Skip to main content

A Review on Requirements for Data Communication and Information Technology Areas for Smart Grid

  • Conference paper
  • First Online:
Advances in Automation, Signal Processing, Instrumentation, and Control (i-CASIC 2020)

Abstract

The advanced research on power system issues for almost a decade has introduced the smart grid (SG) to the countries across the world. The SG represents modernized power delivery system. The introduction of advanced data-information and communication technologies (ICT) for SG has significantly improved the quality of power transmission and distribution from power generation plants to end-users. SG introduces the advanced technologies like modern automation, two-way communications, advanced monitoring, and control to optimize the power quality, efficiency, and reliability of all its interconnected power system elements. With the advent of integrating ICT into the power systems has improved the working capabilities of the utility companies in terms of better asset management and ensures the advanced energy management for the end user. The ICT is considered as backbone of SG that is implemented at three levels supporting different data speeds based on the type of application requirements. Intelligent electronics devices (IED’s) and Internet of things (IoT) make each appliance intelligent that communicate the data as well as can respond to the utility or end-user requirements in controlling an appliance. This paper provides a research review on the different areas of communication and information technology areas involved for SG automation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kumar P, Lin Y, Bai G, Paverd A, Dong JS, Martin A (2019) Smart grid metering networks: a survey on security, privacy and open research issues. IEEE Comm Sur Tut 21(3):2886–2927

    Article  Google Scholar 

  2. Abdrabou A (2016) Wireless communication architecture for smart grid distribution networks. IEEE Sys J 10(1):251–261

    Google Scholar 

  3. Ma R, Chen H-H, Huang Y-R, Meng W (2013) Smart grid communication: its challenges and opportunities. IEEE Trans Smart Grid 4(1):36–44

    Article  Google Scholar 

  4. Aguero JR, Takayesu E, Novosel D, Masiello R (2017) Modernizing the grid: challenges and opportunities for a sustainable future. IEEE Power Energy Mag 15(3):74–83

    Article  Google Scholar 

  5. Gungor VC, Lu B, Hancke GP (2010) Opportunities and challenges of wireless sensor networks in smart grid. IEEE Trans Ind Elect 57(10):3557–3564

    Article  Google Scholar 

  6. Howell S, Rezgui Y, Hippolyte JL, Jayan B, Li H (2017) Towards the next generation of smart grids: semantic and holonic multi-agent management of distributed energy resources. Renew Sustain Energy Rev 77:193–214

    Article  Google Scholar 

  7. Alahakoon D, Yu X (2016) Smart electricity meter data intelligence for future energy systems: a survey. IEEE Trans Ind Inf 12(1):425–436

    Article  Google Scholar 

  8. Rajendhar P, Jeyaraj BE (2019) Application of DR and co-simulation approach for renewable integrated HEMS: a review. IET Gener Transm Distrib 13(16):3501–3512

    Article  Google Scholar 

  9. Bayindir R, Colak I, Fulli G, Demirtas K (2016) Smart grid technologies and applications. Renew Sustain Ener Rev 66:499–516

    Article  Google Scholar 

  10. Muttaqi KM, Aghaei J, Ganapathy V, Nezhad AE (2015) Technical challenges for electric power industries with implementation of distribution system automation in smart grids. Renew Sustain Energy Rev 46:129–142

    Article  Google Scholar 

  11. Ghorbani MJ, Choudhry MA, Feliachi A (2015) A multiagent design for power distribution systems automation. IEEE Trans Smart Grid, pp 1–10

    Google Scholar 

  12. Bush SF (2014) Network theory and smart grid distribution automation. IEEE J Sel Areas Commun 32(7):1451–1459

    Article  Google Scholar 

  13. Bouhouras S, Andreou GT, Labridis DP, Bakirtzis AG (2010) Selective automation upgrade in distribution networks towards a smarter grid. IEEE Trans Smart Grid 1(3):278–285

    Article  Google Scholar 

  14. Uzun E, Tavli B, Bicakci K, Incebacak D (2014) Ad hoc networks the impact of scalable routing on lifetime of smart grid communication networks. Ad Hoc Netw 22(7):27–42

    Article  Google Scholar 

  15. Phadke G, Wall P, Ding L, Terzija V (2016) Improving the performance of power system protection using wide area monitoring systems. J Mod Power Syst Clean Energy 4(3):319–331

    Article  Google Scholar 

  16. Nafi NS, Ahmed K, Gregory MA, Datta M (2016) A survey of smart grid architectures, applications, benefits and standardization. J Netw Comput Appl 76:23–36

    Article  Google Scholar 

  17. Yu Y, Liu Y, Qin C (2015) Basic Ideas of the Smart Grid. Engineering 1(4):405–408

    Article  Google Scholar 

  18. Lo CH, Ansari N (2012) The progressive smart grid system from both power and communications aspects. IEEE Commun Surv Tutorials 14(3):799–821

    Google Scholar 

  19. Yan Y, Qian Y, Sharif H, Tipper D (2013) A survey on smart grid communication infrastructures: motivations, requirements and challenges. IEEE Commun Surv Tutorials 15(1):5–20

    Article  Google Scholar 

  20. Erol-Kantarci M, Mouftah HT (2015) Energy-efficient information and communication infrastructures in the smart grid: a survey on interactions and open issues. IEEE Commun Surv Tutorials 17(1):179–197

    Article  Google Scholar 

  21. Finster S, Baumgart I (2015) Privacy-aware smart metering: a survey. IEEE Commun Surv Tutorials 17(2):1088–1101

    Article  Google Scholar 

  22. Khan A, Rehmani MH, Reisslein M (2017) Requirements, design challenges, and review of routing and MAC protocols for CR-based smart grid systems. IEEE Commun Mag 55(5):206–215

    Article  Google Scholar 

  23. Vikram K, Sahoo SK (2017) Load aware channel estimation and channel scheduling for 2.4 GHz frequency band wireless networks for smart grid applications. Int J Smart Sens Intel Syst 10(4):879–902

    Google Scholar 

  24. Chen S, Ma R, Chen HH, Meng W (2016) A segmented packet collision model for smart utility networks under WLAN interferences. IEEE Trans Wirel Commun 15(5):3506–3517

    Article  Google Scholar 

  25. Meng W, Ma R, Chen HH (2014) Smart grid neighborhood area networks: a survey. IEEE Netw 28(1):24–32

    Article  Google Scholar 

  26. de Oliveira JAJ, Queiroz AFR, de Lima ER, Mertes JG (2016) An MR-FSK transceiver compliant to IEEE 802.15.4g for smart metering utility applications: FPGA implementation and ASIC resource estimation. In: IEEE Latin Am Trans 14(6):2565–2569

    Google Scholar 

  27. Cao Y, Jiang T, He M, Zhang J (2016) Device-to-device communications for energy management: a smart grid case. IEEE J Sel Areas Commun 34(1):190–201

    Article  Google Scholar 

  28. Asuhaimi FA, Bu S, Nadas JPB, Imran MA (2019) Delay-aware energy-efficient joint power control and mode selection in device-to-device communications for FREEDM systems in smart grids. IEEE Access 7:87369–87381

    Article  Google Scholar 

  29. Mouftah HT, Erol-Kantarci M (2016) Smart grid: networking, data management, and business models

    Google Scholar 

  30. Saputro N, Akkaya K, Uludag S (2012) A survey of routing protocols for smart grid communications. Comput Netw 56(11):2741–2771

    Article  Google Scholar 

  31. Alaa M, Zaidan AA, Zaidan BB, Talal M, Kiah MLM (2017) A review of smart home applications based on Internet of Things. J Netw Comput Appl 97:48–65

    Article  Google Scholar 

  32. Chen S et al (2019) Internet of things based smart grids supported by intelligent edge computing. IEEE Access 7:74089–74102

    Article  Google Scholar 

  33. Vikram K, Sahoo SK (2018) A collaborative frame work for avoiding the interference in 2.4 GHz frequency band smart grid applications. Electron J 22(1):48–56

    Google Scholar 

  34. Liao W, Salinas S, Li M, Li P, Loparo KA (2017) Cascading failure attacks in the power system: a stochastic game perspective. IEEE Internet Things J 4(6):2247–2259

    Article  Google Scholar 

  35. Khanduzi R, Peyghami MR, Sangaiah AK (2018) Data envelopment analysis and interdiction median problem with fortification for enabling IoT technologies to relieve potential attacks. Futur Gener Comput Syst 79(1):928–940

    Article  Google Scholar 

  36. Schatten M, Ševa J, Tomičić I (2016) A roadmap for scalable agent organizations in the internet of everything. J Syst Softw 115:31–41

    Article  Google Scholar 

  37. Ochoa SF, Fortino G, Di Fatta G (2017) Cyber-physical systems, internet of things and big data. Futur Gener Comput Syst 75:82–84

    Article  Google Scholar 

  38. Pease SG, Trueman R, Davies C, Grosberg J, Yau KH, Kaur N, Conway P, West A (2018) An intelligent real-time cyber-physical toolset for energy and process prediction and optimisation in the future industrial internet of things. Futur Gener Comput Syst 79:815–829

    Article  Google Scholar 

  39. Hudson FD, Nichols EW (2016) The internet of things and cognitive computing. Handbook of Statistics 35:341–373

    Article  Google Scholar 

  40. Alaba FA, Othman M, Hashem IAT, Alotaibi F (2017) Internet of things security: a survey. J Netw Comput Appl 88:10–28

    Article  Google Scholar 

  41. Stergiou C, Psannis KE, Kim BG, Gupta B (2018) Secure integration of IoT and cloud computing. Futur Gener Comput Syst 78:964–975

    Article  Google Scholar 

  42. Jin X, Wah BW, Cheng X, Wang Y (2015) Significance and challenges of big data research. Big Data Res 2(2):59–64

    Article  Google Scholar 

  43. Chen Y, Liu D, Xu B (2013) Wide-area traveling wave fault location system based on IEC61850. IEEE Trans Smart Grid 4(2):1207–1215

    Article  Google Scholar 

  44. Lee B, Kim DK, Yang H, Jang H, Hong D, Falk H (2015) Unifying data types of IEC 61850 l CIM. IEEE Trans Power Syst 30(1):448–456

    Article  Google Scholar 

  45. He H, Yan J (2016) Cyber-physical attacks and defences in the smart grid: a survey. IET Cyber-Physical Syst Theory Appl 1(1):13–27

    Article  Google Scholar 

  46. European Commission (2012) Cyber security of the smart grids, pp 1–31

    Google Scholar 

  47. Luo F, Zhao J, Dong ZY, Chen Y, Xu Y, Zhang X, Wong KP (2016) Cloud-based information infrastructure for next-generation power grid: conception. Archit Appl IEEE Trans Smart Grid 7(4):1896–1912

    Article  Google Scholar 

  48. Ferrag MA, Maglaras LA, Janicke H, Jiang J, Shu L (2018) A systematic review of data protection and privacy preservation schemes for smart grid communications. Sustain Cities Soc 38:806–835

    Article  Google Scholar 

  49. Wang W, Lu Z (2013) Cyber security in the Smart Grid: Survey and challenges. Comput Netw 57(5):1344–1371

    Article  Google Scholar 

  50. Pelechrinis K, Yan G, Eidenbenz S, Krishnamurthy SV (2009) Detecting selfish exploitation of carrier sensing in 802.11 networks. In: Proceedings of IEEE INFOCOM, pp 657–665

    Google Scholar 

  51. Lu Z, Wang W, Wang C (2014) Modeling, evaluation and detection of jamming attacks in time-critical wireless applications. IEEE Trans Mob Comput 13(8):1746–1759

    Article  Google Scholar 

  52. Lu Z, Wang W, Wang C (2011) From jammer to gambler: modeling and detection of jamming attacks against time-critical traffic. In: Proceedings of IEEE INFOCOM, pp 1871–1879

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikram Kulkarni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kulkarni, V., Komanapalli, V.L.N., Sahoo, S.K. (2021). A Review on Requirements for Data Communication and Information Technology Areas for Smart Grid. In: Komanapalli, V.L.N., Sivakumaran, N., Hampannavar, S. (eds) Advances in Automation, Signal Processing, Instrumentation, and Control. i-CASIC 2020. Lecture Notes in Electrical Engineering, vol 700. Springer, Singapore. https://doi.org/10.1007/978-981-15-8221-9_303

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-8221-9_303

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-8220-2

  • Online ISBN: 978-981-15-8221-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics