Skip to main content

Stem Cells in the Treatment of Diabetic Foot Ulcers

  • Chapter
  • First Online:
Diabetic Foot Ulcer

Abstract

Diabetes mellitus is the most common chronic disease that can lead to many clinical complications including vision, cardiac, and vascular disorders. Among vascular disorders, Diabetic foot ulcer (DFU) is a severe, fatal, serious and devastating complication and remained major economic consequences for the patients and country and is now a global public health issue. The prevalence of Diabetic foot ulcer in Western countries is 4–10% whereas the prevalence of Diabetic foot ulcer in the world is 15%. It has been reported that the healing rate of DFU is only 10–60% of patients after the first 3 months however the recurrence rate is 40%, 60%, and 71% after 1, 2, and 3 years, respectively. Limited treatment options are available for DFU patients. Stem cell therapy holds a great promise for treating Diabetic foot ulcer (DFU) and recently emerged as a new interventional strategy and appears to be cost-effective safe and effective in both preclinical and clinical trials. The most important characteristic for the successful utilization of mesenchymal stem cell treatments is the conducting of rapid and robust randomized controlled clinical trials. Diabetic foot ulcer remains the most important clinical challenge in the current medical practice and stem cell therapy may be an effective treatment for Diabetic foot ulcers. It is concluded that stem cell therapy is a potential, advanced, and effective treatment for Diabetic foot ulcers and is utilized as an alternative to amputation for T2D patients for revascularization. This therapy is utilizing tissue engineering as well as regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gorecka J, Kostiuk V, Fereydooni A, Gonzalez L, Luo J, Dash B, Isaji T, Ono S, Liu S, Lee SR et al (2019) The potential and limitations of induced pluripotent stem cells to achieve wound healing. Stem Cell Res Ther 10(1):87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kashpur O, Smith A, Gerami-Naini B, Maione AG, Calabrese R, Tellechea A, Theocharidis G, Liang L, Pastar I, Tomic-Canic M et al (2019) Differentiation of diabetic foot ulcer-derived induced pluripotent stem cells reveals distinct cellular and tissue phenotypes. FASEB J 33(1):1262–1277

    Article  CAS  PubMed  Google Scholar 

  3. van Wilgenburg B, Browne C, Vowles J, Cowley SA (2013) Efficient, long term production of monocyte-derived macrophages from human pluripotent stem cells under partly-defined and fully-defined conditions. PLoS One 8(8):e71098

    Article  PubMed  PubMed Central  Google Scholar 

  4. Petrova A, Celli A, Jacquet L, Dafou D, Crumrine D, Hupe M, Arno M, Hobbs C, Cvoro A, Karagiannis P et al (2014) 3D In vitro model of a functional epidermal permeability barrier from human embryonic stem cells and induced pluripotent stem cells. Stem Cell Rep 2(5):675–689

    Article  CAS  Google Scholar 

  5. Kim JS, Choi HW, Choi S, Do JT (2011) Reprogrammed pluripotent stem cells from somatic cells. Int J Stem Cells 4(1):1–8

    Article  PubMed  PubMed Central  Google Scholar 

  6. Morgan HD, Santos F, Green K, Dean W, Reik W (2005) Epigenetic reprogramming in mammals. Human Mol Genet 14(Spec No 1):R47–R58

    Google Scholar 

  7. Freberg CT, Dahl JA, Timoskainen S, Collas P (2007) Epigenetic reprogramming of OCT4 and NANOG regulatory regions by embryonal carcinoma cell extract. Mol Biol Cell 18(5):1543–1553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hochedlinger K, Jaenisch R (2006) Nuclear reprogramming and pluripotency. Nature 441(7097):1061–1067

    Article  CAS  PubMed  Google Scholar 

  9. Kulcenty K, Wroblewska J, Mazurek S, Liszewska E, Jaworski J (2015) Molecular mechanisms of induced pluripotency. Contemp Oncol 19(1A):A22–A29

    Google Scholar 

  10. Telpalo-Carpio S, Aguilar-Yanez J, Gonzalez-Garza M, Cruz-Vega D, Moreno-Cuevas J (2013) iPS cells generation: an overview of techniques and methods. J Stem Cells Regenerat Med 9(1):2–8

    Article  Google Scholar 

  11. Ma X, Kong L, Zhu S (2017) Reprogramming cell fates by small molecules. Protein Cell 8(5):328–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang Y, Li W, Laurent T, Ding S (2012) Small molecules, big roles—the chemical manipulation of stem cell fate and somatic cell reprogramming. J Cell Sci 125(Pt 23):5609–5620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bhat AA, Younes SN, Raza SS, Zarif L, Nisar S, Ahmed I, Mir R, Kumar S, Sharawat SK, Hashem S et al (2020) Role of non-coding RNA networks in leukemia progression, metastasis and drug resistance. Mol Cancer 19(1):57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zuberi M, Mir R, Khan I, Javid J, Guru SA, Bhat M, Sumi MP, Ahmad I, Masroor M, Yadav P et al (2020) The promising signatures of circulating microRNA-145 in epithelial ovarian cancer patients. MicroRNA 9(1):49–57

    Article  CAS  PubMed  Google Scholar 

  15. Garwood CS, Steinberg JS (2016) What’s new in wound treatment: a critical appraisal. Diabetes Metab Res Rev 32(Suppl 1):268–274

    Article  PubMed  Google Scholar 

  16. Houreld NN (2014) Shedding light on a new treatment for diabetic wound healing: a review on phototherapy. ScientificWorldJournal 2014:398412

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ruthenborg RJ, Ban JJ, Wazir A, Takeda N, Kim JW (2014) Regulation of wound healing and fibrosis by hypoxia and hypoxia-inducible factor-1. Mol Cells 37(9):637–643

    Article  PubMed  PubMed Central  Google Scholar 

  18. Duscher D, Maan ZN, Whittam AJ, Sorkin M, Hu MS, Walmsley GG, Baker H, Fischer LH, Januszyk M, Wong VW et al (2015) Fibroblast-specific deletion of hypoxia inducible factor-1 critically impairs murine cutaneous neovascularization and wound healing. Plast Reconstr Surg 136(5):1004–1013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tavakkoly-Bazzaz J, Amoli MM, Pravica V, Chandrasecaran R, Boulton AJ, Larijani B, Hutchinson IV (2010) VEGF gene polymorphism association with diabetic neuropathy. Mol Biol Rep 37(7):3625–3630

    Article  CAS  PubMed  Google Scholar 

  20. Elfaki I, Mir R, Abu-Duhier FM, Khan R, Sakran M (2019) Phosphatidylinositol 3-kinase Glu545Lys and His1047Tyr mutations are not associated with T2D. Curr Diabet Rev. https://doi.org/10.2174/1573399815666191015142201

  21. Lai WH, Ho JC, Chan YC, Ng JH, Au KW, Wong LY, Siu CW, Tse HF (2013) Attenuation of hind-limb ischemia in mice with endothelial-like cells derived from different sources of human stem cells. PLoS One 8(3):e57876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mulyasasmita W, Cai L, Dewi RE, Jha A, Ullmann SD, Luong RH, Huang NF, Heilshorn SC (2014) Avidity-controlled hydrogels for injectable co-delivery of induced pluripotent stem cell-derived endothelial cells and growth factors. J Controlled Release 191:71–81

    Article  CAS  Google Scholar 

  23. Rufaihah AJ, Huang NF, Jame S, Lee JC, Nguyen HN, Byers B, De A, Okogbaa J, Rollins M, Reijo-Pera R et al (2011) Endothelial cells derived from human iPSCS increase capillary density and improve perfusion in a mouse model of peripheral arterial disease. Arterioscler Thromb Vasc Biol 31(11):e72–e79

    Article  CAS  PubMed  Google Scholar 

  24. Dar A, Domev H, Ben-Yosef O, Tzukerman M, Zeevi-Levin N, Novak A, Germanguz I, Amit M, Itskovitz-Eldor J (2012) Multipotent vasculogenic pericytes from human pluripotent stem cells promote recovery of murine ischemic limb. Circulation 125(1):87–99

    Article  PubMed  Google Scholar 

  25. Brouwer M, Zhou H, Nadif Kasri N (2016) Choices for induction of pluripotency: recent developments in human induced pluripotent stem cell reprogramming strategies. Stem Cell Rev Rep 12(1):54–72

    Article  CAS  PubMed  Google Scholar 

  26. Seki T, Fukuda K (2015) Methods of induced pluripotent stem cells for clinical application. World J Stem Cells 7(1):116–125

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ding DC, Shyu WC, Lin SZ (2011) Mesenchymal stem cells. Cell Transplant 20(1):5–14

    Article  PubMed  Google Scholar 

  28. Huang Y, Li Q, Zhang K, Hu M, Wang Y, Du L, Lin L, Li S, Sorokin L, Melino G et al (2019) Single cell transcriptomic analysis of human mesenchymal stem cells reveals limited heterogeneity. Cell Death Dis 10(5):368

    Article  PubMed  PubMed Central  Google Scholar 

  29. Rodriguez-Menocal L, Shareef S, Salgado M, Shabbir A, Van Badiavas E (2015) Role of whole bone marrow, whole bone marrow cultured cells, and mesenchymal stem cells in chronic wound healing. Stem Cell Res Ther 6:24

    Article  PubMed  PubMed Central  Google Scholar 

  30. Walter MN, Wright KT, Fuller HR, MacNeil S, Johnson WE (2010) Mesenchymal stem cell-conditioned medium accelerates skin wound healing: an in vitro study of fibroblast and keratinocyte scratch assays. Exp Cell Res 316(7):1271–1281

    Article  CAS  PubMed  Google Scholar 

  31. Smith AN, Willis E, Chan VT, Muffley LA, Isik FF, Gibran NS, Hocking AM (2010) Mesenchymal stem cells induce dermal fibroblast responses to injury. Exp Cell Res 316(1):48–54

    Google Scholar 

  32. Jeon YK, Jang YH, Yoo DR, Kim SN, Lee SK, Nam MJ (2010) Mesenchymal stem cells’ interaction with skin: wound-healing effect on fibroblast cells and skin tissue. Wound Repair Regenerat 18(6):655–661

    Article  Google Scholar 

  33. Lee SH, Jin SY, Song JS, Seo KK, Cho KH (2012) Paracrine effects of adipose-derived stem cells on keratinocytes and dermal fibroblasts. Ann Dermatol 24(2):136–143

    Article  PubMed  PubMed Central  Google Scholar 

  34. Schlosser S, Dennler C, Schweizer R, Eberli D, Stein JV, Enzmann V, Giovanoli P, Erni D, Plock JA (2012) Paracrine effects of mesenchymal stem cells enhance vascular regeneration in ischemic murine skin. Microvasc Res 83(3):267–275

    Article  CAS  PubMed  Google Scholar 

  35. Volarevic V, Arsenijevic N, Lukic ML, Stojkovic M (2011) Concise review: mesenchymal stem cell treatment of the complications of diabetes mellitus. Stem Cells 29(1):5–10

    Article  CAS  PubMed  Google Scholar 

  36. Wu Y, Chen L, Scott PG, Tredget EE (2007) Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells 25(10):2648–2659

    Article  CAS  PubMed  Google Scholar 

  37. Sasaki M, Abe R, Fujita Y, Ando S, Inokuma D, Shimizu H (2008) Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type. J Immunol 180(4):2581–2587

