Skip to main content

Neural Circuits for Sleep–Wake Regulation

  • Chapter
  • First Online:
Neural Circuits of Innate Behaviors

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1284))

Abstract

The neural mechanisms of sleep, a fundamental biological behavior from invertebrates to humans, have been a long-standing mystery and present an enormous challenge. Gradually, perspectives on the neurobiology of sleep have been more various with the technical innovations over the recent decades, and studies have now identified many specific neural circuits that selectively regulate the initiation and maintenance of wake, rapid eye movement (REM) sleep, and non-REM (NREM) sleep. The cholinergic system in basal forebrain (BF) that fire maximally during waking and REM sleep is one of the key neuromodulation systems related to waking and REM sleep. Here we outline the recent progress of the BF cholinergic system in sleep–wake cycle. The intricate local connectivity and multiple projections to other cortical and subcortical regions of the BF cholinergic system elaborately presented here form a conceptual framework for understanding the coordinating effects with the dissecting regions. This framework also provides evidences regarding the relationships between the general anesthesia and wakefulness/sleep cycle focusing on the neural circuitry of unconsciousness induced by anesthetic drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamantidis AR, Zhang F, Aravanis AM, Deisseroth K, de Lecea L (2007) Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature 450:420–424

    CAS  PubMed  PubMed Central  Google Scholar 

  • Agostinelli LJ, Geerling JC, Scammell TE (2019) Basal forebrain subcortical projections. Brain Struct Funct 224(3):1097–1117

    PubMed  PubMed Central  Google Scholar 

  • Akeju O, Brown EN (2017) Neural oscillations demonstrate that general anesthesia and sedative states are neurophysiologically distinct from sleep. Curr Opin Neurobiol 44:178–185

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alitto HJ, Dan Y (2012) Cell-type-specific modulation of neocortical activity by basal forebrain input. Front Syst Neurosci 6:79

    PubMed  Google Scholar 

  • Anaclet C, Pedersen NP, Ferrari LL, Venner A, Bass CE, Arrigoni E, Fuller PM (2015) Basal forebrain control of wakefulness and cortical rhythms. Nat Commun 6:8744

    CAS  PubMed  PubMed Central  Google Scholar 

  • Apartis E, Poindessous-Jazat FR, Lamour YA, Bassant MH (1998) Loss of rhythmically bursting neurons in rat medial septum following selective lesion of septohippocampal cholinergic system. J Neurophysiol 79:1633–1642

    CAS  PubMed  Google Scholar 

  • Arrigoni E, Mochizuki T, Scammell TE (2010) Activation of the basal forebrain by the orexin/hypocretin neurones. Acta Physiol 198:223–235

    CAS  Google Scholar 

  • Aston-Jones G, Waterhouse B (2016) Locus coeruleus: from global projection system to adaptive regulation of behavior. Brain Res 1645:75–78

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baghdoyan HA, Rodrigoangulo ML, Mccarley RW, Hobson JA (1987) A neuroanatomical gradient in the pontine tegmentum for the cholinoceptive induction of desynchronized sleep signs. Brain Res 414:245–261

    CAS  PubMed  Google Scholar 

  • Barbara EJ, Stanley TH, Halaris AE (1977) Effects of locus coeruleus lesions upon cerebral monoamine content, sleep-wakefulness states and the response to amphetamine in the cat. Brain Res 124:473–496

    Google Scholar 

  • Bassant MH, Apartis E, Jazatpoindessous FR, Wiley RG, Lamour YA (1995) selective immunolesion of the Basal forebrain cholinergic neurons—effects on hippocampal activity during sleep and wakefulness in the rat. Neurodegeneration 4:61–70

    CAS  PubMed  Google Scholar 

  • Ben Simon E, Walker MP (2018) Sleep loss causes social withdrawal and loneliness. Nat Commun 9:3146

    PubMed  PubMed Central  Google Scholar 

  • Berntson GG, Shafi R, Sarter M (2002) Specific contributions of the basal forebrain corticopetal cholinergic system to electroencephalographic activity and sleep/waking behaviour. Eur J Neurosci 16:2453–2461

    CAS  PubMed  Google Scholar 

  • Blanco-Centurion C, Xu M, Murillo-Rodriguez E, Gerashchenko D, Shiromani AM, Salin-Pascual RJ, Hof PR, Shiromani PJ (2006) Adenosine and sleep homeostasis in the basal forebrain. J Neurosci 26:8092–8100

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boeve BF, Silber MH, Saper CB, Ferman TJ, Dickson DW, Parisi JE, Benarroch EE, Ahlskog JE, Smith GE, Caselli RC, Tippman-Peikert M, Olson EJ, Lin SC, Young T, Wszolek Z, Schenck CH, Mahowald MW, Castillo PR, Del Tredici K, Braak H (2007) Pathophysiology of REM sleep behaviour disorder and relevance to neurodegenerative disease. Brain 130:2770–2788

    CAS  PubMed  Google Scholar 

  • Bonhomme V, Fiset P, Meuret P, Backman S, Plourde G, Paus T, Bushnell MC, Evans AC (2001) Propofol anesthesia and cerebral blood flow changes elicited by vibrotactile stimulation: A positron emission tomography study. J Neurophysiol 85:1299–1308

    CAS  PubMed  Google Scholar 

  • Borhegyi Z, Magloczky Z, Acsady L, Freund TF (1998) The supramammillary nucleus innervates cholinergic and GABAergic neurons in the medial septum-diagonal band of Broca complex. Neuroscience 82:1053–1065

    CAS  PubMed  Google Scholar 

  • Boucetta S, Cisse Y, Mainville L, Morales M, Jones BE (2014) Discharge profiles across the sleep-waking cycle of identified cholinergic, GABAergic, and glutamatergic neurons in the pontomesencephalic tegmentum of the rat. J Neurosci 34:4708–4727

    PubMed  PubMed Central  Google Scholar 

  • Bromberg-Martin ES, Matsumoto M, Hikosaka O (2010) Dopamine in motivational control: rewarding, aversive, and alerting. Neuron 68:815–834

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brown EN, Lydic R, Schiff ND (2010) General anesthesia, sleep, and coma. New Engl J Med 363:2638–2650

    CAS  PubMed  Google Scholar 

  • Brown RE, Sergeeva OA, Eriksson KS, Haas HL (2002) Convergent excitation of dorsal raphe serotonin neurons by multiple arousal systems (orexin/hypocretin, histamine and noradrenaline). J Neurosci 22:8850–8859

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brown SA (2016) Circadian Metabolism: from mechanisms to metabolomics and medicine. Trends Endocrin Met 27:415–426

    CAS  Google Scholar 

  • Cape EG, Jones BE (1998) Differential modulation of high-frequency gamma-electroencephalogram activity and sleep-wake state by noradrenaline and serotonin microinjections into the region of cholinergic basalis neurons. J Neurosci 18:2653–2666

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cape EG, Jones BE (2000) Effects of glutamate agonist versus procaine microinjections into the basal forebrain cholinergic cell area upon gamma and theta EEG activity and sleep-wake state. Eur J Neurosci 12:2166

    CAS  PubMed  Google Scholar 

  • Cape EG, Manns ID, Alonso A, Beaudet A, Jones BE (2000) Neurotensin-induced bursting of cholinergic basal forebrain neurons promotes gamma and theta cortical activity together with waking and paradoxical sleep. J Neurosci 20:8452–8461

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carlsson A, Lindqvist M (1963) Effect of chlorpromazine or haloperidol on formation of 3-methoxytyramine and normetanephrine in mouse brain. Acta Pharmacol Tox 20:140

    CAS  Google Scholar 

  • Carnes KM, Fuller TA, Price JL (1990) Sources of presumptive glutamatergic/aspartatergic afferents to the magnocellular basal forebrain in the rat. J Comp Neurol 302:824–852

    CAS  PubMed  Google Scholar 

  • Carter ME, Yizhar O, Chikahisa S, Nguyen H, Adamantidis A, Nishino S, Deisseroth K, de Lecea L (2010) Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nat Neurosci 13:1526–1533

    CAS  PubMed  PubMed Central  Google Scholar 

  • Castaneda MT, Sanabria ER, Hernandez S, Ayala A, Reyna TA, Wu JY, Colom LV (2005) Glutamic acid decarboxylase isoforms are differentially distributed in the septal region of the rat. Neurosci Res 52:107–119

    CAS  PubMed  Google Scholar 

  • Cecchi M, Passani MB, Bacciottini L, Mannaioni PF, Blandina P (2001) Cortical acetylcholine release elicited by stimulation of histamine H1 receptors in the nucleus basalis magnocellularis: a dual-probe microdialysis study in the freely moving rat. Eur J Neurosci 13:68–78

    CAS  PubMed  Google Scholar 

  • Celada P, Puig MV, Artigas F (2013) Serotonin modulation of cortical neurons and networks. Front Integrative Neurosci 7:25

    CAS  Google Scholar 

  • Celesia GG, Jasper HH (1966) Acetylcholine released from cerebral cortex in relation to state of activation. Neurology 16:1053–1063

    CAS  PubMed  Google Scholar 

  • Chaves-Coira I, Barros-Zulaica N, Rodrigo-Angulo M, Nunez A (2016) Modulation of specific sensory cortical areas by segregated Basal forebrain cholinergic neurons demonstrated by neuronal tracing and optogenetic stimulation in mice. Front Neural Circuit 10:28

    Google Scholar 

  • Chaves-Coira I, Martin-Cortecero J, Nunez A, Rodrigo-Angulo ML (2018) Basal Forebrain nuclei display distinct projecting pathways and functional circuits to sensory primary and prefrontal cortices in the rat. Front Neuroanat 12:69

    PubMed  PubMed Central  Google Scholar 

  • Chen, L., Yang, Z. L., Cheng, J., Zhang, P. P., Zhang, L. S., Liu, X. S., Wang, L. C. (2018) Propofol decreases the excitability of cholinergic neurons in mouse basal forebrain via GABAA receptors. Acta Pharmacol Sin 40(6):755-761

    Google Scholar 

  • Chen L, Yin D, Wang TX, Guo W, Dong H, Xu Q, Luo YJ, Cherasse Y, Lazarus M, Qiu ZL, Lu J, Qu WM, Huang ZL (2016) Basal forebrain cholinergic neurons primarily contribute to inhibition of electroencephalogram delta activity; rather than inducing behavioral wakefulness in mice. Neuropsychopharmacology 41:2133–2146

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng W, Rolls ET, Ruan HT, Feng JF (2018) Functional connectivities in the brain that mediate the association between depressive problems and sleep quality. JAMA Psychiat 75:1052–1061

    Google Scholar 

  • Cobb SR, Bulters DO, Suchak S, Riedel G, Morris RGM, Davies CH (1999) Activation of nicotinic acetylcholine receptors patterns network activity in the rodent hippocampus. J Physiol-London 518:131–140

    CAS  PubMed  Google Scholar 

  • Detari L (2000) Tonic and phasic influence of basal forebrain unit activity on the cortical EEG. Behav Brain Res 115:159–170

    CAS  PubMed  Google Scholar 

  • Detari L, Semba K, Rasmusson DD (1997) Responses of cortical EEG-related basal forebrain neurons to brainstem and sensory stimulation in urethane-anaesthetized rats. Eur J Neurosci 9:1153–1161

    CAS  PubMed  Google Scholar 

  • Dong H, Niu J, Su B, Zhu Z, Lv Y, Li Y, Xiong L (2009) Activation of orexin signal in basal forebrain facilitates the emergence from sevoflurane anesthesia in rat. Neuropeptides 43:179–185

    CAS  PubMed  Google Scholar 

  • Dong HI, Fukuda S, Murata E, Zhu ZH, Higuchi T (2006) Orexins increase cortical acetylcholine release and electroencephalographic activation through orexin-1 receptor in the rat basal forebrain during isoflurane anesthesia. Anesthesiology 104:1023–1032

    CAS  PubMed  Google Scholar 

  • Dragoi G, Carpi D, Recce M, Csicsvari J, Buzsaki G (1999) Interactions between hippocampus and medial septum during sharp waves and theta oscillation in the behaving rat. J Neurosci 19:6191–6199

    CAS  PubMed  PubMed Central  Google Scholar 

  • Drever BD, Riedel G, Platt B (2011) The cholinergic system and hippocampal plasticity. Behav Brain Res 221:505–514

    CAS  PubMed  Google Scholar 

  • Dringenberg HC, Vanderwolf CH (1996) Cholinergic activation of the electrocorticogram: an amygdaloid activating system. Exp Brain Res 108:285–296

    CAS  PubMed  Google Scholar 

  • Duque A, Balatoni B, Detari L, Zaborszky L (2000) EEG correlation of the discharge properties of identified neurons in the basal forebrain. J Neurophysiol 84:1627–1635

    CAS  PubMed  Google Scholar 

  • Dutar P, Bassant MH, Senut MC, Lamour Y (1995) The septohippocampal pathway—structure and function of a central cholinergic system. Physiol Rev 75:393–427

    CAS  PubMed  Google Scholar 

  • Eban-Rothschild A, Rothschild G, Giardino WJ, Jones JR, de Lecea L (2016) VTA dopaminergic neurons regulate ethologically relevant sleep-wake behaviors. Nat Neurosci 19:1356

    CAS  PubMed  PubMed Central  Google Scholar 

  • Economo CV (1930) Sleep as a problem of localization. J Nerv Ment Dis 71:249–259

    Google Scholar 

  • Eggermann E, Serafin M, Bayer L, Machard D, Saint-Mleux B, Jones BE, Muhlethaler M (2001) Orexins/hypocretins excite basal forebrain cholinergic neurones. Neuroscience 108:177–181

    CAS  PubMed  Google Scholar 

  • Espana RA, Berridge CW (2006) Organization of noradrenergic efferents to arousal-related basal forebrain structures. J Comp Neurol 496:668–683

    PubMed  Google Scholar 

  • Fadel J, Pasumarthi R, Reznikov LR (2005) Stimulation of cortical acetylcholine release by orexin A. Neuroscience 130:541–547

    CAS  PubMed  Google Scholar 

  • Fadel J, Sarter M, Bruno JP (2001) Basal forebrain glutamatergic modulation of cortical acetylcholine release. Synapse 39:201–212

    CAS  PubMed  Google Scholar 

  • Fort P, Khateb A, Pegna A, Muhlethaler M, Jones BE (1995) Noradrenergic modulation of cholinergic nucleus basalis neurons demonstrated by in vitro pharmacological and immunohistochemical evidence in the guinea-pig brain. Eur J Neurosci 7:1502–1511

    CAS  PubMed  Google Scholar 

  • Fournier GN, Materi LM, Semba K, Rasmusson DD (2004) Cortical acetylcholine release and electroencephalogram activation evoked by ionotropic glutamate receptor agonists in the rat basal forebrain. Neuroscience 123:785–792

    CAS  PubMed  Google Scholar 

  • Fuller P, Sherman D, Pedersen NP, Saper CB, Lu J (2011) Reassessment of the structural basis of the ascending arousal system. J Comp Neurol 519:933–956

    PubMed  PubMed Central  Google Scholar 

  • Gent TC, Bassetti C, Adamantidis AR (2018) Sleep-wake control and the thalamus. Curr Opin Neurobiol 52:188–197

    CAS  PubMed  Google Scholar 

  • Gerashchenko D, Salin-Pascual R, Shiromani PJ (2001) Effects of hypocretin-saporin injections into the medial septum on sleep and hippocampal theta. Brain Res 913:106–115

    CAS  PubMed  Google Scholar 

  • Gritti I, Henny P, Galloni F, Mainville L, Mariotti M, Jones BE (2006) Stereological estimates of the basal forebrain cell population in the rat, including neurons containing choline acetyltransferase, glutamic acid decarboxylase or phosphate-activated glutaminase and colocalizing vesicular glutamate transporters. Neuroscience 143:1051–1064

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gritti I, Manns ID, Mainville L, Jones BE (2003) Parvalbumin, calbindin, or calretinin in cortically projecting and GABAergic, cholinergic, or glutamatergic basal forebrain neurons of the rat. J Comp Neurol 458:11–31

    PubMed  Google Scholar 

  • Haas H, Panula P (2003) The role of histamine and the tuberomamillary nucleus in the nervous system. Nat Rev Neurosci 4:121–130

    CAS  PubMed  Google Scholar 

  • Hajszan T, Zaborszky L (2002) Direct catecholaminergic-cholinergic interactions in the basal forebrain III. Adrenergic innervation of choline acetyltransferase-containing neurons in the rat. J Comp Neurol 449:141–157

    PubMed  Google Scholar 

  • Hallanger AE, Levey AI, Lee HJ, Rye DB, Wainer BH (1987) The origins of cholinergic and other subcortical afferents to the thalamus in the rat. J Comp Neurol 262:105–124

    CAS  PubMed  Google Scholar 

  • Hallanger AE, Wainer BH (1988) Ascending projections from the pedunculopontine tegmental nucleus and the adjacent mesopontine tegmentum in the rat. J Comp Neurol 274:483–515

    CAS  PubMed  Google Scholar 

  • Hamamoto M, Kiyokage E, Sohn J, Hioki H, Harada T, Toida K (2017) Structural basis for cholinergic regulation of neural circuits in the mouse olfactory bulb. J Comp Neurol 525:574–591

    CAS  PubMed  Google Scholar 

  • Han Y, Shi YF, Xi W, Zhou R, Tan ZB, Wang H, Li XM, Chen Z, Feng GP, Luo MM, Huang ZL, Duan SM, Yu YQ (2014) Selective Activation of Cholinergic Basal Forebrain Neurons Induces Immediate Sleep-wake Transitions. Curr Biol 24:693–698

    CAS  PubMed  Google Scholar 

  • Hassani OK, Lee MG, Henny P, Jones BE (2009) Discharge profiles of identified GABAergic in comparison to cholinergic and putative glutamatergic basal forebrain neurons across the sleep-wake cycle. J Neurosci Off J Soc Neurosci 29:11828–11840

    CAS  Google Scholar 

  • Henny P, Jones BE (2006) Vesicular glutamate (VGluT), GABA (VGAT), and acetylcholine (VAChT) transporters in basal forebrain axon terminals innervating the lateral hypothalamus. J Comp Neurol 496:453–467

    CAS  PubMed  PubMed Central  Google Scholar 

  • Henny P, Jones BE (2008) Projections from basal forebrain to prefrontal cortex comprise cholinergic, GABAergic and glutamatergic inputs to pyramidal cells or interneurons. Eur J Neurosci 27:654–670

    PubMed  PubMed Central  Google Scholar 

  • Hobson JA, McCarley RW, Wyzinski PW (1975) Sleep cycle oscillation: reciprocal discharge by two brainstem neuronal groups. Science 189:55–58

    CAS  PubMed  Google Scholar 

  • Hudetz AG, Wood JD, Kampine JP (2003) Cholinergic reversal of isoflurane anesthesia in rats as measured by cross-approximate entropy of the electroencephalogram. Anesthesiology 99:1125–1131

    CAS  PubMed  Google Scholar 

  • Hur EE, Edwards RH, Rommer E, Zaborszky L (2009) Vesicular glutamate transporter 1 and vesicular glutamate transporter 2 synapses on cholinergic neurons in the sublenticular gray of the rat basal forebrain: a double-label electron microscopic study. Neuroscience 164:1721–1731

    CAS  PubMed  PubMed Central  Google Scholar 

  • Irmak SO, de Lecea L (2014) Basal forebrain cholinergic modulation of sleep transitions. Sleep 37:1941–1951

    PubMed  Google Scholar 

  • Jasper HH, Tessier J (1971) Acetylcholine Liberation From Cerebral Cortex during Paradoxical (Rem) Sleep. Science 172:601

    CAS  PubMed  Google Scholar 

  • JimenezCapdeville ME, Dykes RW, Myasnikov AA (1997) Differential control of cortical activity by the basal forebrain in rats: a role for both cholinergic and inhibitory influences. J Comp Neurol 381:53–67

    CAS  Google Scholar 

  • Jones BE (2004) Activity, modulation and role of basal forebrain cholinergic neurons innervating the cerebral cortex. Prog Brain Res 145:157–169

    CAS  PubMed  Google Scholar 

  • Jones BE (2008) Modulation of cortical activation and behavioral arousal by cholinergic and orexinergic systems. Ann N Y Acad Sci 1129:26–34

    CAS  PubMed  Google Scholar 

  • Jones BE, Cuello AC (1989) Afferents to the basal forebrain cholinergic cell area from pontomesencephalic--catecholamine, serotonin, and acetylcholine—neurons. Neuroscience 31:37–61

    CAS  PubMed  Google Scholar 

  • Jones BE, Paré M, Beaudet A (1986) Retrograde labeling of neurons in the brain stem following injections of [3H]choline into the rat spinal cord. Neuroscience 18:901–916

    CAS  PubMed  Google Scholar 

  • Jourdain A, Semba K, Fibiger HC (1989) Basal forebrain and mesopontine tegmental projections to the reticular thalamic nucleus: an axonal collateralization and immunohistochemical study in the rat. Brain Res 505:55–65

    CAS  PubMed  Google Scholar 

  • Jouvet M (1972) The role of monoamines and acetylcholine-containing neurons in the regulation of the sleep-waking cycle. Ergeb Physiol Biol Chem Exp Pharmakol 64:166–307

    CAS  Google Scholar 

  • Kaisti KK, Langsjo JW, Aalto S, Oikonen V, Sipila H, Teras M, Hinkka S, Metsahonkala L, Scheinin H (2003) Effects of sevoflurane, propofol and adjunct nitrous oxide on regional cerebral blood flow, oxygen consumption, and blood volume in humans. Anesthesiology 99:603–613

    CAS  PubMed  Google Scholar 

  • Kalinchuk AV, McCarley RW, Stenberg D, Porkka-Heiskanen T, Basheer R (2008) The role of cholinergic Basal forebrain neurons in adenosine-mediated homeostatic control of sleep: lessons from 192 Igg-Saporin lesions. Neuroscience 157:238–253

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kang DS, Ding MZ, Topchiy I, Kocsis B (2017) Reciprocal interactions between medial septum and hippocampus in theta generation: Granger causality decomposition of mixed spike-field recordings. Front Neuroanat 11:120

    PubMed  PubMed Central  Google Scholar 

  • Kapp BS, Supple WF Jr, Whalen PJ (1994) Effects of electrical stimulation of the amygdaloid central nucleus on neocortical arousal in the rabbit. Behav Neurosci 108:81–93

    CAS  PubMed  Google Scholar 

  • Kaur S, Junek A, Black MA, Semba K (2008) Effects of ibotenate and 192IgG-Saporin lesions of the nucleus basalis magnocellularis/substantia innominata on spontaneous sleep and wake states and on recovery sleep after sleep deprivation in rats. J Neurosci 28:491–504

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kenny JD, Chemali JJ, Cotten JF, Van Dort CJ, Kim SE, Ba D, Taylor NE, Brown EN, Solt K (2016) Physostigmine and methylphenidate induce distinct arousal states during isoflurane general anesthesia in rats. Anesth Analg 123:1210–1219

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khateb A, Fort P, Alonso A, Jones BE, Muhlethaler M (1993) Pharmacological and immunohistochemical evidence for serotonergic modulation of cholinergic nucleus basalis neurons. Eur J Neurosci 5:541–547

    CAS  PubMed  Google Scholar 

  • Kia HK, Brisorgueil MJ, Daval G, Langlois X, Hamon M, Verge D (1996) Serotonin1A receptors are expressed by a subpopulation of cholinergic neurons in the rat medial septum and diagonal band of Broca--a double immunocytochemical study. Neuroscience 74:143–154

    CAS  PubMed  Google Scholar 

  • Kim JH, Jung AH, Jeong D, Choi I, Kim K, Shin S, Kim SJ, Lee SH (2016) Selectivity of neuromodulatory projections from the Basal forebrain and locus ceruleus to primary sensory cortices. J Neurosci 36:5314–5327

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim T, Thankachan S, McKenna JT, McNally JM, Yang C, Choi JH, Chen L, Kocsis B, Deisseroth K, Strecker RE, Basheer R, Brown RE, McCarley RW (2015) Cortically projecting basal forebrain parvalbumin neurons regulate cortical gamma band oscillations. Proc Natl Acad Sci U S A 112:3535–3540

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kirby LG, Pernar L, Valentino RJ, Beck SG (2003) Distinguishing characteristics of serotonin and non-serotonin-containing cells in the dorsal raphe nucleus: electrophysiological and immunohistochemical studies. Neuroscience 116:669–683

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kirk IJ, Oddie SD, Konopacki J, Bland BH (1996) Evidence for differential control of posterior hypothalamic, supramammillary, and medial mammillary theta-related cellular discharge by ascending and descending pathways. J Neurosci 16:5547–5554

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kreindler A, Steriade M (1964) Eeg patterns of arousal and sleep induced by stimulating various amygdaloid levels in the cat. Arch Ital Biol 102:576–586

    CAS  PubMed  Google Scholar 

  • Kroeger D, Ferrari LL, Petit G, Mahoney CE, Fuller PM, Arrigoni E, Scammell TE (2017) Cholinergic, glutamatergic, and GABAergic neurons of the pedunculopontine tegmental nucleus have distinct effects on sleep/wake behavior in mice. J Neurosci 37:1352–1366

    CAS  PubMed  PubMed Central  Google Scholar 

  • Laalou FZ, de Vasconcelos AP, Oberling P, Jeltsch H, Cassel JC, Pain L (2008) Involvement of the basal cholinergic forebrain in the mediation of general (Propofol) anesthesia. Anesthesiology 108:888–896

    CAS  PubMed  Google Scholar 

  • Lavoie B, Parent A (1994) Pedunculopontine nucleus in the squirrel-monkey—cholinergic and glutamatergic projections to the substantia-nigra. J Comp Neurol 344:232–241

    CAS  PubMed  Google Scholar 

  • Lee MG, Hassani OK, Alonso A, Jones BE (2005) Cholinergic basal forebrain neurons burst with theta during waking and paradoxical sleep. J Neurosci 25:4365–4369

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leranth C, Kiss J (1996) A population of supramammillary area calretinin neurons terminating on medial septal area cholinergic and lateral septal area calbindin-containing cells are aspartate/glutamatergic. J Neurosci 16:7699–7710

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leranth C, Vertes RP (1999) Median raphe serotonergic innervation of medial septum diagonal band of broca (MSDB) parvalbumin-containing neurons: possible involvement of the MSDB in the desynchronization of the hippocampal EEG. J Comp Neurol 410:586–598

    CAS  PubMed  Google Scholar 

  • Leung LS, Ma J, Shen B, Nachim I, Luo T (2013) Medial septal lesion enhances general anesthesia response. Exp Neurol 247:419–428

    CAS  PubMed  Google Scholar 

  • Leung LS, Petropoulos S, Shen B, Luo T, Herrick I, Rajakumar N, Ma J (2011) Lesion of cholinergic neurons in nucleus basalis enhances response to general anesthetics. Exp Neurol 228:259–269

    CAS  PubMed  Google Scholar 

  • Leung LS, Shen BX, Rajakumar N, Ma JY (2003) Cholinergic activity enhances hippocampal long-term potentiation in CA1 during walking in rats. J Neurosci 23:9297–9304

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin JS, Anaclet C, Sergeeva OA, Haas HL (2011) The waking brain: an update. Cell Mol Life Sci 68:2499–2512

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin JS, Sakai K, Vannimercier G, Jouvet M (1989) A critical role of the posterior hypothalamus in the mechanisms of wakefulness determined by microinjection of muscimol in freely moving cats. Brain Res 479:225–240

    CAS  PubMed  Google Scholar 

  • Lin SC, Brown RE, Hussain Shuler MG, Petersen CC, Kepecs A (2015) Optogenetic dissection of the basal forebrain neuromodulatory control of cortical activation, plasticity, and cognition. J Neurosci 35:13896–13903

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez-Hernandez GY, Ananth M, Jiang L, Ballinger EC, Talmage DA, Role LW (2017) Electrophysiological properties of basal forebrain cholinergic neurons identified by genetic and optogenetic tagging. J Neurochem 142:103–110

    CAS  PubMed  PubMed Central  Google Scholar 

  • Losier BJ, Semba K (1993) Dual projections of single cholinergic and aminergic brainstem neurons to the thalamus and basal forebrain in the rat. Brain Res 604:41–52

    CAS  PubMed  Google Scholar 

  • Lu J, Sherman D, Devor M, Saper CB (2006) A putative flip-flop switch for control of REM sleep. Nature 441:589–594

    CAS  PubMed  Google Scholar 

  • Luo T, Leung LS (2009) Basal forebrain histaminergic transmission modulates electroencephalographic activity and emergence from isoflurane anesthesia. Anesthesiology 111:725–733

    CAS  PubMed  Google Scholar 

  • Luppi PH, Billwiller F, Fort P (2017) Selective activation of a few limbic structures during paradoxical (REM) sleep by the claustrum and the supramammillary nucleus: evidence and function. Curr Opin Neurobiol 44:59–64

    CAS  PubMed  Google Scholar 

  • Luppi PH, Clement O, Sapin E, Gervasoni D, Peyron C, Leger L, Salvert D, Fort P (2011) The neuronal network responsible for paradoxical sleep and its dysfunctions causing narcolepsy and rapid eye movement (REM) behavior disorder. Sleep Med Rev 15:153–163

    PubMed  Google Scholar 

  • Manns ID, Mainville L, Jones BE (2001) Evidence for glutamate, in addition to acetylcholine and GABA, neurotransmitter synthesis in basal forebrain neurons projecting to the entorhinal cortex. Neuroscience 107:249–263

    CAS  PubMed  Google Scholar 

  • Marazioti A, Kastellakis A, Antoniou K, Papasava D, Thermos K (2005) Somatostatin receptors in the ventral pallidum/substantia innominata modulate rat locomotor activity. Psychopharmacology 181:319–326

    CAS  PubMed  Google Scholar 

  • Martin-Cortecero J, Nunez A (2014) Tactile response adaptation to whisker stimulation in the lemniscal somatosensory pathway of rats. Brain Res 1591:27–37

    CAS  PubMed  Google Scholar 

  • Massimini M, Ferrarelli F, Huber R, Esser SK, Singh H, Tononi G (2005) Breakdown of cortical effective connectivity during sleep. Science 309:2228–2232

    CAS  PubMed  Google Scholar 

  • McDonald AJ (1991) Topographical organization of amygdaloid projections to the caudatoputamen, nucleus accumbens, and related striatal-like areas of the rat brain. Neuroscience 44:15–33

    CAS  PubMed  Google Scholar 

  • McGinty DJ, Harper RM (1976) Dorsal raphe neurons: depression of firing during sleep in cats. Brain Res 101:569–575

    CAS  PubMed  Google Scholar 

  • McKenna JT, Cordeira JW, Jeffrey BA, Ward CP, Winston S, McCarley RW, Strecker RE (2009) c-Fos protein expression is increased in cholinergic neurons of the rodent basal forebrain during spontaneous and induced wakefulness. Brain Res Bull 80:382–388

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miller JD, Farber J, Gatz P, Roffwarg H, German DC (1983) Activity of mesencephalic dopamine and non-dopamine neurons across stages of sleep and walking in the rat. Brain Res 273:133–141

    CAS  PubMed  Google Scholar 

  • Mochizuki T, Arrigoni E, Marcus JN, Clark EL, Yamamoto M, Honer M, Borroni E, Lowell BB, Elmquist JK, Scammell TE (2011) Orexin receptor 2 expression in the posterior hypothalamus rescues sleepiness in narcoleptic mice. Proc Natl Acad Sci U S A 108:4471–4476

    CAS  PubMed  PubMed Central  Google Scholar 

  • Momiyama T (2010) Developmental increase in D1-like dopamine receptor-mediated inhibition of glutamatergic transmission through P/Q-type channel regulation in the basal forebrain of rats. Eur J Neurosci 32:579–590

    PubMed  Google Scholar 

  • Momiyama T, Nishijo T (2017) Dopamine and Serotonin-Induced Modulation of GABAergic and Glutamatergic Transmission in the Striatum and Basal Forebrain. Front Neuroanat 11:42

    PubMed  PubMed Central  Google Scholar 

  • Monti JM (2010) The role of dorsal raphe nucleus serotonergic and non-serotonergic neurons, and of their receptors, in regulating waking and rapid eye movement (REM) sleep. Sleep Med Rev 14:319–327

    PubMed  Google Scholar 

  • Monti JM, Jantos H (2015) The effects of systemic administration and local microinjection into the central nervous system of the selective serotonin 5-HT2C receptor agonist RO-600175 on sleep and wakefulness in the rat. Behav Pharmacol 26:418–426

    CAS  PubMed  Google Scholar 

  • Monti JM, Jantos H, Schechter LE (2013) The effects of systemic and local microinjection into the central nervous system of the selective serotonin 5-HT6 receptor agonist WAY-208466 on sleep and wakefulness in the rat. Behav Brain Res 249:65–74

    CAS  PubMed  Google Scholar 

  • Moore RY, Bloom FE (1978) Central catecholamine neuron systems- anatomy and physiology of the dopamine systems. Annu Rev Neurosci 1:129–169

    CAS  PubMed  Google Scholar 

  • Moruzzi G, Magoun HW (1949) Brain stem reticular formation and activation of the EEG. Electroencephalogr Clin Neurophysiol 1:455–473

    CAS  PubMed  Google Scholar 

  • Muzerelle A, Scotto-Lomassese S, Bernard JF, Soiza-Reilly M, Gaspar P (2016) Conditional anterograde tracing reveals distinct targeting of individual serotonin cell groups (B5-B9) to the forebrain and brainstem. Brain Struct Funct 221:535–561

    CAS  PubMed  Google Scholar 

  • Nadasdy Z, Varsanyi P, Zaborszky L (2010) Clustering of large cell populations: method and application to the basal forebrain cholinergic system. J Neurosci Methods 194:46–55

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nambu T, Sakurai T, Mizukami K, Hosoya Y, Yanagisawa M, Goto K (1999) Distribution of orexin neurons in the adult rat brain. Brain Res 827:243–260

    CAS  PubMed  Google Scholar 

  • Oddie SD, Stefanek W, Kirk IJ, Bland BH (1996) Intraseptal procaine abolishes hypothalamic stimulation-induced wheel-running and hippocampal theta field activity in rats. J Neurosci 16:1948–1956

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ongini E, Caporali MG, Massotti M (1985) Stimulation of dopamine D-1 receptors by SKF 38393 induces EEG desynchronization and behavioral arousal. Life Sci 37:2327–2333

    CAS  PubMed  Google Scholar 

  • Pace-Schott EF, Hobson JA (2002) The neurobiology of sleep: genetics, cellular physiology and subcortical networks, Nature reviews. Neuroscience 3:591–605

    CAS  PubMed  Google Scholar 

  • Pain L, Jeltsch H, Lehmann O, Lazarus C, Laalou FZ, Cassel JC (2000) Central cholinergic depletion induced by 192 IgG-saporin alleviates the sedative effects of propofol in rats. Brit J Anaesth 85:869–873

    CAS  PubMed  Google Scholar 

  • Paraskeva A, Papilas K, Fassoulaki A, Melemeni A, Papadopoulos G (2002) Physostigmine does not antagonize sevoflurane anesthesia assessed by bispectral index or enhances recovery. Anesth Analg 94:569–572

    CAS  PubMed  Google Scholar 

  • Pare D, Smith Y (1994) GABAergic projection from the intercalated cell masses of the amygdala to the basal forebrain in cats. J Comp Neurol 344:33–49

    CAS  PubMed  Google Scholar 

  • Pedersen NP, Ferrari L, Venner A, Wang JL, Abbott SBG, Vujovic N, Arrigoni E, Saper CB, Fuller PM (2017) Supramammillary glutamate neurons are a key node of the arousal system. Nat Commun 8:1405

    PubMed  PubMed Central  Google Scholar 

  • Peyron C, Tighe DK, van den Pol AN, de Lecea L, Heller HC, Sutcliffe JG, Kilduff TS (1998) Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci 18:9996–10015

    CAS  PubMed  PubMed Central  Google Scholar 

  • Phillis JW (2005) Acetylcholine release from the central nervous system: a 50-year retrospective. Crit Rev Neurobiol 17:161–217

    CAS  PubMed  Google Scholar 

  • Pillay S, Vizuete JA, McCallum JB, Hudetz AG (2011) Norepinephrine infusion into nucleus basalis elicits microarousal in desflurane-anesthetized rats. Anesthesiology 115:733–742

    CAS  PubMed  PubMed Central  Google Scholar 

  • Poulin AN, Guerci A, El Mestikawy S, Semba K (2006) Vesicular glutamate transporter 3 immunoreactivity is present in cholinergic basal forebrain neurons projecting to the basolateral amygdala in rat. J Comp Neurol 498:690–711

    CAS  Google Scholar 

  • Ramesh V, Thakkar MM, Strecker RE, Basheer R, McCarley RW (2004) Wakefulness-inducing effects of histamine in the basal forebrain of freely moving rats. Behav Brain Res 152:271–278

    CAS  PubMed  Google Scholar 

  • Rasmusson DD, Clow K, Szerb JC (1994) Modification of neocortical acetylcholine-release and electroencephalogram desynchronization due to brain-stem stimulation by drugs applied to the Basal forebrain. Neuroscience 60:665–677

    CAS  PubMed  Google Scholar 

  • Renouard L, Billwiller F, Ogawa K, Clement O, Camargo N, Abdelkarim M, Gay N, Scote-Blachon C, Toure R, Libourel PA, Ravassard P, Salvert D, Peyron C, Claustrat B, Leger L, Salin P, Malleret G, Fort P, Luppi PH (2015) The supramammillary nucleus and the claustrum activate the cortex during REM sleep. Sci Adv 1:e1400177

    PubMed  PubMed Central  Google Scholar 

  • Rho HJ, Kim JH, Lee SH (2018) Function of selective neuromodulatory projections in the mammalian cerebral cortex: comparison between cholinergic and noradrenergic systems. Front Neural Circuit 12:47

    Google Scholar 

  • Rye DB, Wainer BH, Mesulam MM, Mufson EJ, Saper CB (1984) Cortical projections arising from the basal forebrain: a study of cholinergic and noncholinergic components employing combined retrograde tracing and immunohistochemical localization of choline acetyltransferase. Neuroscience 13:627–643

    CAS  PubMed  Google Scholar 

  • Sainsbury RS, Bland BH (1981) The effects of selective septal lesions on theta production in CA1 and the dentate gyrus of the hippocampus. Physiol Behav 26:1097–1101

    CAS  PubMed  Google Scholar 

  • Saito H, Sakai K, Jouvet M (1977) Discharge patterns of the nucleus parabrachialis lateralis neurons of the cat during sleep and waking. Brain Res 134:59–72

    CAS  PubMed  Google Scholar 

  • Salib M, Joshi A, Katona L, Howarth M, Micklem B, Somogyi P, Viney TJ (2019) GABAergic medial septal neurons with low-rhythmic firing innervating the dentate gyrus and hippocampal area CA3. J Neurosci 39(23):4527–4549

    PubMed  PubMed Central  Google Scholar 

  • Sallanon M, Denoyer M, Kitahama K, Aubert C, Gay N, Jouvet M (1989) Long-lasting insomnia induced by preoptic neuron lesions and its transient reversal by muscimol injection into the posterior hypothalamus in the cat. Neuroscience 32:669–683

    CAS  PubMed  Google Scholar 

  • Saper CB, Fuller PM, Pedersen NP, Lu J, Scammell TE (2010) Sleep state switching. Neuron 68:1023–1042

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sarter M, Lustig C, Howe WM, Gritton H, Berry AS (2014) Deterministic functions of cortical acetylcholine. Eur J Neurosci 39:1912–1920

    PubMed  PubMed Central  Google Scholar 

  • Schwarz LA, Luo L (2015) Organization of the locus coeruleus-norepinephrine system. Curr Biol 25:R1051–R1056

    CAS  PubMed  Google Scholar 

  • Semba K (2004) Phylogenetic and ontogenetic aspects of the basal forebrain cholinergic neurons and their innervation of the cerebral cortex. Prog Brain Res 145:3–43

    CAS  PubMed  Google Scholar 

  • Semba K, Fibiger HC (1989) Organization of central cholinergic systems. Progr Brain Res 79:37–63

    CAS  Google Scholar 

  • Semba K, Reiner PB, McGeer EG, Fibiger HC (1988) Brainstem afferents to the magnocellular basal forebrain studied by axonal transport, immunohistochemistry, and electrophysiology in the rat. J Comp Neurol 267:433–453

    CAS  PubMed  Google Scholar 

  • Servos P, Barke KE, Hough LB, Vanderwolf CH (1994) Histamine does not play an essential role in electrocortical activation during waking behavior. Brain Res 636:98–102

    CAS  PubMed  Google Scholar 

  • Shiromani PJ, Winston S, McCarley RW (1996) Pontine cholinergic neurons show Fos-like immunoreactivity associated with cholinergically induced REM sleep. Mol Brain Res 38:77–84

    CAS  PubMed  Google Scholar 

  • Sim JA, Griffith WH (1996) Muscarinic inhibition of glutamatergic transmissions onto rat magnocellular basal forebrain neurons in a thin-slice preparation. Eur J Neurosci 8:880–891

    CAS  PubMed  Google Scholar 

  • Smiley JF, Subramanian M, Mesulam MM (1999) Monoaminergic-cholinergic interactions in the primate basal forebrain. Neuroscience 93:817–829

    CAS  PubMed  Google Scholar 

  • Smith KS, Csordas A, Hajszan T, Zaborszky L (2001) Somatostatin-containing neurons in the basal forebrain receive input from the ventral tegmental mesencephalon. Soc Neurosci 27:599.15

    Google Scholar 

  • Steinfels GF, Heym J, Strecker RE, Jacobs BL (1983) Behavioral correlates of dopaminergic unit activity in freely moving cats. Brain Res 258:217–228

    CAS  PubMed  Google Scholar 

  • Steriade M (1995) Neuromodulatory systems of thalamus and neocortex. Semin Neurosci 7:361–370

    Google Scholar 

  • Strecker RE, Morairty S, Thakkar MM, Porkka-Heiskanen T, Basheer R, Dauphin LJ, Rainnie DG, Portas CM, Greene RW, McCarley RW (2000) Adenosinergic modulation of basal forebrain and preoptic/anterior hypothalamic neuronal activity in the control of behavioral state. Behav Brain Res 115:183–204

    CAS  PubMed  Google Scholar 

  • Sutcliffe JG, de Lecea L (2002) The hypocretins: setting the arousal threshold. Nat Rev Neurosci 3:339–349

    CAS  PubMed  Google Scholar 

  • Tai SK, Ma J, Leung LS (2014) Medial septal cholinergic neurons modulate isoflurane anesthesia. Anesthesiology 120:392–402

    CAS  PubMed  Google Scholar 

  • Thakkar MM (2011) Histamine in the regulation of wakefulness. Sleep Med Rev 15:65–74

    PubMed  Google Scholar 

  • Thakkar MM, Ramesh V, Strecker RE, McCarley RW (2001) Microdialysis perfusion of orexin-A in the basal forebrain increases wakefulness in freely behaving rats. Arch Ital Biol 139:313–328

    CAS  PubMed  Google Scholar 

  • Thannickal TC, Moore RY, Nienhuis R, Ramanathan L, Gulyani S, Aldrich M, Cornford M, Siegel JM (2000) Reduced number of hypocretin neurons in human narcolepsy. Neuron 27:469–474

    CAS  PubMed  Google Scholar 

  • Trulson ME, Preussler DW (1984) Dopamine-containing ventral tegmental area neurons in freely moving cats—activity during the sleep-waking cycle and effects of stress. Exp Neurol 83:367–377

    CAS  PubMed  Google Scholar 

  • Unal CT, Golowasch JP, Zaborszky L (2012) Adult mouse basal forebrain harbors two distinct cholinergic populations defined by their electrophysiology. Front Behav Neurosci 6:21

    CAS  PubMed  PubMed Central  Google Scholar 

  • Van Dort CJ, Zachs DP, Kenny JD, Zheng S, Goldblum RR, Gelwan NA, Ramos DM, Nolan MA, Wang KR, Weng FJ, Lin YX, Wilson MA, Brown EN (2015) Optogenetic activation of cholinergic neurons in the PPT or LDT induces REM sleep. Proc Natl Acad Sci U S A 112:584–589

    PubMed  Google Scholar 

  • Vanderwolf CH, Baker GB (1986) Evidence that serotonin mediates non-cholinergic neocortical low-voltage fast activity, non-cholinergic hippocampal rhythmical slow activity and contributes to intelligent behavior. Brain Res 374:342–356

    CAS  PubMed  Google Scholar 

  • Vertes RP (2015) Major diencephalic inputs to the hippocampus: supramammillary nucleus and nucleus reuniens. Circuitry and function. Prog Brain Res 219:121–144

    PubMed  PubMed Central  Google Scholar 

  • Vertes RP, Kocsis B (1997) Brainstem-diencephalo-septohippocampal systems controlling the theta rhythm of the hippocampus. Neuroscience 81:893–926

    CAS  PubMed  Google Scholar 

  • Wang YQ, Li R, Zhang MQ, Zhang Z, Qu WM, Huang ZL (2015) The neurobiological mechanisms and treatments of REM sleep disturbances in depression. Curr Neuropharmacol 13:543–553

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weber F, Dan Y (2016) Circuit-based interrogation of sleep control. Nature 538:51–59

    CAS  PubMed  Google Scholar 

  • Webster HH, Jones BE (1988) Neurotoxic lesions of the dorsolateral pontomesencephalic tegmentum cholinergic cell area in the cat. 2. effects upon sleep waking states. Brain Res 458:285–302

    CAS  PubMed  Google Scholar 

  • Wenk GL, Stoehr JD, Quintana G, Mobley S, Wiley RG (1994) Behavioral, biochemical, histological, and electrophysiological effects of 192-Igg-Saporin injections into the Basal forebrain of rats. J Neurosci 14:5986–5995

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wisor JP, Nishino S, Sora I, Uhl GH, Mignot E, Edgar DM (2001) Dopaminergic role in stimulant-induced wakefulness. J Neurosci 21:1787–1794

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu M, Zaborszky L, Hajszan T, van den Pol AN, Alreja M (2004) Hypocretin/orexin innervation and excitation of identified septohippocampal cholinergic neurons. J Neurosci 24:3527–3536

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu M, Chung S, Zhang S, Zhong P, Ma C, Chang WC, Weissbourd B, Sakai N, Luo L, Nishino S, Dan Y (2015) Basal forebrain circuit for sleep-wake control. Nat Neurosci 18:1641–1647

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang C, McKenna JT, Zant JC, Winston S, Basheer R, Brown RE (2014) Cholinergic neurons excite cortically projecting basal forebrain GABAergic neurons. J Neurosci 34:2832–2844

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu X, Franks NP, Wisden W (2018) Sleep and sedative states induced by targeting the histamine and noradrenergic systems. Front Neural Circuits 12:4

    PubMed  PubMed Central  Google Scholar 

  • Zaborszky L (1989) Afferent connections of the forebrain cholinergic projection neurons, with special reference to monoaminergic and peptidergic fibers. EXS 57:12–32

    CAS  PubMed  Google Scholar 

  • Zaborszky L, Cullinan WE (1989) Hypothalamic axons terminate on forebrain cholinergic neurons—an ultrastructural double-labeling study using Pha-L tracing and chat immunocytochemistry. Brain Res 479:177–184

    CAS  PubMed  Google Scholar 

  • Zaborszky L, Cullinan WE, Braun A (1991) Afferents to basal forebrain cholinergic projection neurons: an update. Adv Exp Med Biol 295:43–100

    CAS  PubMed  Google Scholar 

  • Zaborszky L, Cullinan WE, Luine VN (1993) Catecholaminergic-cholinergic interaction In the Basal forebrain. Progr Brain Res 98:31–49

    CAS  Google Scholar 

  • Zaborszky L, Duque A (2000) Local synaptic connections of basal forebrain neurons. Behav Brain Res 115:143–158

    CAS  PubMed  Google Scholar 

  • Zaborszky L, Gaykema RP, Swanson DJ, Cullinan WE (1997) Cortical input to the basal forebrain. Neuroscience 79:1051–1078

    CAS  PubMed  Google Scholar 

  • Zaborszky L, Leranth C, Heimer L (1984) Ultrastructural evidence of amygdalofugal axons terminating on cholinergic cells of the rostral forebrain. Neurosci Lett 52:219–225

    CAS  PubMed  Google Scholar 

  • Zaborszky L, Luine VN (1987) Evidence for existence of monoaminergic-cholinergic interactions in the basal forebrain. J Cell Biochem:187–187

    Google Scholar 

  • Zaborszky L, Pang K, Somogyi J, Nadasdy Z, Kallo I (1999) The basal forebrain corticopetal system revisited. Ann N Y Acad Sci 877:339–367

    CAS  PubMed  Google Scholar 

  • Zant JC, Kim T, Prokai L, Szarka S, McNally J, McKenna JT, Shukla C, Yang C, Kalinchuk AV, McCarley RW, Brown RE, Basheer R (2016) Cholinergic neurons in the Basal forebrain promote wakefulness by actions on neighboring non-cholinergic neurons: an opto-dialysis study. J Neurosci 36:2057–2067

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zant JC, Rozov S, Wigren HK, Panula P, Porkka-Heiskanen T (2012) Histamine release in the Basal forebrain mediates cortical activation through cholinergic neurons. J Neurosci 32:13244–13254

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Lin SC, Nicolelis MA (2011) A distinctive subpopulation of medial septal slow-firing neurons promote hippocampal activation and theta oscillations. J Neurophysiol 106:2749–2763

    PubMed  PubMed Central  Google Scholar 

  • Zhang LN, Li ZJ, Tong L, Guo C, Niu JY, Hou WG, Dong HL (2012) Orexin-A facilitates emergence from propofol anesthesia in the rat. Anesth Analg 115:789–796

    CAS  PubMed  Google Scholar 

  • Zhang LN, Yang C, Ouyang PR, Zhang ZC, Ran MZ, Tong L, Dong HL, Liu Y (2016) Orexin-A facilitates emergence of the rat from isoflurane anesthesia via mediation of the basal forebrain. Neuropeptides 58:7–14

    CAS  PubMed  Google Scholar 

  • Zheng Y, Feng S, Zhu X, Jiang W, Wen P, Ye F, Rao X, Jin S, He X, Xu F (2018) Different subgroups of cholinergic neurons in the basal forebrain are distinctly innervated by the olfactory regions and activated differentially in olfactory memory retrieval. Front Neural Circuits 12:99

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zucker J (1991) Central cholinergic depression reduces mac for isoflurane in rats. Anesth Analg 72:790–795

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wang Xi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wu, Y., Wang, L., Yang, F., Xi, W. (2020). Neural Circuits for Sleep–Wake Regulation. In: Wang, H. (eds) Neural Circuits of Innate Behaviors. Advances in Experimental Medicine and Biology, vol 1284. Springer, Singapore. https://doi.org/10.1007/978-981-15-7086-5_8

Download citation

Publish with us

Policies and ethics