Skip to main content

New Ocular Drug Delivery Systems

  • Chapter
  • First Online:
Macular Surgery

Abstract

The need for sustained ocular drug delivery systems grows with the increasing number of people with visual impairments. Drug delivery to the posterior segment poses unique challenges that a variety of systems have been developed to overcome. Currently, small-molecule drugs and protein therapeutics are mainly administered as topical solutions and intravitreal injections, respectively. Small-molecule drugs have a short half-life and diffuse easily throughout the eye, making it challenging to deliver a localized, and maintained, therapeutic dose. The main challenge of delivery protein therapeutics is maintaining a sustained therapeutic level of protein during manufacture and release since most protein therapeutics depend on their complex structural integrity to be effective. Due to these limitations, repeated doses of small-molecule drugs and protein therapeutics are given to maintain a therapeutic range. Thus, developing new drug delivery systems (DDSs) that have a controlled, extended, and localized release of drug and maintain drug stability would reduce the frequency of administration. This chapter discusses new DDSs for small-molecule and macromolecular biological drugs, particularly protein therapeutics, in the form of ocular implants, ocular inserts, microneedles, cell-based systems, injectable nano/microparticles, injectable hydrogels, and composite systems. Many of these advances in drug delivery will help to play a role in improving anatomic and visual outcomes for various forms of macular surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wong WL, Su X, Li X, Cheung CM, Klein R, Cheng CY, Wong TY. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob Health. 2014;2:106–16.

    Article  Google Scholar 

  2. Ting DS, Cheung GC, Wong TY. Diabetic retinopathy: global prevalence, major risk factors, screening practices and public health challenges: a review. Clin Exp Ophthalmol. 2016;44:260–77.

    Article  Google Scholar 

  3. Gordois A, Cutler H, Pezzullo L, Gordon K, Cruess A, Winyard S, Hamilton W, Chua K. An estimation of the worldwide economic and health burden of visual impairment. Glob Public Health. 2012;7:465–81.

    Article  Google Scholar 

  4. Kang-Mieler JJ, Dosmar E, Liu W, Mieler WF. Extended ocular drug delivery systems for the anterior and posterior segments: biomaterial options and applications. Expert Opin Drug Deliv. 2017;14:611–20.

    Article  CAS  Google Scholar 

  5. Radhakrishnan K, Sonali N, Moreno M, Nirmal J, Fernandez AA, Venkatraman S, Agrawal R. Protein delivery to the back of the eye: barriers, carriers and stability of anti-VEGF proteins. Drug Discov Today. 2017;22:416–23.

    Article  CAS  Google Scholar 

  6. PR Newswire. Ocular drug delivery market to be worth US$18.124 billion by 2025. 2017. https://www.prnewswire.com/news-releases/ocular-drug-delivery-market-to-be-worth-us18124-billion-by-2025-manufacturers-collaborating-with-hospitals-to-bolster-positions-632232553.html. Accessed 7 Nov 2019.

  7. Yang NJ, Hinner MJ. Getting across the cell membrane: an overview for small molecules, peptides, and proteins. In site-specific protein labeling. New York: Humana Press; 2015. p. 29–53.

    Google Scholar 

  8. Urtti A. Challenges and obstacles of ocular pharmacokinetics and drug delivery. Adv Drug Deliv Rev. 2006;58:1131–5.

    Article  CAS  Google Scholar 

  9. Del Amo EM, Rimpelä AK, Heikkinen E, Kari OK, Ramsay E, Lajunen T, Schmitt M, Pelkonen L, Bhattacharya M, Richardson D, Subrizi A. Pharmacokinetic aspects of retinal drug delivery. Prog Retin Eye Res. 2017;57:134–85.

    Article  CAS  Google Scholar 

  10. Peyman GA, Lad EM, Moshfeghi DM. Intravitreal injection of therapeutic agents. Retina. 2009;29:875–912.

    Article  Google Scholar 

  11. Bande MF, Mansilla R, Pata MP, Fernandez M, Blanco-Teijeiro MJ, Pineiro A, Gomez-Ulla F. Intravitreal injections of anti-VEGF agents and antibiotic prophylaxis for endophthalmitis: a systemic review and meta-analysis. Sci Rep. 2017;7:18088.

    Article  CAS  Google Scholar 

  12. Williams GA, Mich RO. IVT injections: health policy implications. Rev Ophthalmol. 2014. https://www.reviewofophthalmology.com/article/ivt-injections-health-policy-implications.

  13. Callanan DG, Jaffe GJ, Martin DF, Pearson PA, Comstock TL. Treatment of posterior uveitis with a fluocinolone acetonide implant: three-year clinical trial results. Arch Ophthalmol. 2008;126:1191–201.

    Article  Google Scholar 

  14. Haghjou N, Soheilian M, Abdekhodaie MJ. Sustained release intraocular drug delivery devices for treatment of uveitis. J Ophthalmic Vis Res. 2011;6:317–29.

    CAS  Google Scholar 

  15. Chen MY, Sall KN, Tepedino M, McLaurin E, Olander K, Wirta D, Flynn W, Walker G, Ling J, Yang J, Goodkin M. Patient-reported outcomes of bimatoprost ocular ring in an open-label extension study in patients with open-angle glaucoma or ocular hypertension. Invest Ophthalmol Vis Sci. 2018;59:9,1231.

    Google Scholar 

  16. Lee SS, Almazan A, Decker S, Zhong Y, Ghebremeskel AN, Hughes P, Robinson MR, Burke JA, Weinreb RN. Intraocular pressure effects and mechanism of action of topical versus sustained-release bimatoprost. Transl Vis Sci Technol. 2019;8:15.

    Article  CAS  Google Scholar 

  17. Mansberger SL, Conley J, Verhoeven RS, Blackwell K, Depenbusch M, Knox T, Walters TR, Ahmad I, Yerxa BR, Navratil T. Interim analysis of low dose ENV515 travoprost XR with 11 month duration followed by dose escalation and 28 day efficacy evaluation of high dose ENV515. Invest Ophthalmol Vis Sci. 2017;58:2110.

    Google Scholar 

  18. ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2000 Feb 29. Identifier NCT02371746, safety and efficacy of ENV515 travoprost extended release (XR) in patients with bilateral ocular hypertension or primary open angle glaucoma; 2015 Feb 20 [cited 2019 Nov 5]; [about 4 screens]. https://clinicaltrials.gov/ct2/show/record/NCT02371746?term=ENV515&rank=1.

  19. Herrero-Vanrell R, Bravo-Osuna I, Andres-Guerrero V, Vicario-de-la-Torre M, Molina-Martinez IT. The potential of using biodegradable microspheres in retinal diseases and other intraocular pathologies. Prog Retin Eye Res. 2014;42:27–43.

    Article  CAS  Google Scholar 

  20. ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2000 Feb 29. Identifier NCT03249740, A depot formulation of sunitinib malate (GB-102) in subjects with neovascular (wet) age-related macular degeneration; 2017 Aug 2 [cited 2019 Nov 5]; [about 4 screens]. https://clinicaltrials.gov/ct2/show/record/NCT03249740?term=graybug+vision&rank=1.

  21. Kiss S, Pena J. Ocular implants–a novel approach in ocular drug delivery. Rec Patents Nanomed. 2012;2:113–25.

    Article  CAS  Google Scholar 

  22. Hoffman AS. Hydrogels for biomedical applications. Adv Drug Deliv Rev. 2002;54:3–12.

    Article  CAS  Google Scholar 

  23. Lin CC, Anseth KS. PEG hydrogels for the controlled release of biomolecules in regenerative medicine. Pharm Res. 2009;26:631–43.

    Article  CAS  Google Scholar 

  24. Peppas NA, Bures P, Leobandung W, Ichikawa H. Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm. 2000;50:27–46.

    Article  CAS  Google Scholar 

  25. Peppas NA, Hilt JZ, Khademhosseini A, Langer R. Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater. 2006;18:1345–60.

    Article  CAS  Google Scholar 

  26. Agrawal AK, Das M, Jain S. In situ gel systems as ‘smart’ carriers for sustained ocular drug delivery. Expert Opin Drug Deliv. 2012;9:383–402.

    Article  CAS  Google Scholar 

  27. Klouda L. Thermoresponsive hydrogels in biomedical applications a seven-year update. Eur J Pharm Biopharm. 2015;97:338–49.

    Article  CAS  Google Scholar 

  28. Talamo JH, Tyson SL, Bafna S, Joseph GP, Goldberg DF, Jones JJ, Jones MP, Kim JK, Martel JB, Nordlund ML, Piovanetti IK. Results of a phase 3, randomized, double-masked, vehicle controlled study (phase 3c) evaluating the safety and efficacy of DEXTENZA â„¢ (dexamethasone insert) 0.4 mg for the treatment of ocular inflammation and pain after cataract surgery. Invest Ophthalmol Vis Sci. 2017;58:1825.

    Article  Google Scholar 

  29. Gira JP, Sampson R, Silverstein SM, Walters TR, Metzinger JL, Talamo JH. Evaluating the patient experience after implantation of a 0.4 mg sustained release dexamethasone intracanalicular insert (Dextenzaâ„¢): results of a qualitative survey. Patient Prefer Adherence. 2017;11:487.

    Article  Google Scholar 

  30. ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2000 Feb 29. Identifier NCT02914509, OTX-16-002: a phase 3 study evaluating the safety and efficacy of OTX-TP in subjects with open-angle glaucoma and ocular hypertension; 2016 Sept 21 [cited 2019 Nov 5]; [about 4 screens]. https://clinicaltrials.gov/ct2/show/study/NCT02914509?term=Ocular+Therapeutix&rank=3.

  31. Driscoll A, Blizzard CD, Desai A, D’Abbraccio S, Langh J, Mangano J, Buff N, Metzinger JL, Goldstein MH, Gelormini A. Safety analysis of a sustained release travoprost intracameral hydrogel implant in beagle dogs. Invest Ophthalmol Vis Sci. 2018;59:1250.

    Article  Google Scholar 

  32. Jarrett PK, Elhayek RF, Jarrett T, Lattrell Z, Kahn E, Takach S, Metzinger JL, Goldstein MH, Sawhney A. Efficacy & Tolerability of OTX-TKI, a sustained hydrogel delivery system for a tyrosine kinase inhibitor, in a VEGF induced retinal leakage model through 12 months. Invest Ophthalmol Vis Sci. 2018;59:3465.

    Google Scholar 

  33. Huu VA, Luo J, Zhu J, Zhu J, Patel S, Boone A, Mahmoud E, McFearin C, Olejniczak J, de Gracia Lux C, Lux J. Light-responsive nanoparticle depot to control release of a small molecule angiogenesis inhibitor in the posterior segment of the eye. J Control Release. 2015;28:71–7.

    Article  CAS  Google Scholar 

  34. Brandt JD, Sall K, DuBiner H, Benza R, Alster Y, Walker G, Semba CP. Six-month intraocular pressure reduction with a topical bimatoprost ocular insert: results of a phase II randomized controlled study. Ophthalmology. 2016;123:1685–94.

    Article  Google Scholar 

  35. Ocular Therapeutix. Dextenza® (dexamethasone ophthalmic insert) 0.4 mg for intraocular use. https://ocutx.com/products/dextenza. Accessed 7 Nov 2019.

  36. Campochiaro P, Wykoff C, Brown D, Boyer D, Barakat M, Taraborelli D, Noronha G. Suprachoroidal triamcinolone acetonide for retinal vein occlusion: results of the tanzanite study. Retina. 2018;2:320–8.

    Google Scholar 

  37. ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2000 Feb 29. Identifier NCT03203447, suprachoroidal injection of triamcinolone acetonide with IVT anti-VEGF in subjects with macular edema following RVO (TOPAZ); 2017 June 28 [cited 2019 Nov 5]; [about 5 screens]. https://clinicaltrials.gov/ct2/show/study/NCT03203447?term=ocular+microneedle&rank=9.

  38. Thrimawithana TR, Young S, Bunt CR, Green C, Alany RG. Drug delivery to the posterior segment of the eye. Drug Discov Today. 2011;16:270–7.

    Article  CAS  Google Scholar 

  39. Khandan O, Kahook MY, Rao MP. Fenestrated microneedles for ocular drug delivery. Sensors Actuators B Chem. 2016;223:15–23.

    Article  CAS  Google Scholar 

  40. Thakur R, Tekko I, Al-Shammari F, Al A, McCarthy H, Donnelly R. Rapidly dissolving polymeric microneedles for minimally invasive intraocular drug delivery. Drug Deliv Transl Res. 2016;6:800–15.

    Article  CAS  Google Scholar 

  41. Zelikin AN, Ehrhardt C, Healy AM. Materials and methods for delivery of biological drugs. Nat Chem. 2016;8:997–1007.

    Article  CAS  Google Scholar 

  42. Brown DM, Kaiser PK, Michels M, Soubrane G, Heier JS, Kim RY, Sy JP, Schneider S. Ranibizumab versus Verteporfin for neovascular age-related macular degeneration. N Engl J Med. 2006;355:1432–44.

    Article  CAS  Google Scholar 

  43. Rosenfeld PJ, Brown DM, Heier JS, Boyer DS, Kaiser PK, Chung CY, Kim RY. Ranibizumab for neovascular age-related macular degeneration. N Engl J Med. 2006;355:1419–31.

    Article  CAS  Google Scholar 

  44. Kim LA, D’Amore PA. A brief history of anti-VEGF for the treatment of ocular angiogenesis. Am J Pathol. 2012;181:376–9.

    Article  Google Scholar 

  45. Park SJ, Oh J, Kim YK, Park JH, Park JY, Hong HK, Park KH, Lee JE, Kim HM, Chung JY, Woo SJ. Intraocular pharmacokinetics of intravitreal vascular endothelial growth factor-Trap in a rabbit model. Eye. 2015;29:561–8.

    Article  CAS  Google Scholar 

  46. Giteau A, Venier-Julienne MC, Aubert-Pouessel A, Benoit JP. How to achieve sustained and complete protein release from PLGA-based microparticles. Int J Pharm. 2008;350:14–26.

    Article  CAS  Google Scholar 

  47. Mohammadi-Samani S, Taghipour B. PLGA micro and nanoparticles in delivery of peptides and proteins; problems and approaches. Pharm Dev Technol. 2015;20:385–93.

    Article  CAS  Google Scholar 

  48. Rubio RG. Long-acting anti-VEGF delivery. Retina Today. 2014;78–80. https://retinatoday.com/articles/2014-july-aug/long-acting-anti-vegf-delivery.

  49. Campochiaro PA, Marcus DM, Awh CC, Regillo C, Adamis AP, Bantseev V, Chiang Y, Ehrlich JS, Erickson S, Hanley WD, Horvath J, Maass KF, Singh N, Tang F, Barteselli G. The port delivery system with ranibizumab for neovascular age-related macular degeneration: results from the randomized phase 2 LADDER clinical trial. Ophthalmology. 2019;126:1141–54.

    Article  Google Scholar 

  50. Saati S, Lo R, Li PY, Meng E, Varma R, Humayun MS. Mini drug pump for ophthalmic use. Curr Eye Res. 2010;35:192–201.

    Article  CAS  Google Scholar 

  51. Humayun M, Santos A, Altamirano JC, Ribeiro R, Gonzalez R, de la Rosa A, Shih J, Pang C, Jiang F, Calvilo P, et al. Implantable MicroPump for drug delivery in patients with diabetic macular edema. Transl Vis Sci Technol. 2014;3:5.

    Article  Google Scholar 

  52. Lance KD, Bernards DA, Ciaccio NA, Good SD, Mendes TS, Kudisch M, Chan E, Ishikiriyama M, Bhisitkul RB, Desai TA. In vivo and in vitro sustained release of ranibizumab from a nanoporous thin-film device. Drug Deliv Transl Res. 2016;6:771–80.

    Article  CAS  Google Scholar 

  53. Tao W. Application of encapsulated cell technology for retinal degenerative diseases. Expert Opin Biol Ther. 2006;6:717–26.

    Article  CAS  Google Scholar 

  54. Kauper K, McGovern C, Sherman S, Heatherton P, Rapoza R, Stabilia P, Dean B, Lee A, Borges S, Bouchard B, et al. Two-year intraocular delivery of ciliary neurotrophic factor by encapsulated cell technology implants in patients with chronic retinal degenerative disease. Invest Ophthalmol Vis Sci. 2012;53:7484–91.

    Article  CAS  Google Scholar 

  55. ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2000 Feb 29. Identifier NCT02862938, study of NT-501 encapsulated cell therapy for glaucoma neuroprotection and vision restoration; 2016 Aug 11 [cited 2019 Nov 4]; [1 page]. https://clinicaltrials.gov/ct2/show/NCT02862938?cond=NT-501&rank=2.