    Article  CAS  PubMed  Google Scholar 

  38. Si YL, Zhao YL, Hao HJ, Fu XB, Han WD (2011) MSCs: biological characteristics, clinical applications and their outstanding concerns. Ageing Res Rev 10(1):93–103

    Article  CAS  PubMed  Google Scholar 

  39. Xu YX, Chen L, Hou WK, Lin P, Sun L, Sun Y, Dong QY, Liu JB, Fu YL (2009) Mesenchymal stem cells treated with rat pancreatic extract secrete cytokines that improve the glycometabolism of diabetic rats. Transplant Proc 41(5):1878–1884

    Article  CAS  PubMed  Google Scholar 

  40. Horie M, Choi H, Lee RH, Reger RL, Ylostalo J, Muneta T, Sekiya I, Prockop DJ (2012) Intra-articular injection of human mesenchymal stem cells (MSCs) promote rat meniscal regeneration by being activated to express Indian hedgehog that enhances expression of type II collagen. Osteoarthr Cartil 20(10):1197–1207

    Article  CAS  PubMed Central  Google Scholar 

  41. Hocking AM, Gibran NS (2010) Mesenchymal stem cells: paracrine signaling and differentiation during cutaneous wound repair. Exp Cell Res 316(14):2213–2219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chen L, Tredget EE, Wu PY, Wu Y (2008) Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS One 3(4):e1886

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zhang QZ, Su WR, Shi SH, Wilder-Smith P, Xiang AP, Wong A, Nguyen AL, Kwon CW, Le AD (2010) Human gingiva-derived mesenchymal stem cells elicit polarization of m2 macrophages and enhance cutaneous wound healing. Stem Cells 28(10):1856–1868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liu L, Yu Y, Hou Y, Chai J, Duan H, Chu W, Zhang H, Hu Q, Du J (2014) Human umbilical cord mesenchymal stem cells transplantation promotes cutaneous wound healing of severe burned rats. PLoS One 9(2):e88348

    Article  PubMed  PubMed Central  Google Scholar 

  45. Hajjar AM, Lewis PF, Endeshaw Y, Ndinya-Achola J, Kreiss JK, Overbaugh J (1998) Efficient isolation of human immunodeficiency virus type 1 RNA from cervical swabs. J Clin Microbiol 36(8):2349–2352

    Google Scholar 

  46. Couture P, Paradis-Massie J, Oualha N, Thibault G (2009) Adhesion and transcellular migration of neutrophils and B lymphocytes on fibroblasts. Exp Cell Res 315(13):2192–2206

    Article  CAS  PubMed  Google Scholar 

  47. Sorrell JM, Caplan AI (2010) Topical delivery of mesenchymal stem cells and their function in wounds. Stem Cell Res Ther 1(4):30

    Article  PubMed  PubMed Central  Google Scholar 

  48. Anderson SB, Lin CC, Kuntzler DV, Anseth KS (2011) The performance of human mesenchymal stem cells encapsulated in cell-degradable polymer-peptide hydrogels. Biomaterials 32(14):3564–3574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Steck AK, Rewers MJ (2011) Genetics of type 1 diabetes. Clin Chem 57(2):176–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Almutairi FM, Mir R, Abu-Duhier F, Khan R, Harby K, Elfaki I (2019) SLC2A2 gene (glucose transporter 2) variation is associated with an increased risk of developing T2d in an ethnic population of Saudi Arabia. Indian J Public Health Res Dev 10(1):600–605

    Article  Google Scholar 

  51. Elfaki I, Mir R, AbuDuhier FM, Babakr AT, Barnawi J (2019) Potential impact of microRNA gene polymorphisms in the pathogenesis of diabetes and atherosclerotic cardiovascular disease. J Pers Med 9(4):E51

    Article  PubMed  Google Scholar 

  52. Elfaki I, Mir R, Almutairi FM, Duhier FMA (2018) Cytochrome P450: polymorphisms and roles in cancer, diabetes and atherosclerosis. Asian Pac J Cancer Prev 19(8):2057–2070

