Skip to main content

Biofilms: Naturally Immobilized Microbial Cell Factories

  • Chapter
  • First Online:
Immobilization Strategies

Abstract

Biocatalyst, including bacteria, fungi and their enzymes are an effective and environmentally preferred tools for industrial biotechnological applications, and for emerging wastewater treatment technologies. Due to low waste generation and energy requirements, biocatalyst-mediated processes have an edge over many established chemical processes and are also more economical. In most of the cases biocatalysts, especially whole cells need to be immobilized to make them reusable and cut down the downstream costs. Biofilms, which consists of surface-attached microbial cells, have natural immobilization due to the secretion of biopolymers by its own cells. Biofilms are identified as potential industrial workhorses for their sustainable production of chemicals, due to their high resistance to reactants and toxic chemicals, easy separation from the bulk liquid and long-sustaining enzymatic activity, which all facilitate continuous processing. Despite these favorable characteristics, utilizing biofilms as live biocatalysts has not yet broadly implemented concept in bioprocess development due to few bottlenecks. Of late, new prospective opportunities using these biofilm-based biocatalysts are showing an ascending application and seem to be feasible with the better understanding of mechanisms of biofilm biology. This chapter summarizes the recent developments in biofilm research with special emphasis on the advantages and disadvantages of biofilm-mediated processes for viable applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AI:

Autoinducers

DNA:

Deoxyribose nucleic acid

eDNA:

Extracellular DNA

EPS:

Extracellular polymeric substances (EPS)

MABR:

Membrane aerated biofilm reactor

PAH:

Polycyclic aromatic hydrocarbons

PCS:

Plastic composite support

PPS:

Polypropylene support

QS:

Quorum sensing

RNA:

Ribose nucleic acid

SEM:

Scanning electron microscope

TBR:

Tubular biofilm reactor

References

  • Abee T, Kovács ÁT, Kuipers OP, Van der Veen S (2011) Biofilm formation and dispersal in Gram-positive bacteria. Curr Opin Biotechnol 22:172–179

    Article  CAS  Google Scholar 

  • Annous BA, Fratamico PM, Smith JL (2009) Scientific status summary: quorum sensing in biofilms: why bacteria behave the way they do. J Food Sci 74:R24–R37

    Article  CAS  Google Scholar 

  • Atia A, Gomaa A, Fliss I, Beyssac E, Garrait G, Subirade M (2016) A prebiotic matrix for encapsulation of probiotics: physicochemical and microbiological study. J Microencapsul 33:89–101

    Article  CAS  Google Scholar 

  • Berlanga M, Guerrero R (2016) Living together in biofilms: the microbial cell factory and its biotechnological implications. Microb Cell Fact 15:165

    Article  CAS  Google Scholar 

  • Bland R, Chen H, Jewell W, Bellamy W, Zall R (1982) Continuous high rate production of ethanol by Zymomonas mobilis in an attached film expanded bed fermentor. Biotech Lett 4:323–328

    Article  CAS  Google Scholar 

  • Boles BR, Thoendel M, Singh PK (2004) Self-generated diversity produces “insurance effects” in biofilm communities. Proc Natl Acad Sci USA 101:16630–16635

    Article  CAS  Google Scholar 

  • Buchholz K, Kasche V, Bornscheuer UT (2012) Biocatalysts and enzyme technology. Wiley.

    Google Scholar 

  • Burmølle M, Ren D, Bjarnsholt T, Sørensen SJ (2014) Interactions in multispecies biofilms: do they actually matter? Trends Microbiol 22:84–91

    Article  CAS  Google Scholar 

  • Busalmen J, Vazquez M, De Sanchez S (2002) New evidences on the catalase mechanism of microbial corrosion. Electrochim Acta 47:1857–1865

    Article  CAS  Google Scholar 

  • Cáp M, Váchová L, Palková Z (2012) Reactive oxygen species in the signaling and adaptation of multicellular microbial communities. Oxid Med Cell Longev 2012:976753–976753

    Article  CAS  Google Scholar 

  • Charlton TS, De Nys R, Netting A, Kumar N, Hentzer M, Givskov M, Kjelleberg S (2000) A novel and sensitive method for the quantification of N-3-oxoacyl homoserine lactones using gas chromatography–mass spectrometry: application to a model bacterial biofilm. Environ Microbiol 2:530–541

    Article  CAS  Google Scholar 

  • Chen X, Stewart PS (2002) Role of electrostatic interactions in cohesion of bacterial biofilms. Appl Microbiol Biotechnol 59:718–720

    Article  CAS  Google Scholar 

  • Cogan NG, Cortez R, Fauci L (2005) Modeling physiological resistance in bacterial biofilms. Bull Math Biol 67:831–853

    Article  CAS  Google Scholar 

  • Costerton JW (1999) Introduction to biofilm. Int J Antimicrob Agents 11:217–221

    Article  CAS  Google Scholar 

  • Costerton JW, Geesey G, Cheng K (1978) How bacteria stick. Sci Am 238:86–95

    Article  CAS  Google Scholar 

  • Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322

    Article  CAS  Google Scholar 

  • ME Davey GA O'toole (2000) Microbial biofilms: from ecology to molecular genetics Microbiol Mol Biol Rev 64:847–867

    Google Scholar 

  • Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280:295–298

    Article  CAS  Google Scholar 

  • Demirci A, Pometto A III, Ho KG (1997) Ethanol production by Saccharomyces cerevisiae in biofilm reactors. J Ind Microbiol Biotechnol 19:299–304

    Article  CAS  Google Scholar 

  • Dixon M, Flint S, Palmer J, Love R, Chabas C, Beuger A (2018) The effect of calcium on biofilm formation in dairy wastewater. Water Pract Technol 13:400–409

    Article  Google Scholar 

  • Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:167–193

    Article  CAS  Google Scholar 

  • Dusane DH, Nancharaiah YV, Zinjarde SS, Venugopalan VP (2010) Rhamnolipid mediated disruption of marine Bacillus pumilus biofilms. Colloids Surf, B 81:242–248

    Article  CAS  Google Scholar 

  • Federle MJ, Bassler BL (2003) Interspecies communication in bacteria. J Clin Investig 112:1291–1299

    Article  CAS  Google Scholar 

  • Flemming H-C, Neu TR, Wozniak DJ (2007) The EPS matrix: the house of biofilm cells. J Bacteriol 189:7945–7947

    Article  CAS  Google Scholar 

  • Flemming H-C, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623

    Article  CAS  Google Scholar 

  • Förberg C, Häggström L (1985) Control of cell adhesion and activity during continuous production of acetone and butanol with adsorbed cells. Enzyme Microbial Technol 7:230–234

    Article  Google Scholar 

  • Garrett TR, Bhakoo M, Zhang Z (2008) Bacterial adhesion and biofilms on surfaces. Prog Nat Sci 18:1049–1056

    Article  CAS  Google Scholar 

  • Gloag ES, Turnbull L, Huang A, Vallotton P, Wang H, Nolan LM, Mililli L, Hunt C, Lu J, Osvath SR, Monahan LG, Cavaliere R, Charles IG, Wand MP, Gee ML, Prabhakar R, Whitchurch CB (2013) Self-organization of bacterial biofilms is facilitated by extracellular DNA. Proc Natl Acad Sci USA 110:11541–11546

    Article  CAS  Google Scholar 

  • Halan B, Buehler K, Schmid A (2012) Biofilms as living catalysts in continuous chemical syntheses. Trends Biotechnol 30:453–465

    Article  CAS  Google Scholar 

  • Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2:95–108

    Article  CAS  Google Scholar 

  • Hassett DJ, Ma JF, Elkins JG, McDermott TR, Ochsner UA, West SE, Huang CT, Fredericks J, Burnett S, Stewart PS, McFeters G, Passador L, Iglewski BH (1999) Quorum sensing in Pseudomonas aeruginosa controls expression of catalase and superoxide dismutase genes and mediates biofilm susceptibility to hydrogen peroxide. Mol Microbiol 34:1082–1093

    Article  CAS  Google Scholar 

  • Heffernan B, Murphy CD, Casey E (2009) Comparison of planktonic and biofilm cultures of Pseudomonas fluorescens DSM 8341 cells grown on fluoroacetate. Appl Environ Microbiol 75:2899–2907

    Article  CAS  Google Scholar 

  • Heffernan B, Murphy CD, Syron E, Casey E (2009) Treatment of fluoroacetate by a Pseudomonas fluorescens biofilm grown in membrane aerated biofilm reactor. Environ Sci Technol 43:6776–6785

    Article  CAS  Google Scholar 

  • Hekmat D, Bauer R, Neff V (2007) Optimization of the microbial synthesis of dihydroxyacetone in a semi-continuous repeated-fed-batch process by in situ immobilization of Gluconobacter oxydans. Process Biochem 42:71–76

    Article  CAS  Google Scholar 

  • Irie Y, Parsek MR (2008) Quorum sensing and microbial biofilms. Curr Top Microbiol Immunol 322:67–84

    CAS  Google Scholar 

  • Kaplan Já (2010) Biofilm dispersal: mechanisms, clinical implications, and potential therapeutic uses. J Dent Res 89:205–218

    Google Scholar 

  • Kjelleberg S, Molin S (2002) Is there a role for quorum sensing signals in bacterial biofilms? Curr Opin Microbiol 5:254–258

    Article  CAS  Google Scholar 

  • Kunduru MR, Pometto A (1996) Continuous ethanol production byZymomonas mobilis and Saccharomyces cerevisiae in biofilm reactors. J Ind Microbiol 16:249–256

    Article  CAS  Google Scholar 

  • Ławniczak Ł, Kaczorek E, Olszanowski A (2011) The influence of cell immobilization by biofilm forming on the biodegradation capabilities of bacterial consortia. World J Microbiol Biotechnol 27:1183–1188

    Article  CAS  Google Scholar 

  • Leck C, Bigg EK (2005) Biogenic particles in the surface microlayer and overlaying atmosphere in the central Arctic Ocean during summer. Tellus B 57:305–316

    Article  Google Scholar 

  • Lee KWK, Periasamy S, Mukherjee M, Xie C, Kjelleberg S, Rice SA (2014) Biofilm development and enhanced stress resistance of a model, mixed-species community biofilm. ISME J 8:894

    Article  CAS  Google Scholar 

  • Li Y-H, Tian X (2012) Quorum sensing and bacterial social interactions in biofilms. Sensors 12:2519–2538

    Article  CAS  Google Scholar 

  • Liese A, Seelbach K, Wandrey C (2006) Industrial biotransformations. Wiley.

    Google Scholar 

  • Mangwani N, Dash HR, Chauhan A, Das S (2012) Bacterial quorum sensing: functional features and potential applications in biotechnology. J Mol Microbiol Biotechnol 22:215–227

    CAS  Google Scholar 

  • Mangwani N, Kumari S, Das S (2016) Bacterial biofilms and quorum sensing: fidelity in bioremediation technology. Biotechnol Genet Eng Rev 32:43–73

    Article  CAS  Google Scholar 

  • Mangwani N, Shukla SK, Kumari S, Das S, Rao TS (2016) Effect of biofilm parameters and extracellular polymeric substance composition on polycyclic aromatic hydrocarbon degradation. RSC Advances 6:57540–57551

    Article  CAS  Google Scholar 

  • Mangwani N, Shukla SK, Rao TS, Das S (2014) Calcium-mediated modulation of Pseudomonas mendocina NR802 biofilm influences the phenanthrene degradation. Colloids Surf, B 114:301–309

    Article  CAS  Google Scholar 

  • Manobala T, Shukla SK, Rao TS, Kumar MD (2019a) A new uranium bioremediation approach using radio-tolerant Deinococcus radiodurans biofilm. J Biosci 44:122

    Article  CAS  Google Scholar 

  • Manobala T, Shukla SK, Rao TS, Kumar MD (2019b) Uranium sequestration by biofilm-forming bacteria isolated from marine sediment collected from Southern coastal region of India. Int Biodeterior Biodegradation 145:104809

    Article  CAS  Google Scholar 

  • Martins SCS, Martins CM, Fiúza LMCG, Santaella ST (2013) Immobilization of microbial cells: a promising tool for treatment of toxic pollutants in industrial wastewater. Afr J Biotech 12:4412–4418

    Article  CAS  Google Scholar 

  • Mathew AK, Crook M, Chaney K, Humphries AC (2013) Comparison of entrapment and biofilm mode of immobilisation for bioethanol production from oilseed rape straw using Saccharomyces cerevisiae cells. Biomass Bioenerg 52:1–7

    Article  CAS  Google Scholar 

  • Matsuyama T, Nakagawa Y (1996) Surface-active exolipids: analysis of absolute chemical structures and biological functions. J Microbiol Methods 25:165–175

    Article  CAS  Google Scholar 

  • Molin S, Tolker-Nielsen T (2003) Gene transfer occurs with enhanced efficiency in biofilms and induces enhanced stabilisation of the biofilm structure. Curr Opin Biotechnol 14:255–261

    Article  CAS  Google Scholar 

  • Mulcahy H, Charron-Mazenod L, Lewenza S (2008) Extracellular DNA chelates cations and induces antibiotic resistance in Pseudomonas aeruginosa biofilms. PLoS Pathogen 4:e1000213

    Article  CAS  Google Scholar 

  • Neu TR, Dengler T, Jann B, Poralla K (1992) Structural studies of an emulsion-stabilizing exopolysaccharide produced by an adhesive, hydrophobic Rhodococcus strain. J Gen Microbiol 138:2531–2537

    Article  CAS  Google Scholar 

  • Otzen D, Nielsen PH (2008) We find them here, we find them there: functional bacterial amyloid. Cell Mol Life Sci 65:910–927

    Article  CAS  Google Scholar 

  • Parsek MR, Singh PK (2003) Bacterial biofilms: an emerging link to disease pathogenesis. Ann Rev Microbiol 57:677–701

    Article  CAS  Google Scholar 

  • Periasamy S, Joo H-S, Duong AC, Bach T-HL, Tan VY, Chatterjee SS, Cheung GY, Otto M (2012) How Staphylococcus aureus biofilms develop their characteristic structure. Proc Natl Acad Sci USA 109:1281–1286

    Article  CAS  Google Scholar 

  • Picioreanu C, Rittmann B, Van Loosdrecht M (2006) Mathematical modelling of biofilms: IWA Publishing, London, UK

    Google Scholar 

  • Rosche B, Li XZ, Hauer B, Schmid A, Buehler K (2009) Microbial biofilms: a concept for industrial catalysis? Trends Biotechnol 27:636–643

    Article  CAS  Google Scholar 

  • Sand W, Gehrke T (2006) Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron (III) ions and acidophilic bacteria. Res Microbiol 157:49–56

    Article  CAS  Google Scholar 

  • Schmid A, Dordick J, Hauer B, Kiener A, Wubbolts M, Witholt B (2001) Industrial biocatalysis today and tomorrow. Nature 409:258

    Article  CAS  Google Scholar 

  • Sharma R, Bajpai P, Sayyed U, Ahmad IZ (2019) Approaches towards microbial biofilm disruption by natural bioactive agents. In: Biofilms in human diseases: treatment and control. Springer, pp 233–261

    Google Scholar 

  • Shih PC, Huang CT (2002) Effects of quorum-sensing deficiency on Pseudomonas aeruginosa biofilm formation and antibiotic resistance. J Antimicrobial Chemotherapy 49:309–314

    Article  CAS  Google Scholar 

  • Shukla SK, Hariharan S, Rao TS (2020) Uranium bioremediation by acid phosphatase activity of Staphylococcus aureus biofilms: Can a foe turn a friend? J Hazard Mater 384:121316

    Article  CAS  Google Scholar 

  • Shukla SK, Mangwani N, Karley D, Rao TS (2017) 19-bacterial biofilms and genetic regulation for metal detoxification. In: Handbook of metal-microbe interactions and bioremediation, 317

    Google Scholar 

  • Shukla SK, Mangwani N, Rao TS (2019) Bioremediation approaches for persistent organic pollutants using microbial biofilms. In: Microbial biofilms in bioremediation and wastewater treatment, 179

    Google Scholar 

  • Shukla SK, Mangwani N, Rao TS, Das S (2014) 8–Biofilm-mediated bioremediation of polycyclic aromatic hydrocarbons. Microbial biodegradation and bioremediation, 203–232

    Google Scholar 

  • Shukla SK, Rao TS (2013a) Dispersal of Bap-mediated Staphylococcus aureus biofilm by proteinase K. J Antibiotics 66:55–60

    Article  CAS  Google Scholar 

  • Shukla SK, Rao TS (2013b) Effect of calcium on Staphylococcus aureus biofilm architecture: A confocal laser scanning microscopic study. Colloids Surf B 103:448–454

    Article  CAS  Google Scholar 

  • Shukla SK, Rao TS (2017) Staphylococcus aureus biofilm removal by targeting biofilm-associated extracellular proteins. Indian J Med Res 146:S1

    Article  Google Scholar 

  • Shukla SK, Subba R (2015) Heavy metals-bioremediation by highly radioresistant Deinococcus radiodurans biofilm prospective use in nuclear reactor decontamination. In: Proceedings of the symposium on water chemistry and corrosion in nuclear power plants in Asia-2015

    Google Scholar 

  • Stoodley P, Sauer K, Davies DG, Costerton JW (2002) Biofilms as complex differentiated communities. Ann Rev Microbiol 56:187–209

    Article  CAS  Google Scholar 

  • Straathof AJ, Panke S, Schmid A (2002) The production of fine chemicals by biotransformations. Curr Opin Biotechnol 13:548–556

    Article  CAS  Google Scholar 

  • Talagrand-Reboul E, Jumas-Bilak E, Lamy B (2017) The social life of Aeromonas through biofilm and quorum sensing systems. Front Microbiol 8:37

    Article  Google Scholar 

  • Tetz GV, Artemenko NK, Tetz VV (2009) Effect of DNase and antibiotics on biofilm characteristics. Antimicrob Agents Chemother 53:1204–1209

    Article  CAS  Google Scholar 

  • Todhanakasem T, Sangsutthiseree A, Areerat K, Young GM, Thanonkeo P (2014) Biofilm production by Zymomonas mobilis enhances ethanol production and tolerance to toxic inhibitors from rice bran hydrolysate. New Biotechnol 31:451–459

    Article  CAS  Google Scholar 

  • Urbance SE, Pometto AL, DiSpirito AA, Denli Y (2004) Evaluation of succinic acid continuous and repeat-batch biofilm fermentation by Actinobacillus succinogenes using plastic composite support bioreactors. Appl Microbiol Biotechnol 65:664–670

    Article  CAS  Google Scholar 

  • Vidal JE, Howery KE, Ludewick HP, Nava P, Klugman KP (2013) Quorum-sensing systems LuxS/autoinducer-2 and Com regulate Streptococcus pneumoniae biofilms in a bioreactor with living cultures of human respiratory cells. Infect Immun 81:1341–1353

    Article  CAS  Google Scholar 

  • Von Bodman SB, Willey JM, Diggle SP (2008) Cell-cell communication in bacteria: united we stand. Am Soc Microbiol

    Google Scholar 

  • Vuotto C, Donelli G (2019) Novel treatment strategies for biofilm-based infections. Drugs, 1–21

    Google Scholar 

  • Whitchurch CB, Tolker-Nielsen T, Ragas PC, Mattick JS (2002) Extracellular DNA required for bacterial biofilm formation. Science 295:1487

    Article  CAS  Google Scholar 

  • Wingender J, Strathmann M, Rode A, Leis A, Flemming HC (2001) Isolation and biochemical characterization of extracellular polymeric substances from Pseudomonas aeruginosa. Methods Enzymol 336:302–314

    Article  CAS  Google Scholar 

  • Woodley JM (2006) Microbial biocatalytic processes and their development. Adv Appl Microbiol 60:1–15

    Article  CAS  Google Scholar 

  • Ying W, Ye T, Bin H, H Zhao, J Bi, B-l Cai (2007) Biodegradation of phenol by free and immobilized Acinetobacter sp. strain PD12. J Environ Sci 19:222–225

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Subba Rao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shukla, S.K., Manobala, T., Rao, T.S. (2021). Biofilms: Naturally Immobilized Microbial Cell Factories. In: Tripathi, A., Melo, J.S. (eds) Immobilization Strategies . Gels Horizons: From Science to Smart Materials. Springer, Singapore. https://doi.org/10.1007/978-981-15-7998-1_15

Download citation

Publish with us

Policies and ethics