  56. ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2000 Feb 29. Identifier NCT03071965, Extension study of NT-501 ciliary neurotrophic factor (CNTF) implant for macular telangiectasia (MacTel); 2017 Mar 7 [cited 2019 Nov 4]; [1 page]. https://clinicaltrials.gov/ct2/show/NCT03071965?cond=NT-501&rank=1.

  57. Varshochian R, Jeddi-Tehrani M, Mahmoudi AR, Khoshayand MR, Atyabi F, Sabzevari A, Esfahani MR, Dinarvand R. The protective effect of albumin on bevacizumab activity and stability in PLGA nanoparticles intended for retinal and choroidal neovascularization treatments. Eur J Pharm Sci. 2013;50:341–52.

    Article  CAS  Google Scholar 

  58. Varshochian R, Riazi-Esfahani M, Jeddi-Tehrani M, Mahmoudi AR, Aghazadeh S, Mahbod M, Movassat M, Atyabi F, Sabzevari A, Dinarvand R. Albuminated PLGA nanoparticles containing bevacizumab intended for ocular neovascularization treatment. J Biomed Mater Res A. 2015;103:3148–56.

    Article  CAS  Google Scholar 

  59. Ye Z, Ji YL, Ma X, Wen JG, Wei W, Huang SM. Pharmacokinetics and distributions of bevacizumab by intravitreal injection of bevacizumab-PLGA microspheres in rabbits. Int J Ophthalmol. 2015;8:653–8.

    Google Scholar 

  60. Yeo Y, Park K. Control of encapsulation efficiency and initial burst in polymeric microparticle systems. Arch Pharm Res. 2004;27:1–12.

    Article  CAS  Google Scholar 

  61. Manoharan C, Singh J. Insulin loaded PLGA microspheres: effect of zinc salts on encapsulation, release, and stability. J Pharm Sci. 2009;98:529–42.

    Article  CAS  Google Scholar 

  62. Marquette S, Peerboom C, Yates A, Denis L, Langer I, Amighi K, Goole J. Stability study of full-length antibody (anti-TNF alpha) loaded PLGA microspheres. Int J Pharm. 2014;470:41–50.

    Article  CAS  Google Scholar 

  63. Moreno MR, Tabitha TS, Nirmal J, Radhakrishnan K, Yee CH, Lim S, Venkatraman S, Agrawal R. Study of stability and biophysical characterization of ranibizumab and aflibercept. Eur J Pharm Biopharm. 2016;108:156–67.

    Article  CAS  Google Scholar 

  64. Liu W, Lee BS, Mieler WF, Kang-Mieler WF. Biodegradable microsphere-hydrogel ocular drug delivery system for controlled and extended release of bioactive aflibercept in vitro. Curr Eye Res. 2019;44:264–74.

    Article  CAS  Google Scholar 

  65. Zhang K, Tang X, Zhang J, Lu W, Lin X, Zhang Y, Tian B, Yang H, He H. PEG-PLGA copolymers: their structure and structure-influenced drug delivery applications. J Control Release. 2014;183:77–86.

    Article  CAS  Google Scholar 

  66. Adamson P, Wilde T, Dobrzynski E, Sychterz C, Polsky R, Kurali E, Haworth R, Tang CM, Korczynska J, Cook F, et al. Single ocular injection of a sustained-release anti-VEGF delivers 6 months pharmacokinetics and efficacy in a primate laser CNV model. J Control Release. 2016;244:1–13.

    Article  CAS  Google Scholar 

  67. Jay SM, Saltzman WM. Controlled delivery of VEGF via modulation of alginate microparticle ionic crosslinking. J Control Release. 2009;134:26–34.

    Article  CAS  Google Scholar 

  68. Thackaberry EA, Farman C, Zhong F, Lorget F, Staflin K, Cercillieux A, Mieller AP, et al. Evaluation of the toxicity of intravitreally injected PLGA microspheres and rods in monkeys and rabbits: effects of depot size on inflammatory response. Invest Ophthalmol Vis Sci. 2017;58:4274–85.

    Article  CAS  Google Scholar 

  69. Ocular Therapeutix. OTX-IVT (anti-VEGF antibody implant). https://ocutx.com/research/otx-ivt/. Accessed 7 Nov 2019.

  70. Drapala PW, Brey EM, Mieler WF, Venerus DC, Kang-Derwent JJ, Perez-Luna VH. Role of thermo-responsiveness and poly(ethylene glycol) diacrylate cross-link density on protein release from poly(N-isopropylacrylamide) hydrogels. J Biomater Sci Polym Ed. 2011;22:59–75.

    Article  CAS  Google Scholar 

  71. Drapala PW, Jiang B, Chiu YC, Mieler WF, Brey EM, Kang-Mieler JJ, Perez-Luna VH. The effect of glutathione as chain transfer agent in PNIPAAm-based thermo-responsive hydrogels for controlled release of proteins. Pharm Res. 2014;31:742–53.

    Article  CAS  Google Scholar 

  72. Turturro SB, Guthrie MJ, Appel AA, Drapala PW, Brey EM, Perez-Luna VH, Mieler WF, Kang-Mieler JJ. The effect of cross-linked thermo-responsive PNIPAAm-based hydrogel injection on retinal function. Biomaterials. 2011;32:3620–6.

    Article  CAS  Google Scholar 

  73. Wang CH, Hwang YS, Chiang PR, Shen CR, Hong WH, Hsiue GH. Extended release of bevacizumab by thermosensitive biodegradable and biocompatible hydrogel. Biomacromolecules. 2012;13:40–8.

    Article  CAS  Google Scholar 

  74. Rauck BM, Friberg TR, Medina-Mendez CA, Park D, Shah V, Bilonick RA, Wang Y. Biocompatible reverse thermal gel sustains the release of intravitreal bevacizumab in vivo. Invest Ophthalmol Vis Sci. 2014;55:469–76.

    Article  CAS  Google Scholar 

  75. Yu Y, Lau LC, Lo AC, Chau Y. Injectable chemically crosslinked hydrogel for the controlled release of bevacizumab in vitreous: a 6-month in vivo study. Transl Vis Sci Technol. 2015;4:5.

    Article  Google Scholar 

  76. Kanjickal D, Lopina S, Evancho-Chapman MM, Schmidt S, Donovan D. Effects of sterilization on poly(ethylene glycol) hydrogels. J Biomed Mater Res A. 2008;87:608–17.

    Article  CAS  Google Scholar 

  77. Chang D, Park K, Famili A. Hydrogels for sustained delivery of biologics to the back of the eye. Drug Discov Today. 2019;24:1470–82.

    Article  CAS  Google Scholar 

  78. Moreau MF, Chappard D, Lesourd M, Montheard JP, Basle MF. Free radicals and side products released during methylmethacrylate polymerization are cytotoxic for osteoblastic cells. J Biomed Mater Res. 1998;40:124–31.

    Article  CAS  Google Scholar 

  79. Osswald CR, Kang-Mieler JJ. Controlled and extended release of a model protein from a microsphere-hydrogel drug delivery system. Ann Biomed Eng. 2015;43:2609–17.

    Article  Google Scholar 

  80. Osswald CR, Kang-Mieler JJ. Controlled and extended in vitro release of bioactive anti-vascular endothelial growth factors from a microsphere-hydrogel drug delivery system. Curr Eye Res. 2016;41:1216–22.

    Article  CAS  Google Scholar 

  81. Liu W, Borrell MA, Venerus DC, Mieler WF, Kang-Mieler JJ. Characterization of biodegradable microsphere-hydrogel ocular drug delivery system for controlled and extended release of ranibizumab. Transl Vis Sci Technol. 2019;8:12.

    Article  Google Scholar 

  82. Osswald CR, Guthrie MJ, Avila A, Valio JA Jr, Mieler WF, Kang-Mieler JJ. In vivo efficacy of an injectable microsphere-hydrogel ocular drug delivery system. Curr Eye Res. 2017;42:1293–301.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer J. Kang-Mieler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kang-Mieler, J.J., Rudeen, K.M., Liu, W., Mieler, W.F. (2020). New Ocular Drug Delivery Systems. In: Chang, A., Mieler, W.F., Ohji, M. (eds) Macular Surgery. Springer, Singapore. https://doi.org/10.1007/978-981-15-7644-7_41

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-7644-7_41

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-7642-3

  • Online ISBN: 978-981-15-7644-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics