Skip to main content

A Comprehensive Review on Thermoelectric Generator for Energy Harvesting

  • Conference paper
  • First Online:
Advances in Automation, Signal Processing, Instrumentation, and Control (i-CASIC 2020)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 700))

Abstract

The new technologies of energy saving and emission reduction is a greatest challenge to the industries. Increase in environmental pollution and energy demand requires clean source of energy. Thermoelectric power generation is the best solution for the clean source of energy. Thermoelectric power generation through waste heat recovery includes vehicle exhaust waste, industrial waste. In order to utilize the waste heat, the efficient TEG should be used which requires (i) TEG materials with less cost to improve its performance, (ii) TEG materials with improved ZT values, (iii) TEG material to work with high temperature difference. This review begins with the principle of thermoelectric generator, power calculation, present and future thermo electric materials, application of TEG in various sectors

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen W-H, Wang C-C, Hung C-I, Yang C-C, Juang R-C (2014) Modelling and simulation for the design of thermal-concentrated solar thermoelectric generator. Energy 64:287–297 (2014)

    Google Scholar 

  2. Liang X, Sun X, Shu G, Sun K, Wang X, Wang X (2013) Using the analytic network process (ANP) to determine method of waste energy recovery from engine. Energy Convers Manage 66:304–311

    Google Scholar 

  3. Riffat SB, Ma X (2003) Thermoelectrics: a review of present and potential applications. Appl Therm Eng 23(8):913–935

    Google Scholar 

  4. Bhandari CM, Rowe DM (1983) Modern thermoelectrics. Reston Publishing Company, Virginia

    Google Scholar 

  5. LeBlanc S (2014) Thermoelectric generators: linking material properties and systems engineering for waste heat recovery applications. Sustain Mater Technolog 1:26–35

    Google Scholar 

  6. https://solarsystem.nasa.gov/rps/rtg.cfm

  7. Aswal DK, Basu R, Singh A (2016) Key issues in development of thermoelectric power generators: high figure-of-merit materials and their highly conducting interfaces with metallic interconnects. Energy Convers Manage 114:50–67

    Google Scholar 

  8. Huesgen T, Woias P, Kockmann N (2008) Design and fabrication of MEMS thermoelectric generators with high temperature efficiency: Sens Actuators Phys 145:423–429

    Google Scholar 

  9. BNEF (2007) Electric vehicle outlook 2017. Bloomberg finance, Tech Rep pp 1–5

    Google Scholar 

  10. Muralidhar N, Himabindu M, Ravikrishna (2018) Modelling of a hybrid electric heavy duty vehicle to assess energy recovery using a thermoelectric generator. Energy 148:1046–1059

    Google Scholar 

  11. Khan AU, Kobayashi K, Tang D-M, Yamauchi Y, Hasegawa K, Mitome M, Xue Y et al (2017) Nano-micro-porous skutterudites with 100% enhancement in ZT for high performance thermoelectricity. Nano Energy 31:152–159

    Google Scholar 

  12. Ritz F, Peterson CE (2004) Multi-mission radioisotope thermoelectric generator (MMRTG) program overview. In: 2004 IEEE aerospace conference proceedings (IEEE Cat. No. 04TH8720), vol 5. IEEE, pp 2950–2957

    Google Scholar 

  13. Hazan E, Ben-Yehuda O, Madar N, Gelbstein Y (2015) Functional graded germanium-lead chalcogenide-based thermoelectric module for renewable energy applications. Adv Energy Mater 5(11):1500272

    Article  Google Scholar 

  14. Appel O, Zaharoni T, Breuer G, Beeri O, Gelbstein Y (2019) Thermoelectric properties of Ti0. 3Zr0. 35Hf0. 35Ni1. 005Sn half-Heusler alloy. J Appl Phys 126(8):085110

    Google Scholar 

  15. Selvan KV, Hasan MN, Mohamed Ali MS (2019) Methodological reviews and analyses on the emerging research trends and progresses of thermoelectric generators. Int J Energy Res 43(1):113–140

    Google Scholar 

  16. Strasser M, Aigner R, Lauterbach C, Sturm TF, Franosch M, Wachutka G (2004) Micromachined CMOS thermoelectric generators as on-chip power supply. Sens Actuators A: Physi 114(2–3):362–370

    Google Scholar 

  17. Brand O, Fedder GK, Hierold C, Korvink JG, Tabata O (2015) Micro-and nanomanipulation tools. Wiley

    Google Scholar 

  18. TEG-HH-15_module_spec_sheet n.d. https://www.evidentthermo.com/ [Accessed 6 June 2016]

  19. TEG-HH-8_module_spec_sheet n.d https://www.evidentthermo.com/ [Accessed 6 June 2016]

  20. MODULE TEG1-PB-12611–6.0 spec sheet n.d. https://tecteg.com/wp-content/uploads/2015/01/TEG1-PB-12611-6.0_CBH-1-Final-November-17th-update.pdf [Accessed 9 Feb 2015]

  21. tEcteg cmo-oxide-cmo-cascade-thermoelectric-power-modulesn.d. https://tecteg.com/cmo-oxide-cmo-cascade-800c-hot-side-thermoelectric-power-modules/ [Accessed 6 June 2016

  22. Hotblock Onboard n.d. www.onboardfr/ [Accessed 6 June 2016]

  23. Champier D (2017) Thermoelectric generators: a review of applications. Energy Convers Manage 140:167–181

    Google Scholar 

  24. Zhang Q, Sun Y, Wei Xu, Zhu D (2014) Organic thermoelectric materials: emerging green energy materials converting heat to electricity directly and efficiently. Adv Mater 26(40):6829–6851

    Article  Google Scholar 

  25. Lay-Ekuakille, A, Vendramin G, Trotta A, Mazzotta G (2009) Thermoelectric generator design based on power from body heat for biomedical autonomous devices. In: 2009 IEEE international workshop on medical measurements and applications. IEEE, pp 1–.

    Google Scholar 

  26. Greatbatch W, Bustard TS (1973) A Pu 238 O 2 nuclear power source for implantable cardiac pacemakers. IEEE Trans Biomed Eng 5:332–336

    Google Scholar 

  27. Baert, K, Gyselinckx B, Torfs T, Leonov V, Yazicioglu F, Brebels S, Donnay S, Vanfleteren J, Beyne E, Van Hoof C (2006) Technologies for highly miniaturized autonomous sensor networks. Microelectron. J. 37(12):1563–1568

    Google Scholar 

  28. Latré B, Braem B, Moerman I, Blondia C, Demeester P (2011) A survey on wireless body area networks. Wireless Netw 17(1):1–18

    Article  Google Scholar 

  29. Leonov, V, Fiorini P, Vullers RJM (2011) Theory and simulation of a thermally matched micromachined thermopile in a wearable energy harvester. Microelectron J 42(4):579–584

    Google Scholar 

  30. Abelson RD (2006) Space missions and applications. In: Rowe DM (ed) Thermoelectrics handbook macro to nano. CRC Press, Taylor & Francis Group, Boca Raton, FL, USA, pp 56–156–26. ISBN 0-8493-2264-2

    Google Scholar 

  31. Fleurial JP, Caillat T, Nesmith BJ, Ewell RC, Woerner DF, Carr GC, JonesJet LE (2011) Thermoelectrics: from space power systems to terrestrial waste heat recovery applications. In: Proceedings of the Thermoelectrics Applications Workshop, vol 30, San Diego, CA, USA

    Google Scholar 

  32. Enescu D (2019) Thermoelectric energy harvesting: basic principles and applications. In Green Energy Adv, IntechOpen

    Google Scholar 

  33. Li D (ed) (2008) Encyclopedia of microfluidics and nanofluidics. Springer Science & Business Media

    Google Scholar 

  34. Yang Y, Lin Z-H, Hou T, Zhang F, Wang ZL (2012) Nanowire-composite based flexible thermoelectric nanogenerators and self-powered temperature sensors. Nano Res 5(12):888–895

    Google Scholar 

  35. Kim S, Park S, Kim S, Rhi S-H (2011) A thermoelectric generator using engine coolant for light-duty internal combustion engine-powered vehicles. J Electron Mater 40(5):812

    Google Scholar 

  36. Nuwayhid RY, Rowe DM, Min G (2003) Low cost stove-top thermoelectric generator for regions with unreliable electricity supply. Renew Energy 28(2):205–222

    Google Scholar 

  37. Nuwayhid Rida Y, Shihadeh A, Ghaddar N (2005) Development and testing of a domestic woodstove thermoelectric generator with natural convection cooling. Energy Convers Manage 46(9–10):1631–1643

    Google Scholar 

  38. Yu S, Du Q, Diao H, Shu G, Jiao K (2015) Start-up modes of thermoelectric generator based on vehicle exhaust waste heat recovery. Appl energy 138:276–290

    Google Scholar 

  39. Biswas K, He J, Blum ID, Wu C-I, Hogan TP, Seidman DN, Dravid VP, Kanatzidis MG (2012) High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489(7416):414

    Google Scholar 

  40. Fu C, Bai S, Liu Y, Tang Y, Chen L, Zhao X, Zhu T (2015) Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials. Nature Commun 6:8144

    Google Scholar 

  41. Thomson H, Liddell C (2015) The suitability of wood pellet heating for domestic households: a review of literature. Renew Sustain Energy Rev 42:1362–1369

    Article  Google Scholar 

  42. Moser W, Friedl G, Haslinger W, Hofbauer H (2006) Small-scale pellet boiler with thermoelectric generator. In: 2006 25th international conference on thermoelectrics. IEEE, pp 349–353

    Google Scholar 

  43. Baranowski LL, Snyder GJ, Toberer ES Concentrated solar thermoelectric generators. Energy Environ. Sci 5(10):9055–9067 (2012)

    Google Scholar 

  44. Olsen ML, Warren EL, Parilla PA, Toberer ES, Kennedy CE, Snyder GJ, Firdosy SA et al (2014) A high-temperature, high-efficiency solar thermoelectric generator prototype. Energy Procedia 49:1460–1469

    Google Scholar 

  45. Kraemer D, McEnaney K, Chiesa M, Chen G (2012) Modeling and optimization of solar thermoelectric generators for terrestrial applications. Solar Energy 86(5):1338–1350

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Lourdu Jame .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lourdu Jame, S., Joselin Retna Kumar, G. (2021). A Comprehensive Review on Thermoelectric Generator for Energy Harvesting. In: Komanapalli, V.L.N., Sivakumaran, N., Hampannavar, S. (eds) Advances in Automation, Signal Processing, Instrumentation, and Control. i-CASIC 2020. Lecture Notes in Electrical Engineering, vol 700. Springer, Singapore. https://doi.org/10.1007/978-981-15-8221-9_176

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-8221-9_176

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-8220-2

  • Online ISBN: 978-981-15-8221-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics