • Das SC, Barman TS (1988) Current state and future potential of tissue culture in tea. In: Proc. 30th Tocklai Conf. TRA Jorhat, India, pp 90–94

    Google Scholar 

  • Deka A, Deka PC, Mondal TK (2006) Tea. In: Parthasarathy VA, Chattopadhyay PK, Bose TK (eds) Plantation crops-I. Naya Udyog, Calcutta, (ISBN no. 81-85971-97-8), pp 1–148

    Google Scholar 

  • Deng WW, Li YY, Ogita S, Ashihara H (2008) Fine control of caffeine biosynthesis in tissue cultures of Camellia sinensis. Phytochem Lett 1:195–198

    Article  CAS  Google Scholar 

  • Engelmann F (1997) In vitro conservation research activities at the international plant genetic Resources institute (IPGRI). Plant Tiss Cult Biotech 3:46–52

    Google Scholar 

  • Evans DA, Sharp WR (1986) Somaclonal and gametoclonal variation. In: Evans DA, Sharp WR, Ammirato PV (eds) Hand book of plant cell culture. Technique and applications, vol 4. Macmillan, New York, pp 97–132

    Google Scholar 

  • Forrest GI (1969) Studies on the polyphenol metabolism of tissue culture derived from the tea plant (C. sinensis L.). Biochem J 113:765–772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frisch CH, Camper ND (1987) Effect of synthetic auxins on callus induction from tea stem tissue. Plant Cell Tiss Org Cult 8:207–213

    Article  CAS  Google Scholar 

  • Furuya T, Orihara T, Tsuda Y (1990) Caffeine and theanine from cultured cells of Camellia sinensis. Phytochemistry 29:2539–2547

    Article  CAS  Google Scholar 

  • Gamborg O, Miller R, Ojima K (1968) Nutrient requirements of suspension cultures of soyabean root cells. Exp Cell Res 50:157–158

    Article  Google Scholar 

  • Ge G, Jiao W, Cui C, Liao G, Sun J, Hou R (2019) Thiamethoxam metabolism and metabolic effects in cell suspension culture of tea (Camellia sinensis L.). J Agric Food Chem 67:7538–7546

    Article  CAS  PubMed  Google Scholar 

  • Ghanati F, Ishka MR (2009) Investigation of the interaction between abscisic acid (ABA) and excess benzyladenine (BA) on the formation of shoot in tissue culture of tea (Camellia sinensis L.). Int J Plant Prod 3:7–14

    CAS  Google Scholar 

  • Ghosh B, Sen S (1994) Plant regeneration from alginate encapsulated somatic embryos of Asparagus cooperi baker. Plant Cell Rep 13:381–385

    Article  CAS  PubMed  Google Scholar 

  • Hao C, Wang Y, Yang S (1994) Effects of macroelements on the growth of tea callus and the accumulation of catechins. J Tea Sci (China) 14:31–36

    Google Scholar 

  • Haridas V, Balasaravanan T, Rajkumar R, Marimuthu S (2000) Factor influencing somatic embryogenesis in Camellia sinensis (L.) O. Kuntze. In: Muraleedharan N, Raj Kumar R (eds) Recent advances in plantation crops research. Allied Publishers, New Delhi, pp 31–35

    Google Scholar 

  • Hazarika RR, Chaturvedi R (2013) Establishment of dedifferentiated callus of haploid origin from unfertilized ovaries of tea (Camellia sinensis (L.)O. Kuntze) as a potential source of total phenolics and antioxidant activity. In Vitro Cell Dev Biol Plant 49:60–69

    Article  Google Scholar 

  • Hu H (1983) Genetic stability and variability of pollen derived plants. In: Sen SK, Giles KL (eds) Plant cell culture in crop improvement. Plenum, New York, pp 145–157

    Google Scholar 

  • Hua LD, Dai ZD, Hui X (1999) Studies on somatic embryo and adventitious bud differentiation rate among different tissues of Camellia sinensis L. Acta Agron Sin 25:291–295

