Skip to main content

Recovery of Agricultural Waste Biomass: A Sustainability Strategy for Moving Towards a Circular Bioeconomy

Handbook of Solid Waste Management

Abstract

Agriculture has played a strategic role in the process of economic growth and development in numerous countries, especially over the last five decades. However, the rapid growth of agricultural productivity has created a greater strain on natural resources, which has harmed the environment. One of the main problems with this intensive agriculture model is the huge amount of waste it produces. Most of this waste is waste biomass. This type of residue becomes a resource with great potential for the extraction of by-products with high added value under the approach of the circular economic production models (CEPMs) like the circular economy and the bioeconomy. The bioeconomy, as a renewable part of the circular economy, promotes the use and sustainable recovery of agricultural waste biomass (AWB) as an essential supply. This bio-based economic model has become one of the main tools for drawing up new development policies based on the Sustainable Development Goals (SDGs). This is why this chapter analyzes the process of transition from conventional intensive agriculture to a sustainable version. The circular economy and the bioeconomy are presented as the key CEPMs for the transformation of the current food production system. Additionally, a special emphasis is placed in the management of the AWB and the alternatives for its valorization, which are promoted by the bioeconomy as circular and sustainable practices that contribute to the three pillars of the SDGs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • A. Aguilar, T. Twardowski, R. Wohlgemuth, Bioeconomy for sustainable development. Biotechnol. J. 14, 1800638 (2019). https://doi.org/10.1002/biot.201800638

    Article  CAS  Google Scholar 

  • Bank TW, Agriculture, forestry, and fishing, value added (% of GDP). World Bank national accounts data, and OECD National Accounts data files (2019), https://data.worldbank.org/indicator/NV.AGR.TOTL.ZS?most_recent_value_desc=true. Accessed 3 Mar 2020

  • Bio-based Industries Consortium, 2019 Call for Proposals. The Catalyst for a Sustainable Bio-Based Economy in Europe. Belgium (2019)

    Google Scholar 

  • S. Bracco, O. Calicioglu, M. Gomez San Juan, A. Flammini, Assessing the contribution of bioeconomy to the total economy: A review of national frameworks. Sustainability 10, 1698 (2018). https://doi.org/10.3390/su10061698

    Article  Google Scholar 

  • S. Bracco, A. Tani, O. Calicioglu, et al., Indicators to Monitor and Evaluate the Sustainability of Bioeconomy. Overview and a Proposed Way Forward (FAO, Rome, 2019)

    Google Scholar 

  • M. Bugge, T. Hansen, A. Klitkou, What is the bioeconomy? A review of the literature. Sustainability 8, 691 (2016). https://doi.org/10.3390/su8070691

    Article  Google Scholar 

  • F. Camacho-Ferre, Diferentes alternativas para la gestión del residuo biomasa procedente de cultivos de invernadero, in Innovaciones tecnológicas en cultivos de invernadero, ed. by E. J. F. Rodríguez (Ediciones. Universidad de Almería – Junta de Andalucía, Almería, 2003), pp. 211–237

    Google Scholar 

  • M. Carus, Bio-based Economy and Climate – Important Links, Pitfalls and Opportunities. Prepared for the UN Food and Agriculture Organization (FAO) nova-Institut, 2017-01. Germany (2017)

    Google Scholar 

  • M. Carus, L. Dammer, The circular bioeconomy – concepts, opportunities, and limitations. Ind. Biotechnol. 14, 83–91 (2018). https://doi.org/10.1089/ind.2018.29121.mca

    Article  Google Scholar 

  • F. Cherubini, S. Ulgiati, Crop residues as raw materials for biorefinery systems – a LCA case study. Appl. Energy 87, 47–57 (2010). https://doi.org/10.1016/j.apenergy.2009.08.024

    Article  CAS  Google Scholar 

  • T. Cui, J. Zhang, Bibliometric and review of the research on circular economy through the evolution of Chinese public policy. Scientometrics 116, 1013–1037 (2018). https://doi.org/10.1007/s11192-018-2782-y

    Article  Google Scholar 

  • M. De Schoenmakere, Y. Hoogeveen, J. Gillabel, S. Manshoven, EEA Report No 8/2018. The Circular Economy and the Bioeconomy Partners in Sustainability (Publications Office of the European Union, Luxembourg, 2018)

    Google Scholar 

  • P. Dieckhoff, B. El-Chichakli, C. Patermann, Bioeconomy Policy (Part I) Synopsis and Analysis of Strategies in the G7. A report from the German Bioeconomy Council. Berlin (2015)

    Google Scholar 

  • T. Dietz, J. Börner, J. Förster, J. von Braun, Governance of the bioeconomy: a global comparative study of national bioeconomy strategies. Sustainability 10, 3190 (2018). https://doi.org/10.3390/su10093190

    Article  Google Scholar 

  • M. Duque-Acevedo, L.J. Belmonte-Ureña, F.J. Cortés-García, F. Camacho-Ferre, Agricultural waste: review of the evolution, approaches and perspectives on alternative uses. Glob. Ecol. Conserv. 22, e00902 (2020a). https://doi.org/10.1016/j.gecco.2020.e00902

    Article  Google Scholar 

  • M. Duque-Acevedo, L.J. Belmonte-Ureña, J.A. Plaza-Úbeda, F. Camacho-Ferre, The management of agricultural waste biomass in the framework of circular economy and bioeconomy: an opportunity for greenhouse agriculture in Southeast Spain. Agronomy 10, 489 (2020b). https://doi.org/10.3390/agronomy10040489

    Article  CAS  Google Scholar 

  • M. Duque-Acevedo, L.J. Belmonte-Ureña, F. Toresano-Sánchez, F. Camacho-Ferre, Biodegradable raffia as a sustainable and cost-effective alternative to improve the management of agricultural waste biomass. Agronomy 10, 1261 (2020c). https://doi.org/10.3390/agronomy10091261

    Article  CAS  Google Scholar 

  • B.S. Elbersen, I.G. Staritsky, G.M. Hengeveld, M.J. Schelhaas, H.S.D. Naeff, H. Böttcher, Atlas of EU biomass potentials: spatially detailed and quantified overview of EU biomass potential taking into account the main criteria determining biomass availability from different sources. IEE 08653 S12.529 241, no. 3.3, Alterra / IIASA (2012)

    Google Scholar 

  • European Commission, Innovating for Sustainable Growth: A Bioeconomy for Europe (Office of the European Union, Brussels, 2012)

    Google Scholar 

  • European Commission, A Sustainable Bioeconomy for Europe: Strengthening the Connection Between Economy, Society and the Environment. Updated Bioeconomy Strategy (European Commission, Brussels, 2018a)

    Google Scholar 

  • European Commission, COM(2018) 394 Final/2 2018/0218 (COD). Regulation of The European Parliament and of The Council. Brussels (2018b).

    Google Scholar 

  • European Environment Agency, Circular by Design. Products in the Circular Economy. EEA Report, No. 6/2017 (Publications Office of the European Union, Luxembourg, 2017)

    Google Scholar 

  • European Union, Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Closing the loop – An EU action plan for the Circular Economy. Brussels (2015)

    Google Scholar 

  • European Union, Directiva (UE) 2018/2001 del Parlamento Europeo y del Consejo de 11 de diciembre de 2018 relativa al fomento del uso de energía procedente de fuentes renovables (2018)

    Google Scholar 

  • European Union, Changing how we produce and consume: New Circular Economy Action Plan shows the way to a climate-neutral, competitive economy of empowered consumers (2020), https://ec.europa.eu/commission/presscorner/detail/en/ip_20_420. Accessed 19 Oct 2020

  • N. Scarlat, J. Dallemand, N. Taylor, M. Banja, Brief on biomass for energy in the European Union, Sanchez Lopez, J. and Avraamides, M. editor(s), Publications Office of the European Union, Luxembourg, 2019, ISBN 978-92-79-77235-1 (online), 978-92-79-77234-4 (print), https://doi.org/10.2760/546943 (online),10.2760/49052 (print), JRC109354

  • FAO, FAO calls for global coordination for a bioeconomy that leaves no one behind (2018), http://www.fao.org/news/story/en/item/1118919/icode/. Accessed 16 Oct 2020

  • FAO SDG Indicator 2.4.1. Proportion of agricultural area under productive and sustainable agriculture; Food and Agriculture Organization of the United Nations (2019a)

    Google Scholar 

  • FAO, Sustainable Development Goals (2019b), http://www.fao.org/sustainable-development-goals/indicators/241/en/. Accessed 24 Feb 2020

  • FAO, Sustainable Food and Agriculture (2020), http://www.fao.org/sustainability/en/. Accessed 19 Oct 2020

  • FAO, IFAD, United Nations Decade of Family Farming 2019–2028. Global Action Plan (Food and Agriculture Organization of the United Nations – International Fund for Agricultural Development, Rome, 2019)

    Google Scholar 

  • Federal Ministry of Food and Agriculture (BMEL), Global Forum for Food and Agriculture 2015. Summary of Results (Federal Ministry of Food and Agriculture (BMEL), Berlin, 2015)

    Google Scholar 

  • C. Fund, B. El-Chichakli, C. Patermann, Bioeconomy Policy (Part III) Update Report of National Strategies around the World. A Report from the German Bioeconomy Council (Office of the Bioeconomy Council, Berlin, 2018)

    Google Scholar 

  • P. Gennari, D.K. Navarro, The challenge of measuring agricultural sustainability in all its dimensions. J. Sustain. Res., 1–15 (2019). https://doi.org/10.20900/jsr20190013

  • German Bioeconomy Council, Bio-economy Council Report 2010. Bio-economy Innovation. Research and Technological Development to Ensure Food Security, the Sustainable Use of Resources and Competitiveness (Bio-economy Research and Technology Council (BÖR), Berlin, 2010)

    Google Scholar 

  • Global Bioeconomy Summit 2020, Bioeconomy Policy News (2020), https://gbs2020.net/policy-news/. Accessed 9 Sept 2020

  • J.S. Golden, R.B. Handfield, Why Biobased? Opportunities in the Emerging Bioeconomy (U. S. Department of Agriculture, Office of Procurement and Property Management, Washington, DC, 2014)

    Google Scholar 

  • P. Gurria, T. Ronzon, S. Tamosiunas, et al., Biomass Flows in the European Union. The Sankey Biomass Diagram-towards a Cross-Set Integration of Biomass (Office of the European Union, Brussels, 2017)

    Google Scholar 

  • P. Hazell, R.K. Pachauri, Bioenergy and agriculture: promises and challenges; Washington, DC, USA (2006)

    Google Scholar 

  • T. Heimann, Bioeconomy and SDGs: does the bioeconomy support the achievement of the SDGs? Earth’s Futur. 7, 43–57 (2019). https://doi.org/10.1029/2018EF001014

    Article  Google Scholar 

  • O. Hollins, P. Lee, E. Sims, et al., Towards a Circular Economy – Waste Management in the EU Study IP/G/STOA/FWC/2013-001/LOT 3/C3 (European Parliament, Brussels, 2017)

    Google Scholar 

  • M.N. Honoré, L.J. Belmonte-Ureña, A. Navarro-Velasco, F. Camacho-Ferre, Profit analysis of papaya crops under greenhouses as an alternative to traditional intensive horticulture in Southeast Spain. Int. J. Environ. Res. Public Health 16, 2908 (2019). https://doi.org/10.3390/ijerph16162908

    Article  Google Scholar 

  • IEA Bioenergy, (IETS) IT and S, The Role of Industrial Biorefineries in a Low-Carbon Economy. Summary and Conclusions from the IEA Bioenergy/IEA IETS Workshop. Gothenburg (2017)

    Google Scholar 

  • Independent Group of Scientists, Global Sustainable Development Report 2019: The Future is Now – Science for Achieving Sustainable Development (United Nations, New York, 2019)

    Google Scholar 

  • International Advisory Council (IAC) GBS2018, Global Bioeconomy Summit Communiqué 2018. Innovation in the Global Bioeconomy for Sustainable and Inclusive Transformation and Wellbeing. Berlin (2018)

    Google Scholar 

  • International Energy Agency, Mobilisation of agricultural residues for bioenergy and higher value bio-products: resources, barriers and sustainability. IEA Bioenergy (2017)

    Google Scholar 

  • Junta de Andalucía, Estrategia andaluza bioeconomía circular. Sevilla (2018)

    Google Scholar 

  • S. Kaza, L. Yao, P. Bhada-Tata, F. Van Woerden, What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050 (World Bank, Washington, DC, 2018)

    Book  Google Scholar 

  • D. Keegan, B. Kretschmer, B. Elbersen, C. Panoutsou, Cascading use: a systematic approach to biomass beyond the energy sector. Biofuels Bioprod. Biorefin. 7, 193–206 (2013). https://doi.org/10.1002/bbb.1351

    Article  CAS  Google Scholar 

  • Klima-Energi- og Forsyningsministeriet, Denmark’s Draft Integrated National Energy and Climate Plan under the Regulation of The European Parliament and of the Council on the Governance of the Energy Union and Climate Action. Version: 1.0. Denmark (2018)

    Google Scholar 

  • B. Kretschmer, C. Smith, E. Watkins, et al., Technology Options for Feeding 10 Billion People. Recycling Agricultural, Forestry & Food Wastes and Residues for Sustainable Bioenergy and Biomaterials. Study IP/A/STOA/FWC/2008-096/Lot3/C1/SC6 – SC8 September 2013 (European Parliament, Brussels, 2013)

    Google Scholar 

  • O. Olsson, P. Lamers, F. Schipfer, M. Wild Commoditization of Biomass Markets. In: Developing the Global Bioeconomy. Elsevier, pp 139–163 (2016)

    Google Scholar 

  • M. Leach, J. Rockström, P. Raskin, et al., Transforming innovation for sustainability. Ecol. Soc. 17, 11 (2012). https://doi.org/10.5751/ES-04933-170211

    Article  Google Scholar 

  • V. Molina-Moreno, J. Leyva-Díaz, F. Llorens-Montes, F. Cortés-García, Design of indicators of circular economy as instruments for the evaluation of sustainability and efficiency in wastewater from pig farming industry. Water 9, 653 (2017). https://doi.org/10.3390/w9090653

    Article  CAS  Google Scholar 

  • I. Muizniece, L. Zihare, J. Pubule, D. Blumberga, Circular economy and bioeconomy interaction development as future for rural regions. Case study of Aizkraukle region in Latvia. Environ. Clim. Technol. 23, 129–146 (2019). https://doi.org/10.2478/rtuect-2019-0084

    Article  Google Scholar 

  • OCDE-FAO, OCDE-FAO Perspectivas Agrícolas 2019–2028 (OECD, Paris, 2019)

    Book  Google Scholar 

  • OECD, Meeting Policy Challenges for a Sustainable Bioeconomy (OECD, Paris, 2018)

    Book  Google Scholar 

  • C.W.daS. Romero, M.D. Berni, G.K.D.A. Figueiredo, et al., Assessment of agricultural biomass residues to replace fossil fuel and hydroelectric power energy: a spatial approach. Energy Sci. Eng. 7, 2287–2305 (2019). https://doi.org/10.1002/ese3.462

  • T. Ronzon, R. M’Barek, Socioeconomic indicators to monitor the EU’s bioeconomy in transition. Sustainability 10, 1745 (2018). https://doi.org/10.3390/su10061745

    Article  Google Scholar 

  • M.G. San Juan, A. Bogdanski, O. Dubois, Towards Sustainable Bioeconomy. Lessons Learned from Case Studies (FAO, Rome, 2019)

    Google Scholar 

  • N. Scarlat, J.-F. Dallemand, F. Monforti-Ferrario, V. Nita, The role of biomass and bioenergy in a future bioeconomy: policies and facts. Environ. Dev. 15, 3–34 (2015). https://doi.org/10.1016/j.envdev.2015.03.006

    Article  Google Scholar 

  • A. Schüch, J. Sprafke, M. Nelles, Role of biogenic waste and residues as an important building block towards a successful energy transition and future bioeconomy – results of a site analysis. Detritus 10, 109–117 (2020). https://doi.org/10.31025/2611-4135/2020.13919

    Article  Google Scholar 

  • S.G. Sommer, L. Hamelin, J.E. Olesen, et al., Agricultural waste biomass, in Supply Chain Management for Sustainable Food Networks (Wiley, Chichester, 2016), pp. 67–106

    Google Scholar 

  • The World Bank, World Development Report 2008. Agriculture for Development (The World Bank, Washington, DC, 2008)

    Google Scholar 

  • C.O. Tuck, E. Perez, I.T. Horvath, et al., Valorization of biomass: deriving more value from waste. Science 337, 695–699 (2012). https://doi.org/10.1126/science.1218930

    Article  CAS  Google Scholar 

  • S. Türkeli, R. Kemp, B. Huang, et al., Circular economy scientific knowledge in the European Union and China: a bibliometric, network and survey analysis (2006–2016). J. Clean. Prod. 197, 1244–1261 (2018). https://doi.org/10.1016/j.jclepro.2018.06.118

    Article  Google Scholar 

  • United Nations, The Sustainable Development Goals Report 2019 (United Nations Publications, New York, 2019)

    Book  Google Scholar 

  • United Nations, The Sustainable Development Goals Report 2020 (United Nations Publications, New York, 2020)

    Book  Google Scholar 

  • Intergovernmental Panel on Climate Change Climate Change and Land. An IPCC Special Report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. Summary for Policymakers; Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Eds.; Intergovernmental Panel on Climate Change, 2020; ISBN 978-92-9169-154-8.

    Google Scholar 

  • D.L. Valera, L.J. Belmonte, F.D. Molina-Aiz, et al., The greenhouses of Almería, Spain: technological analysis and profitability. Acta Hortic. 1170, 219–226 (2017). https://doi.org/10.17660/ActaHortic.2017.1170.25

    Article  Google Scholar 

  • R. van Ree, Task 42. Biorefining in a Future BioEconomy. Triennium 2016–2018. Netherlands (2019)

    Google Scholar 

  • J. Wesseler, J. von Braun, Measuring the bioeconomy: economics and policies. Ann. Rev. Resour. Econ. 9, 275–298 (2017). https://doi.org/10.1146/annurev-resource-100516-053701

    Article  Google Scholar 

  • World Bank Group, Enabling the Business of Agriculture 2019 (World Bank Group, Washington, DC, 2019)

    Book  Google Scholar 

  • World Bioenergy Association Global Bioenergy Statistics 2019 2019, 1–58.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Camacho-Ferre .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Duque-Acevedo, M., Belmonte-Ureña, L.J., Cortés-García, F.J., Camacho-Ferre, F. (2021). Recovery of Agricultural Waste Biomass: A Sustainability Strategy for Moving Towards a Circular Bioeconomy. In: Baskar, C., Ramakrishna, S., Baskar, S., Sharma, R., Chinnappan, A., Sehrawat, R. (eds) Handbook of Solid Waste Management. Springer, Singapore. https://doi.org/10.1007/978-981-15-7525-9_25-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-7525-9_25-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-7525-9

  • Online ISBN: 978-981-15-7525-9

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Recovery of Agricultural Waste Biomass: A Sustainability Strategy for Moving Towards a Circular Bioeconomy
    Published:
    01 June 2021

    DOI: https://doi.org/10.1007/978-981-15-7525-9_25-2

  2. Original

    Recovery of Agricultural Waste Biomass: A Sustainability Strategy for Moving Towards a Circular Bioeconomy
    Published:
    22 May 2021

    DOI: https://doi.org/10.1007/978-981-15-7525-9_25-1