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Chawla A, Chawla R, Jaggi S (2016) Microvasular and macrovascular complications in diabetes mellitus: distinct or continuum? Indian J Endocrinol Metab 20(4):546–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. American Diabetes Association (2017) 10. Microvascular complications and foot care. Diabetes Care 40(Suppl 1):S88–S98

    Article  Google Scholar 

  55. Tindong M, Palle JN, Nebongo D, Aminde LN, Mboue-Djieka Y, Mbarga NTF, Dehayem MY, Choukem SP (2018) Prevalence, clinical presentation, and factors associated with diabetic foot ulcer in two regional hospitals in Cameroon. Int J Low Extrem Wounds 17(1):42–47

    Article  PubMed  Google Scholar 

  56. Lopes L, Setia O, Aurshina A, Liu S, Hu H, Isaji T, Liu H, Wang T, Ono S, Guo X et al (2018) Stem cell therapy for diabetic foot ulcers: a review of preclinical and clinical research. Stem Cell Res Ther 9(1):188

    Article  PubMed  PubMed Central  Google Scholar 

  57. Cao Y, Gang X, Sun C, Wang G (2017) Mesenchymal stem cells improve healing of diabetic foot ulcer. J Diabetes Res 2017:9328347

    Article  PubMed  PubMed Central  Google Scholar 

  58. Wong VW, Sorkin M, Gurtner GC (2013) Enabling stem cell therapies for tissue repair: current and future challenges. Biotechnol Adv 31(5):744–751

    Article  CAS  PubMed  Google Scholar 

  59. Hass R, Kasper C, Bohm S, Jacobs R (2011) Different populations and sources of human mesenchymal stem cells (MSC): a comparison of adult and neonatal tissue-derived MSC. Cell Commun Signal 9:12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wan J, Xia L, Liang W, Liu Y, Cai Q (2013) Transplantation of bone marrow-derived mesenchymal stem cells promotes delayed wound healing in diabetic rats. J Diabetes Res 2013:647107

    Article  PubMed  PubMed Central  Google Scholar 

  61. Hua J, Gong J, Meng H, Xu B, Yao L, Qian M, He Z, Zou S, Zhou B, Song Z (2013) Comparison of different methods for the isolation of mesenchymal stem cells from umbilical cord matrix: proliferation and multilineage differentiation as compared to mesenchymal stem cells from umbilical cord blood and bone marrow. Cell Biol Int. https://doi.org/10.1002/cbin.10188

  62. Dash NR, Dash SN, Routray P, Mohapatra S, Mohapatra PC (2009) Targeting nonhealing ulcers of lower extremity in human through autologous bone marrow-derived mesenchymal stem cells. Rejuvenation Res 12(5):359–366

    Article  CAS  PubMed  Google Scholar 

  63. Amin AH, Abd Elmageed ZY, Nair D, Partyka MI, Kadowitz PJ, Belmadani S, Matrougui K (2010) Modified multipotent stromal cells with epidermal growth factor restore vasculogenesis and blood flow in ischemic hind-limb of type II diabetic mice. Lab Investig 90(7):985–996

    Article  CAS  PubMed  Google Scholar 

  64. Jin HJ, Bae YK, Kim M, Kwon SJ, Jeon HB, Choi SJ, Kim SW, Yang YS, Oh W, Chang JW (2013) Comparative analysis of human mesenchymal stem cells from bone marrow, adipose tissue, and umbilical cord blood as sources of cell therapy. Int J Mol Sci 14(9):17986–18001

    Article  PubMed  PubMed Central  Google Scholar 

  65. Xia N, Xu JM, Zhao N, Zhao QS, Li M, Cheng ZF (2015) Human mesenchymal stem cells improve the neurodegeneration of femoral nerve in a diabetic foot ulceration rats. Neurosci Lett 597:84–89

    Article  CAS  PubMed  Google Scholar 

  66. You HJ, Namgoong S, Han SK, Jeong SH, Dhong ES, Kim WK (2015) Wound-healing potential of human umbilical cord blood-derived mesenchymal stromal cells in vitro—a pilot study. Cytotherapy 17(11):1506–1513

    Article  CAS  PubMed  Google Scholar 

  67. Li XY, Zheng ZH, Li XY, Guo J, Zhang Y, Li H, Wang YW, Ren J, Wu ZB (2013) Treatment of foot disease in patients with type 2 diabetes mellitus using human umbilical cord blood mesenchymal stem cells: response and correction of immunological anomalies. Curr Pharm Des 19(27):4893–4899

    Article  CAS  PubMed  Google Scholar 

  68. Moon KC, Suh HS, Kim KB, Han SK, Young KW, Lee JW, Kim MH (2019) Potential of allogeneic adipose-derived stem cell-hydrogel complex for treating diabetic foot ulcers. Diabetes 68(4):837–846

    Article  CAS  PubMed  Google Scholar 

  69. Ahmed EM (2015) Hydrogel: preparation, characterization, and applications: a review. J Adv Res 6(2):105–121

    Article  CAS  PubMed  Google Scholar 

  70. O’Loughlin A, Kulkarni M, Creane M, Vaughan EE, Mooney E, Shaw G, Murphy M, Dockery P, Pandit A, O’Brien T (2013) Topical administration of allogeneic mesenchymal stromal cells seeded in a collagen scaffold augments wound healing and increases angiogenesis in the diabetic rabbit ulcer. Diabetes 62(7):2588–2594

    Article  PubMed  PubMed Central  Google Scholar 

  71. Badillo AT, Redden RA, Zhang L, Doolin EJ, Liechty KW (2007) Treatment of diabetic wounds with fetal murine mesenchymal stromal cells enhances wound closure. Cell Tissue Res 329(2):301–311

    Article  PubMed  Google Scholar 

  72. Kwon DS, Gao X, Liu YB, Dulchavsky DS, Danyluk AL, Bansal M, Chopp M, McIntosh K, Arbab AS, Dulchavsky SA et al (2008) Treatment with bone marrow-derived stromal cells accelerates wound healing in diabetic rats. Int Wound J 5(3):453–463

    Article  PubMed  Google Scholar 

  73. Falanga V, Iwamoto S, Chartier M, Yufit T, Butmarc J, Kouttab N, Shrayer D, Carson P (2007) Autologous bone marrow-derived cultured mesenchymal stem cells delivered in a fibrin spray accelerate healing in murine and human cutaneous wounds. Tissue Eng 13(6):1299–1312

    Article  CAS  PubMed  Google Scholar 

  74. Zonta S, De Martino M, Bedino G, Piotti G, Rampino T, Gregorini M, Frassoni F, Dal Canton A, Dionigi P, Alessiani M (2010) Which is the most suitable and effective route of administration for mesenchymal stem cell-based immunomodulation therapy in experimental kidney transplantation: endovenous or arterial ? Transplant Proc 42(4):1336–1340

    Article  CAS  PubMed  Google Scholar 

  75. Ho JH, Tseng TC, Ma WH, Ong WK, Chen YF, Chen MH, Lin MW, Hong CY, Lee OK (2012) Multiple intravenous transplantations of mesenchymal stem cells effectively restore long-term blood glucose homeostasis by hepatic engraftment and beta-cell differentiation in streptozocin-induced diabetic mice. Cell Transplant 21(5):997–1009

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mir, R., Elfaki, I., Waza, A.A., AbuDuhier, F.M. (2021). Stem Cells in the Treatment of Diabetic Foot Ulcers. In: Zubair, M., Ahmad, J., Malik, A., Talluri, M.R. (eds) Diabetic Foot Ulcer. Springer, Singapore. https://doi.org/10.1007/978-981-15-7639-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-7639-3_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-7638-6

  • Online ISBN: 978-981-15-7639-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics