Skip to main content

Abstract

Barrier properties in terms of water vapour transmission rate (WVTR), water vapour permeability (WVP), oxygen and air permeabilities have been evaluated for polyvinyl alcohol (PVA)/starch (ST)/glycerol (GL)/halloysite nanotube (HNT) bionanocomposites at different HNT contents of 0.25, 0.5, 1, 3 and 5 wt%, as compared with those of neat PVA and PVA blends. WVTR and WVP of bionanocomposites at ambient conditions decrease linearly by 52.34 and 73.59% with increasing the HNT content from 0 to 5 wt% due to their tortuosity effect when compared with those of neat PVA and PVA blends. Although WVTR and WVP of neat PVA and PVA blends increase remarkably with increasing the temperature from 25 to 55 °C and relative humidity (RH) level from 30 to 90%, WVTR and WVP of bionanocomposites show less sensitivity to the variation of temperature and RH level, resulting from the incorporation of HNTs with high thermal stability and moderate hydrophobicity. Furthermore, oxygen and air permeabilities of bionanocomposites decline significantly by 74.84 and 75.98%, as opposed to those of PVA blends at ambient conditions. Experimental permeability data show good agreement with Nielsen model for well-aligned HNT distribution when accurate values of HNT aspect ratios are employed based on experimental measurements via atomic force microscopy (AFM).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Othman SH (2014) Bio-nanocomposite materials for food packaging applications: types of biopolymer and nano-sized filler. Agricul Agricul Sci Procedia 2:296–303

    Article  Google Scholar 

  2. Mangaraj S, Yadav A, Bal LM, Dash SK, Mahanti NK (2018) Application of biodegradable polymers in food packaging industry: a comprehensive review. J Packag Technol Res 3(1):77–96

    Article  Google Scholar 

  3. Bertuzzi MA, Vidaurre EFC, Armada M, Gottifredi JC (2007) Water vapor permeability of edible starch based films. J Food Eng 80(3):972–978

    Article  Google Scholar 

  4. Akin O, Tihminlioglu F (2017) Effects of organo-modified clay addition and temperature on the water vapor barrier properties of polyhydroxy butyrate homo and copolymer nanocomposite films for packaging applications. J Polym Environ 26(3):1121–1132

    Article  Google Scholar 

  5. Huang JY, Limqueco J, Chieng YY, Li X, Zhou W (2017) Performance evaluation of a novel food packaging material based on clay/polyvinyl alcohol nanocomposite. Innovat Food Sci Emerg Technol 43:216–222

    Article  Google Scholar 

  6. Wiles JL, Vergano PJ, Barron FH, Bunn JM, Testin RF (2000) Water vapor transmission rates and sorption behavior of chitosan films. J Food Sci 65(7):1175–1179

    Article  Google Scholar 

  7. Gennadios A, Brandenburg AH, Park JW, Weller CL, Testin RF (1994) Water vapor permeability of wheat gluten and soy protein isolate films. Ind Crop Prod 2:189–195

    Article  Google Scholar 

  8. Lim M, Kwon H, Kim D, Seo J, Han H, Khan SB (2015) Highly-enhanced water resistant and oxygen barrier properties of cross-linked poly(vinyl alcohol) hybrid films for packaging applications. Prog Organic Coating 85:68–75

    Article  Google Scholar 

  9. Cano A, Fortunati E, Chafer M, Kenny JM, Chiralt A, Gonzalez-Martínez C (2015) Properties and ageing behaviour of pea starch films as affected by blend with poly(vinyl alcohol). Food Hydrocolloids 48:84–93

    Article  Google Scholar 

  10. Cano AI, Cháfer M, Chiralt A, González-Martínez C (2015) Physical and microstructural properties of biodegradable films based on pea starch and PVA. J Food Eng 167:59–64

    Article  Google Scholar 

  11. Jiang X, Luo Y, Hou L, Zhao Y (2016) The Effect of glycerol on the crystalline, thermal, and tensile properties of CaCl2-doped starch/PVA films. Polym Compos 37(11):3191–3199

    Article  Google Scholar 

  12. Imam SH, Cinelli P, Gordon SH, Chiellini E (2005) Characterization of biodegradable composite films prepared from blends of poly(vinyl alcohol), cornstarch, and lignocellulosic fiber. J Polym Environ 13:47–55

    Article  Google Scholar 

  13. Zhang Y, Han JH (2006) Mechanical and thermal characteristics of pea starch films plasticized with monosaccharides and polyols. J Food Sci 71(2):109–118

    Article  Google Scholar 

  14. Arvanitoyannis I, Nakayama A, Aiba S (1998) Edible films made from hydroxypropyl starch and gelatin and plasticized by polyols and water. Carbohydr Polym 36:105–119

    Article  Google Scholar 

  15. Ismail H, Zaaba NF (2011) Effect of additives on properties of polyvinyl alcohol (PVA)/tapioca starch biodegradable films. Polym Plast Technol Eng 50(12):1214–1219

    Article  Google Scholar 

  16. Talja RA, Helén H, Roos YH, Jouppila K (2007) Effect of various polyols and polyol contents on physical and mechanical properties of potato starch-based films. Carbohydr Polym 67:288–295

    Article  Google Scholar 

  17. Noshirvani N, Ghanbarzadeh B, Fasihi H, Almasi H (2016) Starch–PVA nanocomposite film incorporated with cellulose nanocrystals and MMT: a comparative study. Int J Food Eng 12(1):37–48

    Article  Google Scholar 

  18. Sadegh-Hassani F, Nafchi AM (2014) Preparation and characterization of bionanocomposite films based on potato starch/halloysite nanoclay. Int J Biol Macromol 67:458–462

    Article  Google Scholar 

  19. Lee MH, Kim SY, Park HJ (2018) Effect of halloysite nanoclay on the physical, mechanical, and antioxidant properties of chitosan films incorporated with clove essential oil. Food Hydrocoll 84:58–67

    Article  Google Scholar 

  20. Guimarães M Jr, Botaro VR, Novack KM, Teixeira FG, Tonoli GHD (2015) Starch/PVA-based nanocomposites reinforced with bamboo nanofibrils. Ind Crop Prod 70:72–83

    Article  Google Scholar 

  21. Heidarian P, Behzad T, Sadeghi M (2017) Investigation of cross-linked PVA/starch biocomposites reinforced by cellulose nanofibrils isolated from aspen wood sawdust. Cellulose 24:3323–3339

    Article  Google Scholar 

  22. Tang S, Zou P, Xiong H, Tang H (2008) Effect of nano-SiO2 on the performance of starch/polyvinyl alcohol blend films. Carbohydr Polym 72(3):521–526

    Article  Google Scholar 

  23. Tang X, Alavi S (2012) Structure and physical properties of starch/poly vinyl alcohol/laponite RD nanocomposite films. J Agricul Food Chemist 60(8):1954–1962

    Article  Google Scholar 

  24. Cano A, Fortunati E, Chafer M, Gonzalez-Martınez C, Chiralt A, Kenny JM (2015) Effect of cellulose nanocrystals on the properties of pea starch–poly(vinyl alcohol) blend films. J Mater Sci 50(21):6979–6992

    Article  ADS  Google Scholar 

  25. Tan B, Thomas NL (2016) A review of the water barrier properties of polymer/clay and polymer/graphene nanocomposites. J Memb Sci 514:595–612

    Article  Google Scholar 

  26. Choudalakis G, Gotsis AD (2009) Permeability of polymer/clay nanocomposites: a review. Eur Polym J 45(4):967–984

    Article  Google Scholar 

  27. Ghanbarzadeh B, Almasi H, Entezami AA (2011) Improving the barrier and mechanical properties of corn starch-based edible films: effect of citric acid and carboxymethyl cellulose. Ind Crop Prod 33(1):229–235

    Article  Google Scholar 

  28. Rogers CE (1985) Permeation of Gases and Vapours in Polymers. In: Comyn J (ed) Polymer permeability. Elsevier Applied Science Publishers, London, pp 11–73

    Chapter  Google Scholar 

  29. Poley LH, Silva MG, Vargas H, Siqueira MO, Sánchez R (2005) Water and vapor permeability at different temperatures of poly (3-hydroxybutyrate) dense membranes. Polímeros 15(1):22–26

    Article  Google Scholar 

  30. Abdullah ZW, Dong Y, Han N, Liu S (2019) Water and gas barrier properties of polyvinyl alcohol (PVA)/starch (ST)/glycerol (GL)/halloysite nanotube (HNT) bionanocomposite films: experimental characterisation and modelling approach. Compos B Eng 174:107033

    Article  Google Scholar 

  31. Ashley RJ (1985) Permeability and plastics packaping. In: Comyn J (ed) Polymer permeability. Elsevier Applied Science Publishers, London, pp 269–308

    Chapter  Google Scholar 

  32. Siracusa V (2012) Food packaging permeability behaviour: a report. Int J Polym Sci 2012:302029

    Google Scholar 

  33. Morillon V, Debeaufort F, Blond G, Voilley A (2000) Temperature influence on moisture transfer through synthetic film. J Memb Sci 168:223–231

    Article  Google Scholar 

  34. Yuan P, Tan D, Annabi-Bergaya F (2015) Properties and applications of halloysite nanotubes: recent research advances and future prospects. Appl Clay Sci 112–113:75–93

    Article  Google Scholar 

  35. Gennadios A, Weller CL, Testin RF (1993) Temperature effect on oxygen permeability of edible protein-based films. J Food Sci 58(1):212–214

    Article  Google Scholar 

  36. Comyn J (1985) Introduction to polymer permeability and the mathematics of diffusion. In: Comyn J (ed) Polymer permeability. Elsevier Applied Science Publishers, London, pp 1–10

    Chapter  Google Scholar 

  37. Cuq B, Gontard N, Aymard C, Guilbert S (1997) Relative humidity and temperature effects on mechanical and water vapor barrier properties of myofibrillar protein-based films. Polym Gel Network 5(1):1–15

    Google Scholar 

  38. Mo C, Yuan W, Lei W, Shijiu Y (2014) Effects of temperature and humidity on the barrier properties of biaxially-oriented polypropylene and polyvinyl alcohol films. J Appl Packag Res 6(1):40–46

    Article  Google Scholar 

  39. Feldman D (2013) Polymer nanocomposite barriers. J Macromol Sci A 50(4):441–448

    Article  Google Scholar 

  40. Sridhar V, Tripathy DK (2006) Barrier properties of chlorobutyl nanoclay composites. J Appl Polym Sci 101(6):3630–3637

    Article  Google Scholar 

  41. Picard E, Vermogen A, Gérard JF, Espuche E (2007) Barrier properties of nylon 6-montmorillonite nanocomposite membranes prepared by melt blending: influence of the clay content and dispersion state consequences on modelling. J Membrane Sci 292(1–2):133–144

    Google Scholar 

  42. Zou GX, Ping-Qu J, Liang-Zou X (2008) Extruded starch/PVA composites: water resistance, thermal properties, and morphology. J Elastom Plast 40(4):303–316

    Article  Google Scholar 

  43. Liu H, Bandyopadhyay P, Kim NH, Moon B, Lee JH (2016) Surface modified graphene oxide/poly(vinyl alcohol) composite for enhanced hydrogen gas barrier film. Polym Test 50:49–56

    Article  Google Scholar 

  44. Alipoormazandarani N, Ghazihoseini S, Nafchi AM (2015) Preparation and characterization of novel bionanocomposite based on soluble soybean polysaccharide and halloysite nanoclay. Carbohyd Polym 134:745–751

    Article  Google Scholar 

  45. Nielsen LE (1967) Models for the permeability of filled polymer systems. J Macromol Sci A Chemist 1(5):929–942

    Article  Google Scholar 

  46. Liu D, Bian Q, Li Y, Wang Y, Xiang A, Tian H (2016) Effect of oxidation degrees of graphene oxide on the structure and properties of poly (vinyl alcohol) composite films. Compos Sci Technol 129:146–152

    Article  Google Scholar 

  47. Huang HD, Ren PG, Chen J, Zhang WQ, Ji X, Li ZM (2012) High barrier graphene oxide nanosheet/poly(vinyl alcohol) nanocomposite films. J Memb Sci 409–410:156–163

    Article  Google Scholar 

  48. Nafchi AM, Nassiri R, Sheibani S, Ariffin F, Karim AA (2013) Preparation and characterization of bionanocomposite films filled with nanorod-rich zinc oxide. Carbohydr Polym 96(1):233–239

    Article  Google Scholar 

  49. Li D, Huang Y, Liu Y, Luo T, Xing B, Yang Y, Yang Z, Wu Z, Chen H, Zhang Q, Qin W (2018) Physico-mechanical and structural characteristics of starch/polyvinyl alcohol/nano-titania photocatalytic antimicrobial composite films. LWT Food Sci Technol 96:704–712

    Article  Google Scholar 

  50. Cui Y, Kumar S, Konac BR, Houcke D (2015) Gas barrier properties of polymer/clay nanocomposites. RSC Adv 5(78):63669–63690

    Article  Google Scholar 

  51. Takahashi S, Goldberg HA, Feeney CA, Karim DP, Farrell M, O’Leary K, Paul DR (2006) Gas barrier properties of butyl rubber/vermiculite nanocomposite coatings. Polymer 47(9):3083–3093

    Article  Google Scholar 

  52. Saritha A, Joseph K, Thomas S, Muraleekrishnan R (2012) Chlorobutyl rubber nanocomposites as effective gas and VOC barrier materials. Compos A Appl Sci Manuf 43(6):864–870

    Article  Google Scholar 

  53. Alexandre B, Langevina D, Médéric P, Aubry T, Couderc H, Nguyen QT, Saiter A, Marais S (2009) Water barrier properties of polyamide 12/montmorillonite nanocomposite membranes: structure and volume fraction effects. J Memb Sci 328(1–2):186–204

    Article  Google Scholar 

  54. Callister WD (2007) Materials science and engineering: an introduction (7th ed). Wiley, USA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Dong .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abdullah, Z.W., Dong, Y. (2020). Barrier Properties of PVA/HNT Bionanocomposite Films. In: Polyvinyl Alcohol/Halloysite Nanotube Bionanocomposites as Biodegradable Packaging Materials. Springer, Singapore. https://doi.org/10.1007/978-981-15-7356-9_5

Download citation

Publish with us

Policies and ethics