    Google Scholar 

  • Hwang YJ, Okubo H, Fujieda K (1992) Pollen tube growth, fertilizer and embryo development of Camellia japonica L. x C. chrysantha (Hu) Tuyama. J Jap Soc Hort Sci 60:955–961

    Article  Google Scholar 

  • Ikekawa N (1991) In: Patterson GW, Nes WD (eds) Physiology and biochemistry of sterols. American Oil Chemists Society, Champaign, pp 347–360

    Google Scholar 

  • Jain SM, Newton RJ (1990) Prospects of biotechnology for tea improvement. Proc Indian Natl Sci Acad 6:441–448

    Google Scholar 

  • Janeiro LV (1996) Almacenamiento en frio de especies lenosas propagadas in vitro. Aplicación de las tecnologías de semilla artifical y criopreservación en el género Camellia, Doctoral Thesis, University of Santiago de Compostela, Santiago de Compostela

    Google Scholar 

  • Janeiro LV, Ballester A, Vieitez AM (1995) Effect of cold storage on somatic embryogenesis systems of Camellia. J Hort Sci 70:665–667

    Article  Google Scholar 

  • Janeiro LV, Ballestter A, Vieitez AM (1996) Cryopreservation of somatic embryos and embryonic axes of Camellia japonica L. Plant Cell Rep 15:699–703

    Article  CAS  PubMed  Google Scholar 

  • Janeiro LV, Ballester A, Vieitez AM (1997) In vitro response of encapsulated somatic embryo of Camellia. Plant Cell Tiss Org Cult 51:119–125

    Article  Google Scholar 

  • Jha TB, Jha S, Sen SK (1992) Somatic embryogenesis from immature cotyledon of an elite Darjeeling tea clone. Plant Sci 84:209–213

    Article  CAS  Google Scholar 

  • Jiao W, Ge G, Hua R, Sun J, Li Y, Hou R (2019) Study on the metabolism of six systemic insecticides in a newly established cell suspension culture derived from tea (Camellia Sinensis L.) leaves. J Vis Exp 148:e59312. https://doi.org/10.3791/59312

    Article  CAS  Google Scholar 

  • Kartha KK (1985) Meristem culture and germplasm preservation. In: Kartha KK (ed) Cryopreservation of plant cells and organs. CRC, Boca Raton, pp 115–134

    Google Scholar 

  • Kato M (1982) Results of organ culture on Camellia japonica and C. sinensis. Jpn J Breed 32:267–277

    Google Scholar 

  • Kato M (1986a) Micropropagation through cotyledon culture in Camellia japonica L. and Camellia sinensis L. Jap J Breed 36:31–38

    Article  CAS  Google Scholar 

  • Kato M (1986b) Micropropagation through cotyledon culture in Camellia sasanqua. Jap J Breed 36:82–83

    Article  Google Scholar 

  • Kato M (1989a) Camellia sinensis L. (tea): In vitro regeneration. In: Bajaj YSP (ed) Biotechnology in agriculture and forestry. Medicinal and aromatic plants II, vol 7. Springer, Berlin, Heidelberg, pp 83–98

    Google Scholar 

  • Kato M (1989b) Polyploids of Camellia through culture of somatic embryos. Hort Sci 24:1023–1025

    Google Scholar 

  • Kato K (1996) Somatic embryogenesis from immature leaves of in vitro grown tea shoots. Plant Cell Rep 15:920–923

    Article  CAS  PubMed  Google Scholar 

  • Katsuo K (1969) Anther culture in tea plant (a preliminary report). Study Tea 4:31

    Google Scholar 

  • Koretskaya TF, Zaprometov MN (1975) Phenolic compounds in the tissue culture of Camellia sinensis and effect of light on their formation. Fiziol Rast 22:941–946

    CAS  Google Scholar 

  • Kuboi T, Suda M, Konishi S (1991) Preparation of protoplasts from the leaves. In: Proceedings of the International Symposium on Tea Science, Shizuoka, Japan, pp 427–431

