Skip to main content

Deep Neural Network Watermarking Based on Texture Analysis

  • Conference paper
  • First Online:
Artificial Intelligence and Security (ICAIS 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1252))

Included in the following conference series:

Abstract

In recent years, deep neural network is active in the field of computer image vision. The existing digital watermarking technology based on deep neural network can resist image attacks, but image quality is not satisfied. In order to improve the quality of the watermarked images, a neural network watermarking method based on image texture analysis is proposed. Firstly, image texture features are analyzed by gray co-occurrence matrix, and the image is divided into texture complex region and flat region. Secondly, in order to reduce the degree of image modification for better quality, StegaStamp network is adopted to embed the watermark into the flat texture area. Finally, from the perspective of traditional multiplicative watermarking embedding, the watermark embedding process of deep neural network is improved to enhance the watermarked image quality. Experimental results show that the proposed method can effectively improve the quality of the watermarked images without degrading the robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wason, R., Jain, V., Narula, G.S., Balyan, A.: Deep understanding of 3-D multimedia information retrieval on social media: implications and challenges. Iran J. Comput. Sci. 2(2), 101–111 (2019)

    Article  Google Scholar 

  2. Zhang, H., Wei, Z.: Risk management of commodity trade business based on deep learning and parallel processing of visual multimedia big data. Multimedia Tools Appl. 79(13), 9331–9349 (2019). https://doi.org/10.1007/s11042-019-7508-5

    Article  Google Scholar 

  3. Dou, K., Guo, B., Kuang, L.: A privacy-preserving multimedia recommendation in the context of social network based on weighted noise injection. Multimedia Tools Appl. 78(19), 26907–26926 (2017). https://doi.org/10.1007/s11042-017-4352-3

    Article  Google Scholar 

  4. Cox, I.: Digital watermarking. J. Electron. Imaging 11(3), 414 (2002)

    Article  Google Scholar 

  5. Podilchuk, C.I., Delp, E.J.: Digital watermarking: algorithms and applications. IEEE Signal Process. Mag. 18(4), 33–46 (2001)

    Article  Google Scholar 

  6. Xia, Z., Wang, X., Sun, X., Liu, Q., Xiong, N.: Steganalysis of LSB matching using differences between nonadjacent pixels. Multimedia Tools Appl. 75(4), 1947–1962 (2014). https://doi.org/10.1007/s11042-014-2381-8

    Article  Google Scholar 

  7. Luo, W., Huang, F., Huang, J.: Edge adaptive image steganography based on LSB matching revisited. IEEE Trans. Inf. Forensics Secur. 5(2), 201–214 (2010)

    Article  Google Scholar 

  8. Barni, M., Bartolini, F., Cappellini, V.: A DCT-domain system for robust image watermarking. Sig. Process. 66(3), 357–372 (1998)

    Article  Google Scholar 

  9. Shi, Y.Q.: Reversible data hiding. In: Cox, I.J., Kalker, T., Lee, H.-K. (eds.) IWDW 2004. LNCS, vol. 3304, pp. 1–12. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31805-7_1

    Chapter  Google Scholar 

  10. Shi, Y.Q., Ansari, N., Su, W., Ni, Z.: Reversible data hiding. IEEE Trans. Circuits Syst. Video Technol. 16(3), 354–362 (2006)

    Article  Google Scholar 

  11. Fazli, S., Moeini, M.: A robust image watermarking method based on DWT, DCT, and SVD using a new technique for correction of main geometric attacks. Optik-Int. J. Light Electron Opt. 127(2), 964–972 (2016)

    Article  Google Scholar 

  12. Shi, H., Dong, J., Wang, W., Qian, Y., Zhang, X.: SSGAN: secure steganography based on generative adversarial networks. In: Zeng, B., Huang, Q., El Saddik, A., Li, H., Jiang, S., Fan, X. (eds.) PCM 2017. LNCS, vol. 10735, pp. 534–544. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77380-3_51

    Chapter  Google Scholar 

  13. Mun, S.M., Nam, S.H., Jang, H.U., Kim, D., Lee, H.K.: A robust blind watermarking using convolutional neural network. arXiv:1704.03248 [cs.MM] (2017)

  14. Zhu, J., Kaplan, R., Johnson, J., Fei-Fei, L.: HiDDeN: hiding data with deep networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11219, pp. 682–697. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01267-0_40

    Chapter  Google Scholar 

  15. Matthew, T., Ben, M., Ng, R.: StegaStamp: invisible hyperlinks in physical photographs. arXiv preprint arXiv:1904.05343 (2019)

  16. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  17. Jaderberg, M., Simonyan, K., Zisserman, A., Kavukcuoglu, K.: Spatial transformer networks. In: Neural Information Processing Systems (2015)

    Google Scholar 

  18. Cheng, Q., Huang, T.S.: Robust optimum detection of transform domain multiplicative watermarks. IEEE Trans. Signal Process. 51(4), 906–924 (2003)

    Article  MathSciNet  Google Scholar 

  19. Sadreazami, H., Ahmad, M.O., Swamy, M.N.S.: Multiplicative watermark decoder in contourlet domain using the normal inverse gaussian distribution. IEEE Trans. Multimedia 18(2), 196–207 (2015)

    Article  Google Scholar 

  20. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: International Conference on Machine Learning (2017)

    Google Scholar 

  21. Huang, Z.K., Li, P.W., Hou, L.Y.: Segmentation of textures using PCA fusion based Gray-Level Co-occurrence Matrix features. In: International Conference on Test and Measurement, Hong Kong, pp. 103–105 (2009)

    Google Scholar 

  22. Baraldi, A., Parmiggiani, F.: An investigation of the textural characteristics associated with gray level cooccurrence matrix statistical parameters. IEEE Trans. Geosci. Remote Sens. 33(2), 293–304 (1995)

    Article  Google Scholar 

  23. Kanopoulos, N., Vasanthavada, N., Baker, R.L.: Design of an image edge detection filter using the sobel operator. IEEE J. Solid-State Circuits 23(2), 358–367 (1988)

    Article  Google Scholar 

  24. Kuppili, S.K., Prasad, P.M.K.: Design of area optimized sobel edge detection. In: Jain, L.C., Behera, H.S., Mandal, J.K., Mohapatra, D.P. (eds.) Computational Intelligence in Data Mining - Volume 2. SIST, vol. 32, pp. 647–655. Springer, New Delhi (2015). https://doi.org/10.1007/978-81-322-2208-8_59

    Chapter  Google Scholar 

  25. Huiskes, M.J., Lew, M.S.: The MIR flickr retrieval evaluation. In: ACM International Conference on Multimedia Information Retrieval (MIR 2008), Vancouver, Canada (2008)

    Google Scholar 

  26. Bose, R.C., Raychaudhuri, D.K.: On a class of error correcting binary group codes. Inf. Control 3(1), 68–79 (1960)

    Article  MathSciNet  Google Scholar 

  27. Huynh-Thu, Q., Ghanbari, M.: Scope of validity of PSNR in image/video quality assessment. Electron. Lett. 44(13), 800–801 (2008)

    Article  Google Scholar 

  28. Soleimanizadeh, S., Mohamad, D., Saba, T., Rehman, A.: Recognition of partially occluded objects based on the three different color spaces (RGB, YCbCr, HSV). 3D Res. 6(3), 22 (2015). https://doi.org/10.1007/s13319-015-0052-9

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by National Natural Science Foundation of China (No. 61971247, No. 61370218), and Public Welfare Technology and Industry Project of Zhejiang Provincial Science Technology Department (No. LGG19F020016).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kuangshi Wang , Li Li , Ting Luo or Chin-Chen Chang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, K., Li, L., Luo, T., Chang, CC. (2020). Deep Neural Network Watermarking Based on Texture Analysis. In: Sun, X., Wang, J., Bertino, E. (eds) Artificial Intelligence and Security. ICAIS 2020. Communications in Computer and Information Science, vol 1252. Springer, Singapore. https://doi.org/10.1007/978-981-15-8083-3_50

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-8083-3_50

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-8082-6

  • Online ISBN: 978-981-15-8083-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics