Skip to main content

Abstract

Bioavailability is the fraction of a nutrient in the food that is absorbed upon digestion and available for utilization in normal physiological functions. Bioavailability of nutrients especially that of micronutrients from plant based foods is a complex issue and is a concern to the nutritionists and plant breeders who are undertaking nutrient enrichment in the staple crops called “biofortification.” It depends on a number of factors of the food like food structure, food processing, chemical form of nutrient and interaction between nutrients, as well as the consumer like age, sex, ethnicity, physiological factors, and health status. Presence of natural factors in the food grains such as phytate, tannin, fiber, etc. affects the availability of minerals. The micronutrient bioavailability from commonly consumed cereal foods is generally low. Several traditionally used household food preparation techniques like soaking, germination, hydrothermal treatment, etc. enhance the micronutrient bioavailability. Different bioavailability models are being adopted to screen large numbers of promising genotypes developed under breeding programs to study the efficacy of the biofortified products in alleviating micronutrient malnourishment. Genetic transformation is also being attempted to develop more nutritious sorghum grains along with enhanced iron and zinc bioavailability to ensure nutritional security of millions of African sorghum consumers. The micronutrient bioavailability has been enhanced in the transformed lines due to reduction in phytate up to 85%. Enhanced availability of nutrients in these grains is to be ascertained further through clinical trials along with risk assessment and appropriate biosafety regulations in place before farmer release.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • ABS (2010) Africa Biofortified Sorghum (ABS) Project, Five-year progress report, 2010. www.supersorghum.org

  • Afify AE-MMR, El-Beltagi HS, Abd El-Salam SM, Omran AA (2011) Bioavailability of iron, zinc, phytate and phytase activity during soaking and germination of white sorghum varieties. PLoS One 6(10):e25512. https://doi.org/10.1371/journal.pone.0025512

    Article  CAS  PubMed Central  Google Scholar 

  • AHBFI (2011) Africa Harvest Biotech Foundation International, Africa Harvest annual report 2010. AHBFI, Nairobi. 56 p

    Google Scholar 

  • Albarracín M, Jose Gonzalez R, Drago SR (2015) Soaking and extrusion effects on physicochemical parameters, phytic acid, nutrient content and mineral bioaccessibility of whole rice grain. Int J Food Sci Nutr 66:210–215

    Article  PubMed  CAS  Google Scholar 

  • Ammerman CB, Baker DH, Lewis AJ (1995) Bioavailability of nutrients for animals. Academic Press, New York, NY. 441 p

    Google Scholar 

  • Aningi KG, Ologun AG, Alokan A, Adekola AT, Aletor VA (1998) Effect of replacing dried brewers’ grains with sorghum rootlets in growth, nutrient utilisation and some blood constituents in rats. Anim Feed Sci Tech 71:185–190

    Article  Google Scholar 

  • Ballot D, Baynes RD, Bothwell TH, Gillooly M, Macfarlane BJ, MacPhail AP, Lyons G, Derman DP, Bezwoda WR, Torrance JD, Bothwell JE, Mayet F (1987) The effects of fruit juices and fruits on the absorption of iron from a rice meal. Br J Nutr 57:331–343

    Article  CAS  PubMed  Google Scholar 

  • Bender AE (1989) Nutritional significance of bioavailability. In: Nutrient availability: chemical and biological aspects. Special publication no. 72 (Eds) Southgate DAT, Johnson IT, Fenwick GR, Royal Society of Chemistry, Cambridge, pp 3-9

    Google Scholar 

  • Bhavyashree SH, Prakash J, Platel K, Srinivasan K (2009) Bioaccessibility of minerals from cereal-based composite meals and ready-to-eat foods. J Food Sci Technol 46:431–435

    CAS  Google Scholar 

  • Bjarnson I, MacPherson A, Hollander D (1995) Intestinal permeability: an overview. Gastroenterology 108:1566–1581

    Article  Google Scholar 

  • Black RE, Victora CG, Walker SP, Bhutta ZA, Christian P, de Onis M, Ezzati M, Grantham-McGregor S, Katz J, Martorell R, Uauy R (2013) Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet 382(9890):427–451. https://doi.org/10.1016/S0140-6736(13)60937-X

    Article  PubMed  Google Scholar 

  • Bohn T, Davidsson L, Walczyk T, Hurrell RF (2004) Phytic acid added to white-wheat bread inhibits fractional apparent magnesium absorption in humans. Am J Clin Nutr 79:418–423

    Article  CAS  PubMed  Google Scholar 

  • Bouis HE, Welch RM (2010) Biofortification-a sustainable agricultural strategy for reducing micronutrient malnutrition in the global south. Crop Sci 50:S-20–S-32

    Article  Google Scholar 

  • Bravo L (1998) Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutr Rev 56:317–333

    Article  CAS  PubMed  Google Scholar 

  • Brown KH, Wuehler SE, Peerson JM (2001) The importance of zinc in human nutrition and estimation of the global prevalence of zinc deficiency. Food Nutr Bull 22:113–125

    Article  Google Scholar 

  • Caballero B (2002) Global patterns of child health: the role of nutrition. Ann Nutr Metab 46(Suppl 1):3–7

    Article  CAS  PubMed  Google Scholar 

  • Camacho L, Sierra C, Guzman CR, Marcus D (1992) Nutritional changes caused by germination of legumes commonly eaten in Chile. Arch Latinoam Nutr 42:283–290

    CAS  PubMed  Google Scholar 

  • Cardoso C, Afonso C, Lourenco H, Costa S, Nunes ML (2015) Bioavailability assessment methodologies and their consequences for the risk-benefit evaluation of food. Trends Food Sci Technol 41:5–23. https://doi.org/10.1016/j.tifs.2014.08.008

    Article  CAS  Google Scholar 

  • Castenmiller JJM, West CE (1998) Bioavailability and bioconversion of carotenoids. Annu Rev Nutr 18:19–38

    Article  CAS  PubMed  Google Scholar 

  • Chu M, Beauchemin D (2004) Simple method to assess the maximum bioaccessibility of elements from food using flow injection and inductively coupled plasma mass spectrometry. J Anal Atom Spectrom 19:1213–1216

    Article  CAS  Google Scholar 

  • Cook JD (1990) Adaptation in iron metabolism. Am J Clin Nutr 51:301–308

    Article  CAS  PubMed  Google Scholar 

  • Díaz-Gómez J, Twyman RM, Zhu C, Farre G, Serrano JCE, Portero-Otin M, Munoz P, Sandmann G, Capell T, Christou P (2017) Biofortification of crops with nutrients: factors affecting utilization and storage. Curr Opin Biotechnol 44:115–123. https://doi.org/10.1016/j.copbio.2016.12.002

    Article  CAS  PubMed  Google Scholar 

  • Douglas G (2010) Micronutrients must be ‘bioavailable’. Science and Development Network. https://www.scidev.net/global/health/letter/micronutrients-must-be-bioavailable-.html

  • Dufailly V, Guerin T, Noel L, Fremy JM, Beauchemin D (2008) A simple method for the speciation analysis of bioaccessible arsenic in seafood using online continuous leaching and ion exchange chromatography coupled to inductively coupled plasma mass spectrometry. J Anal Atom Spectrom 23:1263–1268

    Article  CAS  Google Scholar 

  • Duhan A, Khetarpaul N, Bishnoi S (2002) Content of phytic acid and HCl-extractability of calcium, phosphorous and iron as affected by various domestic processing and cooking methods. Food Chem 78:9–14

    Article  CAS  Google Scholar 

  • Egli I, Davidsson L, Juillerat MA, Barclay D, Hurrell R (2002) The influence of soaking and germination on the phytase activity and phytic acid content of grains and seeds potentially useful for complementary feeding. J Food Sci 67:3484–3488

    Article  CAS  Google Scholar 

  • Erdman JW Jr (1981) Bioavailability of trace minerals from cereals and legumes. Cereal Chem 58:21–26

    CAS  Google Scholar 

  • Erdman JW, Poneros-Schneier AG (1994) Factors affecting nutritive value in processed foods. In: Shils ME, Olson JA, Shike M (eds) Nutrition in health and disease. Lea & Febiger, Philadelphia, PA, pp 1569–1578

    Google Scholar 

  • Fairweather-Tait SJ (1993) Bioavailability of nutrients. In: Macrae R, Robinson RK, Sadler MJ (eds) Encyclopaedia of food science, food technology and nutrition. Academic Press, London, pp 384–388

    Google Scholar 

  • Fairweather-Tait SJ (1997) Minerals and trace elements: summary. Eur J Clin Nutr 51:S3

    Google Scholar 

  • Fairweather-Tait S, Hurrell RF (1996) Bioavailability of minerals and trace elements. Nutr Res Rev 9:295–324

    Article  CAS  PubMed  Google Scholar 

  • FAO, IFAD, WFP (2015) The state of food insecurity in the world 2015. In: Meeting the 2015 international hunger targets: taking stock of uneven progress. Food and Agriculture Organization, Rome. 56 p

    Google Scholar 

  • Fernandez-Garcia E, Carvajal-Lerida I, Perez-Galvez A (2009) In vitro bioaccessibility assessment as a prediction tool of nutritional efficiency. Nutr Res 29:751–760

    Article  CAS  PubMed  Google Scholar 

  • Forbes RM, Erdman JW Jr (1983) Bioavailability of trace mineral elements. Annu Rev Nutr 3:213–231

    Article  CAS  PubMed  Google Scholar 

  • Gallaher DD, Schneeman BO (2001) Dietary fiber. In: Bowman BA, Russell RM (eds) Present knowledge in nutrition, diet- and host-related factors in nutrient bioavailability. International Life Sciences Institute, Washington, DC, pp 83–91

    Google Scholar 

  • Garcia-Casal MN, Layrisse M, Peña-Rosas JP, Ramirez J, Leets I, Matus P (2003) Iron absorption from elemental iron fortified corn flakes in humans: role of vitamins A and C. Nutr Res 23:451–463

    Article  CAS  Google Scholar 

  • Gibson RS (2007) The role of diet- and host-related factors in nutrient bioavailability and thus in nutrient-based dietary requirement estimates. Food Nutr Bull 28(1 suppl):S77–S100

    Article  PubMed  Google Scholar 

  • Gibson RS, Yeudall F, Drost N, Mitmuni B, Cullian T (1998) Dietary interventions to prevent zinc deficiency. Am J Clin Nutr 68(2 Suppl):48S–57S

    Google Scholar 

  • Gibson RS, Perlas L, Hotz C (2006) Improving the bioavailability of nutrients in plant foods at the household level. Proc Nutr Soc 65:160–168. https://doi.org/10.1079/PNS2006489

    Article  CAS  PubMed  Google Scholar 

  • Gillooly M, Bothwell TH, Torrance JD, MacPhail AP, Derman DP, Bezwoda WR, Mills W, Charlton RW, Mayet F (1983) The effect of organic acids, phytates and polyphenols on the absorption of iron from vegetables. Br J Nutr 49:331–342

    Article  CAS  PubMed  Google Scholar 

  • Gomes MJC, Infante RA, da Silva BP, Moreira MEC, Dias DM, Lopes RCSO, Toledo RCL, Queiroz VAV, Martino HSD (2017) Sorghum extrusion process combined with biofortified sweet potato contributed for high iron bioavailability in Wistar rats. J Cereal Sci 75:213–219. https://doi.org/10.1016/j.jcs.2017.03.017

    Article  CAS  Google Scholar 

  • Graham RD, Welch RM, Bouis HE (2001) Addressing micronutrient malnutrition through enhancing the nutritional quality of staple foods: principles, perspectives and knowledge gaps. Adv Agron 70:77–142

    Article  Google Scholar 

  • Greger JL (1992) Using animals to assess bioavailability of minerals: implications for human nutrition. J Nutr 122:2047–2052

    Article  CAS  PubMed  Google Scholar 

  • Haard NF, Odunfa SA, Lee CH, Quintero-Ramirez A, LorenceQuinones A, Wacher-Radarte C (1989) Fermented cereals: a global perspective. In: Agricultural service bulletin, vol 138. FAO, Rome

    Google Scholar 

  • Hallberg L (1981) Bioavailability of dietary iron in man. Annu Rev Nutr 1:123–147

    Article  CAS  PubMed  Google Scholar 

  • Hallberg L, Brune M, Rossander L (1989) Iron-absorption in man - ascorbic-acid and dose-dependent inhibition by phytate. Am J Clin Nutr 49:140–144

    Article  CAS  PubMed  Google Scholar 

  • Hallberg L, Brune M, Erlandsson M, Sandberg A, Rossander-Hulttn L (1991) Calcium: effect of different amounts on non-heme and heme-iron absorption in humans. Am J Clin Nutr 53:112–119

    Article  CAS  PubMed  Google Scholar 

  • Halsted CH (1990) Intestinal absorption of dietary folates. In: Picciano MF, Stokstad ELR, Gregory JF (eds) Folic acid metabolism in health and disease. Wiley-Liss, New York, NY, pp 23–45

    Google Scholar 

  • Hambidge KM (2010) Micronutrient bioavailability: dietary reference intakes and a future perspective. Am J Clin Nutr 91(suppl):1430S–1432S

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hambidge KM, Krebs NF (2007) Zinc deficiency: a special challenge. J Nutr 137:1101–1105

    Article  CAS  PubMed  Google Scholar 

  • He Y, Zheng Y (2010) Assessment of in vivo bioaccessibility of arsenic in dietary rice by a mass balance approach. Sci Total Environ 408:1430–1436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heaney RP, Weaver CM (1989) Oxalate: effect on calcium absorbability. Am J Clin Nutr 50:830–832

    Article  CAS  PubMed  Google Scholar 

  • Heaney RP, Weaver CM (1990) Calcium absorption from kale. Am J Clin Nutr 51:656–657

    Article  CAS  PubMed  Google Scholar 

  • Heaney RP, Weaver CM (1995) Effect of psyllium on absorption of co-ingested calcium. J Am Geriatr Soc 43:261–263

    Article  CAS  PubMed  Google Scholar 

  • Hemalatha S, Platel K, Srinivasan K (2007a) Zinc and iron content and their bioaccessibility in cereals and pulses consumed in India. Food Chem 102:1328–1336

    Article  CAS  Google Scholar 

  • Hemalatha S, Platel K, Srinivasan K (2007b) Influence of heat processing on the bioaccessibility of zinc and iron from cereals and pulses consumed in India. J Trace Elem Med Biol 21:1–7

    Article  CAS  PubMed  Google Scholar 

  • Holbrook JT, Smith JC, Reiser S (1989) Dietary fructose or starch: effects on copper, zinc, iron, manganese, calcium, and magnesium balances in humans. Am J Clin Nutr 49:1290–1294

    Article  CAS  PubMed  Google Scholar 

  • Hotz C, Gibson RS (2007) Traditional food-processing and preparation practices to enhance the bioavailability of micronutrients in plant-based diets. J Nutr 137:1097–1100

    Article  CAS  PubMed  Google Scholar 

  • House WA (1999) Trace element bioavailability as exemplified by iron and zinc. Field Crop Res 60:115–141

    Article  Google Scholar 

  • Hunt JR (2003) Bioavailability of iron, zinc, and other trace minerals from vegetarian diets. Am J Clin Nutr 78(suppl):633S–639S

    Article  CAS  PubMed  Google Scholar 

  • Hunt JR, Roughead ZK (2000) Adaptation of iron absorption in men consuming diets with high or low iron bioavailability. Am J Clin Nutr 71:94–102

    Article  CAS  PubMed  Google Scholar 

  • Hurrell RF (2004) Phytic acid degradation as a means of improving iron absorption. Int J Vitam Nutr Res 74:445–452

    Article  CAS  PubMed  Google Scholar 

  • Hurrell RF, Lynch SR, Trinidad TP, Dassenko SA, Cook JD (1989) Iron absorption in humans as influenced by bovine milk proteins. Am J Clin Nutr 49:546–552

    Article  CAS  PubMed  Google Scholar 

  • Jou M, Du X, Hotz C, Lonnerdal B (2012) Biofortification of rice with zinc: assessment of the relative bioavailability of zinc in a Caco-2 cell model and suckling rat pups. J Agric Food Chem 60:3650–3657. https://doi.org/10.1021/jf202338t

    Article  CAS  PubMed  Google Scholar 

  • Kelsay JL, Prather ES, Clark WM, Canary JJ (1998) Mineral balances of men fed a diet containing fiber in fruits and vegetables and oxalic acid in spinach for six weeks. J Nutr 118:1197–1204

    Article  Google Scholar 

  • Kennedy G, Nantel G, Shetty P (2003) The scourge of “hiddenhunger”: global dimensions of micronutrient deficiencies. Food Nutr Agric FAO 32:8–16. ftp://ftp.fao.org/docrep/fao/005/y8346m/y8346m01.pdf

    Google Scholar 

  • Kruger J, Taylor JRN, Du X, De Moura FF, Lönnerdal B, Oelofse A (2013) Effect of phytate reduction of sorghum, through genetic modification, on iron and zinc availability as assessed by an in vitro dialysability bioaccessibility assay, Caco-2 cell uptake assay, and suckling rat pup absorption model. Food Chem 141:1019–1025. https://doi.org/10.1016/j.foodchem.2013.01.105

    Article  CAS  PubMed  Google Scholar 

  • Lestienne I, Icard-Verniére C, Mouquet C, Picq C, Tréche S (2005) Effects of soaking whole cereal and legume seeds on iron, zinc and phytate contents. Food Chem 89:421–425

    Article  CAS  Google Scholar 

  • Lipkie TE, De Moura FF, Zhao Z, Albertsen MC, Che P, Glassman K, Ferruzzi MG (2013) Bioaccessibility of carotenoids from transgenic provitamin A biofortified sorghum. J Agric Food Chem 61:5764–5771. https://doi.org/10.1021/jf305361s

    Article  CAS  PubMed  Google Scholar 

  • Lönnerdal B, Sandberg AS, Sandström B, Kunz C (1989) Inhibitory effects of phytic acid and other inositol phosphates on zinc and calcium absorption in suckling rats. J Nutr 119:211–214

    Article  PubMed  Google Scholar 

  • Magomere T, Obukosia S, Albertsen M, Wambugua F, Kamanga D, Njuguna M, Gaffney J, Zhao Z, Che P, Aseta A, Kimani E, Mwasame E (2016) Evaluation of fitness in F2 generations of Africa biofortified sorghum event 188 and weedy Sorghum bicolor ssp. drummondii. Electron J Biotechnol 22:52–61

    Article  Google Scholar 

  • Mahgoub SEO, Elhag SA (1998) Effect of milling, soaking, malting, heat-treatment and fermentation on phytate level of four Sudanese sorghum cultivars. Food Chem 61:77–80

    Article  CAS  Google Scholar 

  • Menzies IS, Zuckerman MJ, Nukajam WS, Somasundaram SG, Murphy B, Jenkins AP, Crane RS, Gregory GG (1999) Geography of intestinal permeability and absorption. Gut 44:483–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller ER, Ullrey DE (1987) The pig as a model for human nutrition. Annu Rev Nutr 7:361–387

    Article  CAS  PubMed  Google Scholar 

  • Miyake K, Tanaka T, McNeil PL (2006) Disruption-induced mucus secretion: repair and protection. PLoS Biol 4:276–276

    Article  CAS  Google Scholar 

  • Mohapatra D, Tripathi MK, Deshpande S, Sadvatha RH (2017) Sorghum fermentation for nutritional improvement. Adv Food Sci Eng 1:175–195. https://doi.org/10.22606/afse.2017.14005

    Article  Google Scholar 

  • Moreda-Pineiro J, Moreda-Pineiro A, Romaris-Hortas V, Moscoso-Perez C, Lopez-Mahia P, Muniategui-Lorenzo S, Bermejo-Barrera P, Prada-Rodrígueza D (2011) In-vivo and in-vitro testing to assess the bioaccessibility and bioavailability of arsenic, selenium and mercury species in food samples. Trends Anal Chem 30:324–345

    Article  CAS  Google Scholar 

  • Nair KM, Augustine LF (2018) Food synergies for improving bioavailability of micronutrients from plant foods. Food Chem 238:180–185. https://doi.org/10.1016/j.foodchem.2016.09.115

    Article  CAS  PubMed  Google Scholar 

  • O’Dell BL (1969) Effect of dietary components upon zinc availability. Am J Clin Nutr 22:1315–1321

    Article  PubMed  Google Scholar 

  • O’Dell BL (1984) Bioavailability of trace elements. Nutr Rev 429:301–308

    Google Scholar 

  • O’Dell BL, de Boland AR, Koirtyohann SR (1972) Distribution of phytate and nutritionally important elements among the morphological components of cereal grains. J Agric Food Chem 20:718–721

    Article  Google Scholar 

  • Obi CE, Ejiogu AO, Sanou EIR (2017) The role of transgenic biofortified food in the reduction of hidden hunger in Nigeria. In: First International Conference of Food Security and Hidden Hunger, Federal University Ndufu-Aliku, Eboyi State, Nigeria, 8–11 October 2017

    Google Scholar 

  • Paustenbach DJ (2000) The practice of exposure assessment: a state-of-the-art review. J Toxic Environ Health Part B Crit Rev 3:179–291

    Article  CAS  Google Scholar 

  • Phillippy BQ (2006) Transport of calcium across Caco-2 cells in the presence of inositol hexakisphosphate. Nutr Res 26:146–149

    Article  CAS  Google Scholar 

  • Platel K, Srinivasan K (2016) Bioavailability of micronutrients from plant foods: an update. Crit Rev Food Sci Nutr 56:1608–1619. https://doi.org/10.1080/10408398.2013.781011

    Article  CAS  PubMed  Google Scholar 

  • Prasad AS (2003) Zinc deficiency: has been known of for 40 years but ignored by global health organizations. Br Med J 326(7386):409–410

    Article  Google Scholar 

  • Purushothaman V, Amrithaveni M, Tsou SCS, Shanmugasundaram S (2008) Supplementing iron bioavailability enhanced mung bean. Asia Pac J Clin Nutr 17(S1):99–102

    CAS  PubMed  Google Scholar 

  • Quintaes KD, Cilla A, Barberá R (2015) Iron bioavailability from cereal foods fortified with iron. Austin J Nutr Metab 2(3):id1021

    Google Scholar 

  • Rao BSN, Prabhavathi T (1983) Contaminant iron in foods and its bioavailability predicted by in vitro method. Indian J Med Res 74:37–41

    Google Scholar 

  • Reddy MB, Hurrell RF, Juillerat MA, Cook JD (1996) The influence of different protein sources on phytate inhibition of nonheme-iron absorption in humans. Am J Clin Nutr 63:203–207

    Article  CAS  PubMed  Google Scholar 

  • Rees M, Sansom L, Rofe A, Juhasz AL, Smith E, Weber J, Naidu R, Kuchel T (2009) Principles and application of an in vivo swine assay for the determination of arsenic bioavailability in contaminated matrices. Environ Geochem Health 31:167–177

    Article  CAS  PubMed  Google Scholar 

  • Saharan K, Khetarpaul N, Bishnoi S (2001) HCl-extractability of minerals from rice bean and faba bean: influence of domestic processing methods. Innov Food Sci Emerg 2(4):323–325

    Article  CAS  Google Scholar 

  • Salovaara S, Sandberg AS, Andlid T (2002) Organic acids influence iron uptake in the human epithelial cell line Caco-2. J Agric Food Chem 50:6233–6238

    Article  CAS  PubMed  Google Scholar 

  • Saltzman A, Birol E, Bouis HE, Boy E, De Moura FF, Islam Y, Pfeiffer WH (2013) Biofortification: progress toward a more nourishing future. Glob Food Secur 2(1):9–17. https://doi.org/10.1016/j.gfs.2012.12.003

    Article  Google Scholar 

  • Sandberg AS (1991) The effect of food processing on phytate hydrolysis and availability of iron and zinc. In: Friedman M (ed) Nutritional and toxicological consequences of food processing. Plenum Press, New York, NY, pp 499–508

    Chapter  Google Scholar 

  • Sandberg AS, Svanberg U (1991) Phytate hydrolysis by phytase in cereals: effects on in vitro estimation of iron availability. J Food Sci 56:1330–1333

    Article  CAS  Google Scholar 

  • Sandberg A-S, Brune M, Carlsson N-G, Hallberg L, Skoglund E, Rossander-Hulthen L (1999) Inositol phosphates with different numbers of phosphates with different numbers of phosphate groups influence iron absorption in humans. Am J Clin Nutr 70:240–246

    Article  CAS  PubMed  Google Scholar 

  • Sandstrom B, Davidsson L, Cederblad A, Lonnerdal B (1985) Oral iron, dietary ligands and zinc absorption. J Nutr 115:411–414

    Article  CAS  PubMed  Google Scholar 

  • Southgate DAT (1989) Conceptual issues concerning the assessment of nutrient bioavailability. In: Nutrient availability: chemical and biological aspects. Special publication no.72. (Eds) Southgate DAT, Johnson IT, Fenwick GR, Royal Society of Chemistry, Cambridge, pp 10-12

    Google Scholar 

  • Tako E, Bar H, Glahn RP (2016) The combined application of the Caco-2 cell bioassay coupled with in vivo (Gallus gallus) feeding trial represents an effective approach to predicting Fe bioavailability in humans. Nutrients 8(11):732. https://doi.org/10.3390/nu8110732

    Article  CAS  PubMed Central  Google Scholar 

  • Teucher B, Olivares M, Cori H (2004) Enhancers of iron absorption: ascorbic acid and other organic acids. Int J Vitam Nutr Res 74:403–419

    Article  CAS  PubMed  Google Scholar 

  • Tizazu S, Urga K, Belay A, Abuye C, Retta N (2011) Effect of germination on mineral bioavailability of sorghum-based complementary foods. Afr J Food Agric Nutr Dev 11(5):5083–5095

    CAS  Google Scholar 

  • Tuntawiroon M, Sritongkul N, Brune M, Rossander-HultCn L, Pleehachinda R, Suwanik R, Hallberg L (1991) Dose-dependent inhibitory effect of phenolic compounds in foods on non-heme iron absorption in men. Am J Clin Nutr 53:554–557

    Article  CAS  PubMed  Google Scholar 

  • Turnlund JR (1988) Copper nutriture, bioavailability and the influence of dietary factors. J Am Diet Assoc 88:303–308

    CAS  PubMed  Google Scholar 

  • Underwood BA, Smitasiri S (1999) Micronutrient malnutrition: policies and programmes for control and their implications. Annu Rev Nutr 19:303–324

    Article  CAS  PubMed  Google Scholar 

  • Van Campen DR, Glahn RP (1999) Micronutrient bioavailability techniques: accuracy, problems and limitations. Field Crop Res 60:93–113

    Article  Google Scholar 

  • Walingo MK (2009) Indigenous food processing methods that improve zinc absorption and bioavailability of plant diets consumed by the Kenyan population. Afr J Food Agric Nutr Dev 9(1):523–535