    Google Scholar 

  • Kuranuki Y, Yoshida S (1991) Cryopreservation of tea seeds and excised embryonic axes in liquid nitrogen. In: Proceedings of the International Symposium on Tea Science, Shizuoka, Japan, pp 419–420

    Google Scholar 

  • Laskar MA, Das SC, Deka PC (1993) Tissue culture of tea: anther culture for haploid plant production. In: Proceedings of the International Symposium on Tea Science and Human Health, Tea Research Association, Calcutta, India, 11–14 January

    Google Scholar 

  • Lecouteux CG, Lai FM, Mckersie BD (1993) Maturation of alfalfa (Medicago sativa L.) somatic embryos by abscisic acid, sucrose and chilling stress. Plant Sci 94:207–213

    Article  CAS  Google Scholar 

  • Liang H, Zhang Z, Zhang X (1986) Investigation of the sexual process in interspecific crosses between Camellia pitardii var. yunnanensis and C chrysantha. Acta Bot Yunnan 8:147–152

    Google Scholar 

  • Liu YJ, Gao LP, Xia T, Gao KJ (2009) Study on cryopreservation of suspension culture cells by vitrification in Camellia Sinensis. J Tea Sci 29:120–126

    CAS  Google Scholar 

  • Llyod G, McCown B (1980) Commercially feasible micropropagation of mountain laurel, Kalmia latifolia by use of shoot tip culture. Comb Proc Int Plan Prop Soc 30:421–427

    Google Scholar 

  • Lü J, Chen R, Zhang M, da Silva JA, Ma G (2013) Plant regeneration via somatic embryogenesis and shoot organogenesis from immature cotyledons of Camellia nitidissima Chi. J Plant Physiol 170:1202–1211

    Article  PubMed  CAS  Google Scholar 

  • Mariya John KM, RajKumar R (2006) Factors influencing synthetic seed germination in tea (Camellia sinensis (L.) O. Kuntze). J Plant Crops 34:40–42

    Google Scholar 

  • Matsuura T, Kakuda T, Kinoshita T, Takeuchi N, Sasaki K (1991) Production of theanine by callus culture of tea. In: Proceedings of the International Symposium on Tea Science, Shizuoka, Japan, pp 432–436

    Google Scholar 

  • Maugh TH (1981) The natural occurring brassionoide in the plant species. Science 212:33–34

    Article  PubMed  Google Scholar 

  • Mondal TK (2002) Camellia biotechnology: a bibliographic search. Int J Tea Sci 1:28–37

    Google Scholar 

  • Mondal TK (2007) “Tea”. In: biotechnology in agricultural and forestry. In: Devey MR, Pua P (eds) Transgenic crops V, vol 60. Springer, Berlin. (ISBN no. 13978-3-540-49160-6), pp 519–536

    Chapter  Google Scholar 

  • Mondal TK (2008) Tea. In: Kole C, Hall TC (eds) A compendium of transgenic crop plants: plantation crops, ornamentals and turf grasses. Blackwell, Oxford. (ISBN no. 978-1-405-16924-0), pp 99–112

    Chapter  Google Scholar 

  • Mondal TK (2009) Tea. In: Prydarsini M, Jain SM (eds) Breeding plantation tree crops tropical species. Springer, Berlin. (ISBN: 978-0-387-71199-7), pp 545–587

    Chapter  Google Scholar 

  • Mondal TK (2011) Camellia. In: Kole C (ed) Wild crop relatives: genomics and breeding resources planation and ornamental crops. Springer, Berlin. (ISBN no. 978-3-642-21200-0), pp 15–40

    Chapter  Google Scholar 

  • Mondal TK, Bhattachraya A, Sood A, Ahuja PS (1999) An efficient protocol for somatic embryogenesis and its use in developing transgenic tea (Camellia sinensis (L) O. Kuntze) for field transfer. In: Altman A, Ziv M, Izhar S (eds) Plant biotechnology and in vitro biology in 21st century. Kluwer Academic, Dordrecht, pp 101–104

    Google Scholar 

  • Mondal TK, Bhattacharya A, Sood A, Ahuja PS (2000) Factor effecting induction and storage of encapsulated tea (Camellia sinensis L (O) Kuntze) somatic embryos. Tea 21:92–100

    Google Scholar 

  • Mondal TK, Bhattacharya A, Ahuja PS (2001a) Induction of synchronous secondary embryogenesis of tea (Camellia sinensis). J Plant Physiol 158:945–951

    Article  CAS  Google Scholar 

  • Mondal TK, Bhattacharya A, Ahuja PS, Chand PK (2001b) Factor effecting Agrobacterium tumefaciens mediated transformation of tea (Camellia sinensis (L). O. Kuntze). Plant Cell Rep 20:712–720

    Article  CAS  Google Scholar 

  • Mondal TK, Bhattachray A, Sharma M, Ahuja PS (2001c) Induction of in vivo somatic embryogenesis in tea (Camellia sinensis) cotyledons. Curr Sci 81:101–104

    Google Scholar 

  • Mondal TK, Bhattachrya A, Sood A, Ahuja PS (2002) Factors affecting germination and conversion frequency of somatic embryos of tea. J Plant Physiol 59:1317–1321

    Article  Google Scholar 

  • Mondal TK, Bhattacharya A, Laxmikumaran M, Ahuja PS (2004) Recent advance in tea biotechnology. Plant Cell Tiss Org Cult 75:795–856

    Google Scholar 

  • Mukhopadhyay M, Mondal TK (2016) Biotechnology of tea. In: Bag N, Bag A, Palni LMS (eds) Tea: technological initiatives: some initiatives. NIPA, New Delhi, ISBN: 978-93-85163-37, pp 301–328

    Google Scholar 

  • Mukhopadhyay M, Sarkar B, Mondal TK (2013) Omics advances in tea (Camellia sinensis). In: Bhar D (ed) Omics applications in crop science. CRC, Taylor and Francis Group. (ISBN:978-1-4665-8582), Boca Raton, pp 347–366

    Google Scholar 

  • Muralidharan EM, Mascarenhas AF (1995) Somatic embryogenesis in Eucalyptus. In: Jain SM, Gupta PK, Newton R (eds) Somatic embryogenesis in woody plants. Angiosperms, vol 2. Kluwer Academic, Dordrecht, pp 23–40

    Chapter  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Muslihatin W, Jadid N, Saputro TB, Purwani KI, Himayani CES, Calandry AW (2018) Characteristic of synthetic seeds from two medicinal plants (Moringa oleifera and Camellia sinensis). J Phys Conf Ser 1040:012005

    Article  CAS  Google Scholar 

  • Muthaiya MJ, Nagella P, Thiruvengadam M, Mandal AKA (2013) Enhancement of the productivity of tea (Camellia sinensis) secondary metabolites in cell suspension cultures using pathway inducers. J Crop Sci Biotech 16:143–149

    Article  Google Scholar 

  • Nadamitsu S, Andoh Y, Kondo K, Segawa M (1986) Interspecific hybrids between Camellia vietnamensis and C. chrysantha by cotyledon culture. Jap J Breed 36:309–313

    Article  Google Scholar 

  • Nagar PK, Sood S (2006) Changes in endogenous auxins during winter dormancy in tea (Camellia sinensis L.) O. Kuntze. Acta Physiol Plant 28:165–169

    Article  CAS  Google Scholar 

  • Nakamura Y (1983) Isolation of protoplasts from tea plant. Tea Res J 58:36–37

    Article  Google Scholar 

  • Nakamura Y (1985) Effect of origin of explants on differentiation of root and its varietal difference in tissue culture of tea plant. Tea Res J 62:1–8

    Article  Google Scholar 

  • Nakamura Y (1988a) Efficient differentiation of adventitious embryos from cotyledon culture of Camellia sinensis and other Camellia species. Tea Res J 67:1–12

    Google Scholar 

  • Nakamura Y (1988b) Effects of the kinds of auxins on callus induction and root differentiation from stem segment culture of Camellia sinensis (L.) O. Kuntze. Tea Res J 68:1–7

    Google Scholar 

  • Nguyen VT (2012) Regeneration plantlets from somatic embryos of tea plant (Camellia sinensis L.). J Agric Tech 8:1821–1827

    CAS  Google Scholar 

  • Nitsch JP, Nitsch C (1969) Haploid plants from pollen grains. Science 163:185

    Article  Google Scholar 

  • Ogutuga DBA, Northcote DH (1970) Caffeine formation in tea callus tissue. J Exp Bot 21:258–273

    Article  CAS  Google Scholar 

  • Okano N, Fuchinone Y (1970) Production of haploid plants by anther culture of tea in vitro. Jap J Breed 20:63–64

    Google Scholar 

  • Orihara Y, Furuya T (1990) Production of theanine and other γ-glutamine derivatives by Camellia sinensis cultured cells. Plant Cell Rep 9:1215–1224

    Article  Google Scholar 

  • Paratasilpin T (1990) Comparative studies on somatic embryogenesis in Camellia sinensis var. sinensis and C. sinensis var. assamica (mast.). Pierre J Sci Soc Thailand 16:23–41

    Google Scholar 

  • Park YG, AHN IS, Bozhkov P (1977) Effect of exogenous plant growth regulator on morphogenetic response in vitro by embryo and leaf cultures of Camellia sinensis (L.) O. Kuntze. Korean J Plant Tiss Cult 24:129–135

    Google Scholar 

  • Pedroso MC, Pais MS (1993) Direct embryo formation in leaves of C. japonica L. Plant Cell Rep 12:639–643

    Article  CAS  PubMed  Google Scholar 

  • Pedroso MC, Pais MS (1994) Induction of microspore embryogenesis in Camellia japonica cv. Elegans. Plant Cell Tiss Org Cult 37:129–136

    Article  Google Scholar 

  • Pedroso MC, Pais MS (1995a) Factor controlling somatic embryogenesis: cell wall changes as an in vivo marker of embryogenic competence. Plant Cell Tiss Org Cult 43:147–154

    Article  Google Scholar 

  • Pedroso MC, Pais MS (1995b) Plant regeneration from embryogenic suspension cultures of Camellia japonica. In Vitro Cell Dev Biol Plant 31:31–35

    Article  Google Scholar 

  • Pedroso-Ubach MC (1991) Contribuicao para a preservacao e o melhoramento de Camellia japonica L. Master’s Thesis (English abstract). Faculdade de Ciencias da Universidade de Lisboa, Lisboa, Portugal, pp 23–50

    Google Scholar 

  • Pedroso-Ubach MC (1994) Somatic embryogenesis in Camellia japonica L. A search for markers. PhD Thesis, Faculdade de Ciencias da Universidade de Lisboa, Lisbon, Portugal

    Google Scholar 

  • Pence VC (1995) Cryopreservation of recalcitrant seeds. In: Bajaj YSP (ed) Biotechnology in agriculture and forestry, Cryopreservation of plant germplasm I, vol 32. Springer, Berlin, pp 29–50

    Google Scholar 

  • Plata E (1993) Morphogenesis in vitro de Camellia reticulata: Proceson de embryogenesis somatica regeneration de plants. Doctoral Thesis, University of Santiago de Compostela, Santiago de Compostela

    Google Scholar 

  • Plata E, Vieitez AM (1990) In vitro regeneration of Camellia reticulata by somatic embryogenesis. J Hort Sci 65:707–714

    Article  Google Scholar 

  • Plata E, Ballester A, Vieitez AM (1991) An anatomical study of secondary embryogenesis in Camellia reticulata. In Vitro Cell Dev Biol Plant 27:183–189

    Article  Google Scholar 

  • Ponsamuel J, Samson NP, Sathyprakash V, Abraham GC (1996) Somatic embryogenesis and plant regeneration from the immature cotyledonary tissues of cultivated tea (Camellia sinensis (L.) O. Kuntze). Plant Cell Rep 16:210–214

    Article  CAS  PubMed  Google Scholar 

  • Preeti S, Pandey S, Bhattacharya A, Nagar PK, Ahuja PS (2004) ABA associated biochemical changes during somatic embryo development in Camellia sinensis (L.) O Kuntze. Plant Physiol 161:1269–1276

    Article  CAS  Google Scholar 

  • Purakayastha A, Das SC (1994) Isolation of tea protoplast and their culture. In: Proceedings of 32nd Tocklai conference, Tocklai, Jorhat, Assam, 24–26 February, p 34

    Google Scholar 

  • Raina SK, Iyer RD (1992) Multicell pollen proembryoid and callus formation in tea. J Plant Crop 9:100–104

    Google Scholar 

  • RajKumar R, Ayyappan P (1992) Somatic embryogenesis from cotyledonary explants of Camellia sinensis (L.) O. Kuntze. Plant Chron May:227–229

    Google Scholar 

  • Rajkumar R, Balasusaravanam S, Jayakumar D, Haridas V, Marimuthu S (2001) Physiological and biochemical feathers of field grown somaclonal variants of tea. UPASI Tea Res Found Bull 54:73–81

    Google Scholar 

  • Rana MM, Ali M, Wei S (2016) Effects of explant type and plant growth regulators on callogenesis in seedling derived tea explants. Tea J Bangladesh 45:66–77

    Article  Google Scholar 

  • Redenbaugh K, Slade D, Viss P, Fujii JA (1987) Encapsulation of somatic embryos in synthetic seed coats. Hort Sci 22:803–809

    Google Scholar 

  • Redenbaugh K, Fujii JA, Slade D (1991) Synthetic seed technology. In: Vasil KI (ed) Scale-up and automation in plant propagation. Cell culture and somatic cell genetics of plants, vol 8. Academic, New York, pp 35–74

    Chapter  Google Scholar 

  • Roberts DR, Sutton BCS, Flinn BS (1990) Synchronous and high frequency germination of interior spruce somatic embryo following partial drying at high relative humidity. Can J Bot 68:1086–1093

    Article  Google Scholar 

  • Roberts PM, Weaver CD, Oh SH (1992) Intracellular receptor proteins for calcium signals in plants. In: Gresshoff PM (ed) Plant biotechnology and development: current topics in plant molecular biology. CRC Press Inc., Florida, pp 129–113

    Google Scholar 

  • Saha SK, Bhattacharya NM (1992) Stimulating effect of elevated temperatures on callus production of meristemmoids from pollen culture of tea (Camellia sinensis (L.) O. Kuntze). Indian J Exp Biol 30:83–86

    Google Scholar 

  • Salinero MC, Silva-Pando FJ (1986) In: Peon C (ed) La multiplication delas camellias. Diputacion provincial de Pontevedra La Camellia, Pontevedra, Spain, pp 175–184

    Google Scholar 

  • Sandal I, Kumar A, Bhattacharya A, Sharma M, Shanker A, Ahuja PS (2005) Gradual depletion of 2,4-D in the culture medium for indirect shoot regeneration from leaf explants of Camellia sinensis (L.) O. Kuntze. Plant Growth Regul 47:121–127

    Article  CAS  Google Scholar 

  • San-Jose MC, Vieitez AM (1993) Regeneration of Camellia plantlets from leaf explant cultures by embryogenesis and caulogenesis. Sci Hortic 54:303–315

    Article  Google Scholar 

  • Sarathchandra TM, Upali PD, Wijeweardena RGA (1988) Studies on the tissue culture of tea (Camellia sinensis (L.) O. Kuntze) 4. Somatic embryogenesis in stem and leaf callus cultures. Sri Lanka J Tea Sci 52:50–54

    Google Scholar 

  • Seran TH, Hirimburegama K, Hirimburegama WK, Shanmugarajha V (1999) Callus formation in anther culture of tea clones, Camellia sinensis (L) O Kuntze. J Nat Sci Found Sri Lanka 27:165–175

    Article  Google Scholar 

  • Sharma P, Pandey S, Bhattacharya A, Nagar PK, Ahuja PS (2004) ABA associated biochemical changes during somatic embryo development in Camellia sinensis (L.) O. Kuntze. J Plant Physiol 161:1269–1276

    Article  CAS  PubMed  Google Scholar 

  • Shervington A, Shervington LA, Afifi F, El-omari MA (1998) Caffeine and theobromine formation by tissue cultures of Camellia sinensis. Phytochemistry 47:1535–1536

    Article  CAS  Google Scholar 

  • Shimokado TT, Murata, Miyaji Y (1986) Formation of embryoid by anther culture of tea. Jap J Breed 36:282–283

    Google Scholar 

  • Sood A, Palni LMS, Sharma M, Rao DV, Chand G, Jain NK (1993) Micropropagation of tea using cotyledon culture and encapsulated somatic embryos. J Plant Crop 21:295–300

    Google Scholar 

  • Spedding DJ, Wilson AT (1964) Caffeine metabolism. Nature 204:73

    Article  CAS  PubMed  Google Scholar 

  • Sriyadi B (1987) Tissue culture a method to overcome hand-pollinated difficulties in tea plant. Warta Balai Peneli The Dan Kina 13:105–111

    Google Scholar 

  • Suganthi M, Arvinth S, Raj Kumar R (2012) Impact of osmotica and abscisic acid on direct somatic embryogenesis in tea. Int J Plant Res 2:22–27

    Article  Google Scholar 

  • Tahardi JS, Raisawati T, Riyadi I, Dodd WA (2000) Direct somatic embryogenesis and plant regeneration in tea by temporary liquid immersion. Menara Perkebunan 68:1–9

    Google Scholar 

  • Tahardi JS, Riyadi I, Dodd WA (2003) Enhancement of somatic embryo development and plant recovery in Camellia sinensis by temporary immersion system. J Bioteck Perta 8:1–7

    Google Scholar 

  • Takemoto M, Tanaka K (2001) Synthesis of optically active α-phenylpyridylmethanols by Camellia sinensis cell culture. J Mol Catal B: Enzym 15:173–176

    Article  CAS  Google Scholar 

  • Takemoto M, Aoshima Y, Stoynov N, Kutney JP (2002a) Establishment of Camellia sinensis cell culture with high peroxidase activity and oxidative coupling reaction of dibenzylbutanolides. Tetrahedron Lett 43:6915–6917

    Article  CAS  Google Scholar 

  • Takemoto M, Suzuki Y, Tanaka K (2002b) Highly selective oxidative coupling of 2-naphthol derivatives catalyzed by Camellia sinensis cell culture. Tetrahedron Lett 43:8499–8501

    Article  CAS  Google Scholar 

  • Thomas J, Kumar RR, Mandal AKA (2006) Metabolite profiling and characterization of somaclonal variants in tea (Camellia spp.) for identifying productive and quality accession. Phytochemistry 67:1136–1142

    Article  CAS  PubMed  Google Scholar 

  • Tian LN, Brown DCW (2000) Improvement of soybean somatic embryo development and maturation by abscisic acid treatment. Can J Plant Sci 80:721–276

    Article  Google Scholar 

  • Tremblay L, Trembly FM (1995) Maturation of black spruce somatic embryos: sucrose hydrolysis and resulting osmotic pressure of the medium. Plant Cell Tiss Org Cult 42:39–46

    Article  CAS  Google Scholar 

  • Tripetch P, Kerdchoechuen O, Laohakunjit N, Pitchayangkura R (2009) Induction of callus in Assam tea leaves (Camellia sinensis var. Assamica). Agric Sci J 40:209–212

    Google Scholar 

  • Tulecke W (1987) Somatic embryogenesis in woody perennials. In: Bonga JM, Durzan DJ (eds) Cell and tissue culture in forestry, vol 2. Martinus Nijhoff, Dordrecht, pp 61–69

    Chapter  Google Scholar 

  • Vieitez AM (1994) Somatic embryogenesis in Camellia spp. In: Jain S, Gupta P, Newton R (eds) Somatic embryogenesis in woody plants. Kluwer Academic, Dordrecht, pp 235–276

    Google Scholar 

  • Vieitez AM, Barciela J (1990) Somatic embryogenesis and plant regeneration from embryonic tissues of Camellia japonica L. Plant Cell Tiss Org Cult 21:267–274

    Article  CAS  Google Scholar 

  • Vieitez AM, San-Jose C, Vieitez J, Ballester A (1991) Somatic embryogenesis from roots of Camellia japonica plantlets cultured in vitro. J Am Soc Hortic Sci 116:753–757

    Article  CAS  Google Scholar 

  • Wachira F, Ogado J (1995) In vitro regeneration of Camellia sinensis (L.) O. Kuntze by somatic embryo. Plant Cell Rep 14:463–466

    Article  CAS  PubMed  Google Scholar 

  • Webster FB, Roberts DR, Mclnnis SM, Sutton BCS (1990) Propagation of interior spruce by somatic embryogenesis. Can J For Res 20:1757–1762

    Article  Google Scholar 

  • Wu CT, Huang TK, Chen GR, Chen SY (1981) A review on the tissue culture of tea plants and on the utilization of callus derived plantlets. In: Rao AN (ed) Proceedings COSTED symposium on tissue culture of economically important plants, Singapore, pp 104–106

    Google Scholar 

  • Yamaguchi S, Kunitake T, Hisatomi S (1987) Interspecific hybrid between Camellia japonica cv. Choclidori and C. chrysantha produced by embryo culture. Jap J Breed 37:203–206

    Article  Google Scholar 

  • Yan MQ, Ping C (1983) Studies on development of embryoids from the culture cotyledons of Thea sinensis L. Sci Silv Sin 19:25–29

    Google Scholar 

  • Yan MQ, Ping C, Wei M, Wang YH (1984) Tissue culture and transplanting of Camellia oleifera. Sci Silv Sin 20:341–350

    Google Scholar 

  • Yoshikawa K, Yoshikawa N (1990) Inter-specific hybridization of Camellia. Bull Seibu Maizuru. Bot Inst 5:56–75

    Google Scholar 

  • Zagoskina NV, Dubravina GA, Alyavina AK, Goncharuk EA (2003) Effect of ultraviolet (UV-B) radiation on the formation and localization of phenolic compounds in tea plant callus cultures. Russ J Plant Physiol 50:270–275

    Article  CAS  Google Scholar 

  • Zagoskina NV, Goncharuk EA, Alyavina AK (2007) Effect of cadmium on the phenolic compounds formation in the callus cultures derived from various organs of the tea plant. Russ J Plant Physiol 54:237–243

    Article  CAS  Google Scholar 

  • Zaprometov MN, Zagoskina MV (1979) One more evidence for chloroplast involvement in the biosynthesis of phenolic compounds. Plant Physiol (Russian) 34:165–172

    Google Scholar 

  • Zaprometov MN, Zagoskina MV (1987) Regulation of phenolic compounds formation in cultured cells of tea plant (Camellia sinensis). In: Proceedings of International Tea Quality Human Health Symposium China, pp 62–65

    Google Scholar 

  • Zhuang C, Liang H (1985a) In vitro embryoid formation of Camellia reticulata L. Acta Biol Exp Sin 18:275–281

    CAS  Google Scholar 

  • Zhuang C, Liang H (1985b) Somatic embryogenesis and plantlet formation in cotyledon culture of Camellia chrysantha. Acta Bot Yunnan 7:446–450

    Google Scholar 

  • Zhuang C, Duan J, Zhou J (1988) Somatic embryogenesis and plantlets regeneration of Camellia sasanqua. Acta Bot Yunnan 10:241–244

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mondal, T.K. (2020). Somatic Embryogenesis and Alternative In Vitro Techniques. In: Tea: Genome and Genetics. Springer, Singapore. https://doi.org/10.1007/978-981-15-8868-6_4

Download citation

Publish with us

Policies and ethics