Skip to main content

Using Bacteria-Derived Volatile Organic Compounds (VOCs) for Industrial Processes

  • Chapter
  • First Online:

Abstract

Microbial volatiles harbour an extensive spectrum of chemical compounds. Bacteria-derived volatile organic compounds (VOCs) were studied for decades in order to uncover their role in microbial interactions and to decipher their importance in the communication with other organisms. In the frame of extensive screening approaches, various VOCs with growth inhibiting effects against pathogenic bacteria and fungi were found in the recent years. These discoveries not only have a great importance for the general scientific knowledge, but also open the way for many technological applications of those molecules. The application of the discovered bacterial volatiles in industrial decontamination processes provides new alternatives for conventional chemicals. Moreover, they might facilitate the reduction of harmful, toxic and cancerogenic chemicals and widen the toolbox for a broader spectrum of biological decontamination agents. In addition, VOCs have a great potential for microbiome management and control, and can be applied as bio-preservatives, -pesticides, and fumigants.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Andersson DI (2003) Persistence of antibiotic resistant bacteria. Curr Opin Microbiol 6:452–456

    CAS  PubMed  Google Scholar 

  • Arrebola E, Sivakumar D, Korsten L (2010) Effect of volatile compounds produced by Bacillus strains on postharvest decay in citrus. Biol Control 53:122–128

    CAS  Google Scholar 

  • Avalos M, van Wezel GP, Raaijmakers JM, Garbeva P (2018) Healthy scents: microbial volatiles as new frontier in antibiotic research? Curr Opin Microbiol 45:84–91

    CAS  PubMed  Google Scholar 

  • Benemann JR, Oswald WJ (1996) Systems and economic analysis of microalgae ponds for conversion of CO2 to biomass. Final report. Department of Civil Engineering, California University, Berkeley, CA

    Google Scholar 

  • Berg G (2009) Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18. https://doi.org/10.1007/s00253-009-2092-7

    Article  CAS  PubMed  Google Scholar 

  • Bernier SP, Létoffé S, Delepierre M, Ghigo J (2011) Biogenic ammonia modifies antibiotic resistance at a distance in physically separated bacteria. Mol Microbiol 81:705–716

    CAS  PubMed  Google Scholar 

  • Bos LD, Sterk PJ, Schultz MJ (2013) Volatile metabolites of pathogens: a systematic review. PLoS Pathog 9:e1003311

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boziaris IS (2014) Novel food preservation and microbial assessment techniques. CRC Press

    Google Scholar 

  • Carrique-Mas J, Bedford S, Davies R (2007) Organic acid and formaldehyde treatment of animal feeds to control Salmonella: efficacy and masking during culture. J Appl Microbiol 103:88–96

    CAS  PubMed  Google Scholar 

  • CDC (2011) Centers for Disease Control and Prevention: National Enteric disease surveillance: Salmonella surveillance overview. Center for Disease Control and Prevention, Atlanta, GA

    Google Scholar 

  • Cernava T (2012) Identification of volatile organic compounds from plant-associated bacteria. Graz University of Technology

    Google Scholar 

  • Cernava T, Aschenbrenner IA, Grube M, Liebminger S, Berg G (2015) A novel assay for the detection of bioactive volatiles evaluated by screening of lichen-associated bacteria. Front Microbiol 6:398. https://doi.org/10.3389/fmicb.2015.00398

    Article  PubMed  PubMed Central  Google Scholar 

  • Chiron N (2005) Mushrooms odors, chemistry and role in the biotic interactions: a review. Cryptogam Mycol 26:299–364

    Google Scholar 

  • Citron CA, Gleitzmann J, Laurenzano G, Pukall R, Dickschat JS (2012) Terpenoids are widespread in actinomycetes: a correlation of secondary metabolism and genome data. Chembiochem 13:202–214

    CAS  PubMed  Google Scholar 

  • Cocolin L, Ercolini D (2015) Zooming into food-associated microbial consortia: a ‘cultural’ evolution. Curr Opin Food Sci 2:43–50

    Google Scholar 

  • Conly J (1998) Controlling antibiotic resistance by quelling the epidemic of overuse and misuse of antibiotics. Can Fam Physician 44:1769

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dave D, Ghaly AE (2011) Meat spoilage mechanisms and preservation techniques: a critical review. Am J Agric Biol Sci 6:486–510

    CAS  Google Scholar 

  • Dobbs C, Hinson W (1953) A widespread fungistasis in soils. Nature 172:197

    CAS  PubMed  Google Scholar 

  • Effmert U, Kalderás J, Warnke R, Piechulla B (2012) Volatile mediated interactions between bacteria and fungi in the soil. J Chem Ecol 38:665–703. https://doi.org/10.1007/s10886-012-0135-5

    Article  CAS  PubMed  Google Scholar 

  • Elderfield JA, Lopez-Ruiz FJ, van den Bosch F, Cunniffe NJ (2018) Using epidemiological principles to explain fungicide resistance management tactics: why do mixtures outperform alternations? Phytopathology 108:803–817

    CAS  PubMed  Google Scholar 

  • Fierer N (2017) Embracing the unknown: disentangling the complexities of the soil microbiome. Nat Rev Microbiol 15:579

    CAS  PubMed  Google Scholar 

  • Herrington P, Craig J, Sheridan J (1987) Methyl vinyl ketone: a volatile fungistatic inhibitor from Streptomyces griseoruber. Soil Biol Biochem 19:509–512

    CAS  Google Scholar 

  • Janssens TKS, Tyc O, Besselink H, de Boer W, Garbeva P (2019) Biological activities associated with the volatile compound 2,5-bis(1-methylethyl)-pyrazine. FEMS Microbiol Lett 366. https://doi.org/10.1093/femsle/fnz023

  • Jones FT (2011) A review of practical Salmonella control measures in animal feed. J Appl Poult Res 20:102–113

    Google Scholar 

  • Jones F, Richardson K (2004) Salmonella in commercially manufactured feeds. Poult Sci 83:384–391

    CAS  PubMed  Google Scholar 

  • Kabak B, Dobson AD, Var I (2006) Strategies to prevent mycotoxin contamination of food and animal feed: a review. Crit Rev Food Sci Nutr 46:593–619

    CAS  PubMed  Google Scholar 

  • Kai M, Effmert U, Berg G, Piechulla B (2007) Volatiles of bacterial antagonists inhibit mycelial growth of the plant pathogen Rhizoctonia solani. Arch Microbiol 187:351–360

    CAS  PubMed  Google Scholar 

  • Kai M, Crespo E, Cristescu SM, Harren FJ, Francke W, Piechulla B (2010) Serratia odorifera: analysis of volatile emission and biological impact of volatile compounds on Arabidopsis thaliana. Appl Microbiol Biotechnol 88:965–976

    CAS  PubMed  Google Scholar 

  • Kanchiswamy CN, Malnoy M, Maffei ME (2015) Chemical diversity of microbial volatiles and their potential for plant growth and productivity. Front Plant Sci 6:151. https://doi.org/10.3389/fpls.2015.00151

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim B-H, Ramanan R, Cho D-H, Oh H-M, Kim H-S (2014) Role of Rhizobium, a plant growth promoting bacterium, in enhancing algal biomass through mutualistic interaction. Biomass Bioenergy 69:95–105

    CAS  Google Scholar 

  • Knapp CW, Dolfing J, Ehlert PA, Graham DW (2009) Evidence of increasing antibiotic resistance gene abundances in archived soils since 1940. Environ Sci Technol 44:580–587

    Google Scholar 

  • Krug L, Erlacher A, Berg G, Cernava T (2019) A novel, nature-based alternative for photobioreactor decontaminations. Sci Rep 9:2864

    PubMed  PubMed Central  Google Scholar 

  • Kusstatscher P, Cernava T, Liebminger S, Berg G (2017) Replacing conventional decontamination of hatching eggs with a natural defense strategy based on antimicrobial, volatile pyrazines. Sci Rep 7:13253. https://doi.org/10.1038/s41598-017-13579-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Q, Ning P, Zheng L, Huang J, Li G, Hsiang T (2012a) Effects of volatile substances of Streptomyces globisporus JK-1 on control of Botrytis cinerea on tomato fruit. Biol Control 61:113–120

    CAS  Google Scholar 

  • Li X, Bethune L, Jia Y, Lovell R, Proescholdt T, Benz S, Schell T, Kaplan G, McChesney D (2012b) Surveillance of Salmonella prevalence in animal feeds and characterization of the Salmonella isolates by serotyping and antimicrobial susceptibility. Foodborne Pathog Dis 9:692–698

    CAS  PubMed  Google Scholar 

  • Liu H, Brettell LE (2019) Plant defense by VOC-induced microbial priming. Trends Plant Sci 24:187–189

    CAS  PubMed  Google Scholar 

  • Maffei ME, Gertsch J, Appendino G (2011) Plant volatiles: production, function and pharmacology. Nat Prod Rep 28:1359–1380

    CAS  PubMed  Google Scholar 

  • Magossi G, Cernicchiaro N, Dritz S, Houser T, Woodworth J, Jones C, Trinetta V (2019) Evaluation of Salmonella presence in selected United States feed mills. Microbiol Open 8:e00711

    Google Scholar 

  • Malorny B, Löfström C, Wagner M, Krämer N, Hoorfar J (2008) Enumeration of Salmonella bacteria in food and feed samples by real-time PCR for quantitative microbial risk assessment. Appl Environ Microbiol 74:1299. https://doi.org/10.1128/AEM.02489-07

    Article  CAS  PubMed  Google Scholar 

  • Mari M, Bautista-Baños S, Sivakumar D (2016) Decay control in the postharvest system: role of microbial and plant volatile organic compounds. Postharvest Biol Technol 122:70–81. https://doi.org/10.1016/j.postharvbio.2016.04.014

    Article  CAS  Google Scholar 

  • McCain A (1966) A volatile antibiotic produced by Streptomyces griseus. Am Phytopathol Soc 3340:150

    Google Scholar 

  • Mendes R, Raaijmakers JM (2015) Cross-kingdom similarities in microbiome functions. ISME J 9:1905–1907. https://doi.org/10.1038/ismej.2015.7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molina-Santiago C, Daddaoua A, Fillet S, Duque E, Ramos J (2014) Interspecies signalling: Pseudomonas putida efflux pump TtgGHI is activated by indole to increase antibiotic resistance. Environ Microbiol 16:1267–1281

    CAS  PubMed  Google Scholar 

  • Moore CE (2019) Changes in antibiotic resistance in animals. Science 365:1251–1252

    CAS  PubMed  Google Scholar 

  • Mulero-Aparicio A, Cernava T, Turra D, Schaefer A, Pietro AD, Escudero FJL, Trapero A, Berg G (2019) The role of volatile organic compounds and rhizosphere competence in the mode of action of the non-pathogenic Fusarium oxysporum FO12 towards Verticillium wilt. Front Microbiol 10:1808

    PubMed  PubMed Central  Google Scholar 

  • Mülner P, Bergna A, Wagner P, Sarajlić D, Gstöttenmayr B, Dietel K, Grosch R, Cernava T, Berg G (2019) Microbiota associated with Sclerotia of Soilborne fungal pathogens–a novel source of biocontrol agents producing bioactive volatiles. Phytobiomes J 3. https://doi.org/10.1094/PBIOMES-11-18-0051-R

  • Niemira BA (2012) Cold plasma decontamination of foods. Annu Rev Food Sci Technol 3:125–142

    CAS  PubMed  Google Scholar 

  • Pinotti L, Ottoboni M, Giromini C, Dell’Orto V, Cheli F (2016) Mycotoxin contamination in the EU feed supply chain: a focus on cereal byproducts. Toxins 8:45

    PubMed  PubMed Central  Google Scholar 

  • Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moënne-Loccoz Y (2009) The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321:341–361. https://doi.org/10.1007/s11104-008-9568-6

    Article  CAS  Google Scholar 

  • Rodrigues I, Naehrer K (2012) A three-year survey on the worldwide occurrence of mycotoxins in feedstuffs and feed. Toxins 4:663–675

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rybakova D, Cernava T, Köberl M, Liebminger S, Etemadi M, Berg G (2016) Endophytes-assisted biocontrol: novel insights in ecology and the mode of action of Paenibacillus. Plant Soil 405:125–140

    CAS  Google Scholar 

  • Sankaran S, Mishra A, Ehsani R, Davis C (2010) A review of advanced techniques for detecting plant diseases. Comput Electron Agric 72:1–13

    Google Scholar 

  • Schöck M, Liebminger S, Berg G, Cernava T (2018) First evaluation of alkylpyrazine application as a novel method to decrease microbial contaminations in processed meat products. AMB Express 8:54. https://doi.org/10.1186/s13568-018-0583-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sivakumar D, Bautista-Baños S (2014) A review on the use of essential oils for postharvest decay control and maintenance of fruit quality during storage. Crop Prot 64:27–37

    CAS  Google Scholar 

  • Strobel G (2006) Harnessing endophytes for industrial microbiology. Curr Opin Microbiol 9:240–244

    CAS  PubMed  Google Scholar 

  • Tacconelli E, Magrini N, Kahlmeter G, Singh N (2017) Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. World Health Organ 27:318–327

    Google Scholar 

  • Vandini A, Temmerman R, Frabetti A, Caselli E, Antonioli P, Balboni PG, Platano D, Branchini A, Mazzacane S (2014) Hard surface biocontrol in hospitals using microbial-based cleaning products. PLoS One 9:e108598

    PubMed  PubMed Central  Google Scholar 

  • Ventola CL (2015) The antibiotic resistance crisis: part 1: causes and threats. Pharm Ther 40:277

    Google Scholar 

  • Wales AD, Allen VM, Davies RH (2010) Chemical treatment of animal feed and water for the control of Salmonella. Foodborne Pathog Dis 7:3–15

    CAS  PubMed  Google Scholar 

  • Wan M, Li G, Zhang J, Jiang D, Huang H-C (2008) Effect of volatile substances of Streptomyces platensis F-1 on control of plant fungal diseases. Biol Control 46:552–559

    Google Scholar 

  • Wartew GA (1983) The health hazards of formaldehyde. J Appl Toxicol 3:121–126. https://doi.org/10.1002/jat.2550030303

    Article  CAS  PubMed  Google Scholar 

  • Wenke K, Weise T, Warnke R, Valverde C, Wanke D, Kai M, Piechulla B (2012) Bacterial volatiles mediating information between bacteria and plants. In: Biocommunication of plants. Springer, In, pp 327–347

    Google Scholar 

  • Williams J (1970) Effect of high-level formaldehyde fumigation on bacterial populations on the surface of chicken hatching eggs. Avian Dis 14:386–392

    CAS  PubMed  Google Scholar 

  • Zhou G, Xu X, Liu Y (2010) Preservation technologies for fresh meat–a review. Meat Sci 86:119–128

    CAS  PubMed  Google Scholar 

  • Zou C-S, Mo M-H, Gu Y-Q, Zhou J-P, Zhang K-Q (2007) Possible contributions of volatile-producing bacteria to soil fungistasis. Soil Biol Biochem 39:2371–2379

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Kusstatscher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kusstatscher, P., Cernava, T., Berg, G. (2020). Using Bacteria-Derived Volatile Organic Compounds (VOCs) for Industrial Processes. In: Ryu, CM., Weisskopf, L., Piechulla, B. (eds) Bacterial Volatile Compounds as Mediators of Airborne Interactions. Springer, Singapore. https://doi.org/10.1007/978-981-15-7293-7_13

Download citation

Publish with us

Policies and ethics