    CAS  Google Scholar 

  • Wambugu F (2016) Africa Bio-fortified Sorghum (ABS) Project for Food and Nutritional Security. Burkina Faso. http://www.biosafetykenya.go.ke/images/download/conferencematerials/ABS-PPT-to-Africa-Biosafety-Leadership-Summit-by-F.-Wambugu%2D%2D16-Aug-2016-Final.pdf

  • Weaver CM, Kannan S (2002) Phytate and mineral bioavailability. In: Reddy NR, Sathe SK (eds) Food phytates. CRC Press, Boca Raton, FL, pp 211–224

    Google Scholar 

  • Weber P, Flühmann B, Eggersdorfer M (2006) Development of bioactive substances for functional foods – scientific and other aspects. Forum Nutr 59:171–181

    Article  PubMed  Google Scholar 

  • Welch RM (1993) Zinc concentrations and forms in plants for humans and animals. In: Robson AD (ed) Zinc in soils and plants. Kluwer Academic Publishers, Dordrecht, pp 183–195

    Chapter  Google Scholar 

  • Welch RM (2002) The impact of mineral nutrients in food crops on global human health. Plant Soil 247:83–90

    Article  CAS  Google Scholar 

  • Welch RM, Graham RD (2004) Breeding for micronutrients in staple food crops from a human nutrition perspective. J Exp Bot 55(396):353–364

    Article  CAS  PubMed  Google Scholar 

  • Welch RM, House WA (1984) Factors affecting the bioavailability of mineral nutrients in plant foods. In: Welch RM, Gabelman WH (eds) Crops as sources of nutrients for humans. Special publications no. 48. American Society of Agronomy, Madison, WI, pp 37–54

    Chapter  Google Scholar 

  • Welch RM, House WA, Beebe S, Cheng Z (2000) Genetic selection for enhanced bioavailable levels of iron in bean (Phaseolus vulgaris L.) seeds. J Agric Food Chem 48:3576–3580

    Article  CAS  PubMed  Google Scholar 

  • West CE, Eilander A (2001) Bioefficiency of carotenoids. Sight Life 2:6–10

    Google Scholar 

  • WHO (2003) Joint WHO/FAO expert consultation on diet, nutrition and the prevention of chronic diseases. WHO technical report series 916. World Health Organization, Geneva. 149 p

    Google Scholar 

  • Wienk KJH, Marx JJM, Beynen AC (1999) The concept of iron bioavailability and its assessment. Eur J Nutr 38:51–75

    Article  CAS  PubMed  Google Scholar 

  • Wittsiepe J, Schrey P, Hack A, Selenka F, Wilhelm M (2001) Comparison of different digestive tract models for estimating bioaccessibility of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F) from red slag ‘Kieselrot’. Int J Hyg Environ Health 203:263–273

    Article  CAS  PubMed  Google Scholar 

  • Yeum KI, Russel RM (2002) Carotenoid bioavailability and bioconversion. Annu Rev Nutr 22:483–504

    Article  CAS  PubMed  Google Scholar 

  • Zhao Z (2007) The Africa biofortified sorghum project - applying biotechnology to develop nutritionally improved sorghum for Africa. In: Biotechnology and sustainable agriculture 2006 and beyond. Proceed 11th IAPTC&B Congress, August 13–18, 2006, Beijing, China, pp 273–277. https://doi.org/10.1007/978-1-4020-6635-1_41

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Hariprasanna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hariprasanna, K., Chetankumar, B., Venkateswarlu, R., Niharika, G. (2020). Approaches for Enhancing the Nutrients Bioavailability. In: Tonapi, V.A., Talwar, H.S., Are, A.K., Bhat, B.V., Reddy, C.R., Dalton, T.J. (eds) Sorghum in the 21st Century: Food – Fodder – Feed – Fuel for a Rapidly Changing World. Springer, Singapore. https://doi.org/10.1007/978-981-15-8249-3_32

Download citation

Publish with us

Policies and ethics