Skip to main content

Mr-ResNeXt: A Multi-resolution Network Architecture for Detection of Obstructive Sleep Apnea

  • Conference paper
  • First Online:
Neural Computing for Advanced Applications (NCAA 2020)

Abstract

Obstructive sleep apnea (OSA) is the most common sleep related breathing disorder causing sleepiness and several chronic medical conditions, for which the gold-standard diagnostic test is polysomnography (PSG), however the analysis of PSG is a time-consuming and labor-intensive procedure. To address these issues, we use deep learning as a new method to detect sleep respiratory events which can provide effective and accurate OSA diagnosis. We present a network named Mr-ResNeXt improved from ResNeXt, in which the 3 × 3 filters was replaced by a new block containing multi-level group convolution. The first level group convolution is used to exchange information between groups and the second level group convolution contains filters of different sizes which are used to extract features of different resolutions. All group convolutions involve residual-like connections. All the above changes help to extract multi-resolution image features more easily. Firstly, the experimental results show that our network can achieve a nearly 3% improvement (from 91.02% to 94.23%) comparing with the excellent networks in this field. Secondly, our network achieves nearly 1% accuracy improvement while comparing with ResNet and ResNetXt. Thus, we confirm that our method can improve the efficiency of detecting respiratory events.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jordan, G., Vgontzas, A.N., et al.: Obstructive sleep apnea and the metabolic syndrome: the road to clinically-meaningful phenotyping, improved prognosis, and personalized treatment. Sleep Med. Rev. 42, 211–219 (2018)

    Article  Google Scholar 

  2. Berry, R.B., Budhiraja, R., Gottlieb, D.J., et al.: Rules for scoring respiratory events in sleep: update of the 2007 AASM manual for the scoring of sleep and associated events. J. Clin. Sleep Med. 8(5), 597–619 (2012)

    Article  Google Scholar 

  3. Haidar, R., Koprinska, I., Jeffries, B.: Sleep apnea event detection from nasal airflow using convolutional neural networks. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, E.S.M. (eds.) ICONIP 2017. LNCS, vol. 10638, pp. 819–827. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70139-4_83

    Chapter  Google Scholar 

  4. Dean, D.A., Goldberger, A.L., Mueller, R., et al.: Scaling up scientific discovery in sleep medicine: the national sleep research resource. Sleep 39(5), 1151–1164 (2016)

    Article  Google Scholar 

  5. Almuhammadi, W.S., Aboalayon, K.A.I., Faezipour, M.: Efficient obstructive sleep apnea classification based on EEG Signals. In: 11th IEEE Long Island Systems, Applications and Technology Conference (LISAT). IEEE (2015)

    Google Scholar 

  6. Jiang, D., Ma, Y., Wang, Y.: A multi-scale parallel convolution neural network for automatic sleep apnea detection using single-channel EEG signals. In: 2018 11th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), pp. 1–5. IEEE (2018)

    Google Scholar 

  7. Banluesombatkul, N., Rakthanmanon, T., Wilaiprasitporn, T.: Single channel ECG for obstructive sleep apnea severity detection using a deep learning approach (2018)

    Google Scholar 

  8. Blank, J.B., Cawthon, P.M., Carrion-Petersen, M.L., et al.: Overview of recruitment for the osteoporotic fractures in men study (MrOS). Contemp. Clin. Trials 26(5), 557–568 (2005)

    Article  Google Scholar 

  9. Song, C., Liu, K., Zhang, X., et al.: An obstructive sleep apnea detection approach using a discriminative hidden markov model from ECG signals. IEEE Trans. Biomed. Eng. 63(7), 1532–1542 (2016)

    Article  Google Scholar 

  10. Marcos, J.V., Hornero, R., Álvarez, D., et al.: Automated detection of obstructive sleep apnoea syndrome from oxygen saturation recordings using linear discriminant analysis. Med. Biol. Eng. Comput. 48(9), 895–902 (2010)

    Article  Google Scholar 

  11. Vaquerizo-Villar, F., Álvarez, D., Kheirandish-Gozal, L., et al.: Convolutional Neural Networks to Detect Pediatric Apnea-Hypopnea Events from Oximetry. In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3555–3558. IEEE (2019)

    Google Scholar 

  12. Korkalainen, H., Aakko, J., Nikkonen, S., et al.: Accurate deep learning-based sleep staging in a clinical population with suspected obstructive sleep apnea. IEEE J. Biomed. Health Inform. 24, 2073–2081 (2019)

    Google Scholar 

  13. Kıymık, M.K., Güler, İ., Dizibüyük, A., et al.: Comparison of STFT and wavelet transform methods in determining epileptic seizure activity in EEG signals for real-time application. Comput. Biol. Med. 35(7), 603–616 (2005)

    Article  Google Scholar 

  14. He, K., Zhang, X., Ren, S., et al.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  15. Xie, S., Girshick, R., Dollár, P., et al.: Aggregated residual transformations for deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1492–1500 (2017)

    Google Scholar 

  16. Chen, Y., Fan, H., Xu, B., et al.: Drop an octave: reducing spatial redundancy in convolutional neural networks with octave convolution. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3435–3444 (2019)

    Google Scholar 

  17. Tan, M., Le, Q.V.: Mixconv: mixed depthwise convolutional kernels. CoRR, abs/1907.09595 (2019)

    Google Scholar 

  18. Rieffel, M.A.: Lie group convolution algebras as deformation quantizations of linear poisson structures. Am. J. Math. 112(4), 657–685 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  19. Szegedy, C., Ioffe, S., Vanhoucke, V.: Inceptionv4, inception-ResNet and the impact of residual connections on learning. In: ICLR Workshop (2016)

    Google Scholar 

  20. Fan, J., Upadhye, S., Worster, A.: Understanding receiver operating characteristic (ROC) curves. Can. J. Emerg. Med. 8(1), 19–20 (2006)

    Google Scholar 

  21. Rice, M.E., Harris, G.T.: Comparing effect sizes in follow-up studies: ROC area, cohen’s d, and r. Law Hum Behav. 29(5), 615–620 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiongwen Pang or Wenbin Lei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, Q. et al. (2020). Mr-ResNeXt: A Multi-resolution Network Architecture for Detection of Obstructive Sleep Apnea. In: Zhang, H., Zhang, Z., Wu, Z., Hao, T. (eds) Neural Computing for Advanced Applications. NCAA 2020. Communications in Computer and Information Science, vol 1265. Springer, Singapore. https://doi.org/10.1007/978-981-15-7670-6_35

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-7670-6_35

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-7669-0

  • Online ISBN: 978-981-15-7670-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics