Skip to main content

Oxidative Activation of Metal-Exchanged Zeolite Catalysts for Methane Hydroxylation

  • Chapter
  • First Online:

Abstract

The stepwise approach of methane direct conversion to methanol by Fe- and Cu-exchanged zeolite catalysts involves a pre-activation of the catalysts by an oxidant at high temperature. Since an isothermal process of this approach at temperature below 200 °C is highly desirable, understanding the mechanism of the oxidative activation is important for developing strategies to reduce the activation temperature. In this chapter, I provide an overview of recent theoretical understanding in the mechanisms of the Fe- and Cu-oxo active site formations from N2O, H2O2, and O2 activations. Density functional theory calculations show that N2–O, HO–OH, and O=O cleavages on the reduced Fe and Cu centers can actually be achieved with low activation barriers. However, as also suggested by recent experimental works, high temperature is required to form the precursors, i.e. the reduced metal centers. I conclude this overview with forward looking aspects that should be addressed in the future.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Narsimhan K, Iyoki K, Dinh K, Román-Leshkov Y (2016) ACS Cent Sci 2:424–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dinh KT, Sullivan MM, Narsimhan K, Serna P, Meyer RJ, Dincă M, Román-Leshkov Y (2019) J Am Chem Soc 141:11641–11650

    Article  CAS  PubMed  Google Scholar 

  3. Panov GI, Sobolev VI, Kharitonov AS (1990) J Mol Catal 61:85–97

    Article  CAS  Google Scholar 

  4. Sobolev VI, Dubkov KA, Panna OV, Panov GI (1995) Catal Today 24:251–252

    Article  CAS  Google Scholar 

  5. Panov GI, Sobolev VI, Dubkov KA, Parmon VN, Ovanesyan NS, Shilov AE, Shteinman AA (1997) React Kinet Catal Lett 61:251–258

    Article  CAS  Google Scholar 

  6. Snyder BER, Vanelderen P, Bols ML, Hallaert SD, Böttger LH, Ungur L, Pierloot K, Schoonheydt RA, Sels BF, Solomon EI (2016) Nature 536:317–321

    Article  CAS  PubMed  Google Scholar 

  7. Bols ML, Hallaert SD, Snyder BER, Devos J, Plessers D, Rhoda HM, Dusselier M, Schoonheydt RA, Pierloot K, Solomon EI, Sels BF (2018) J Am Chem Soc 140:12021–12032

    Article  CAS  PubMed  Google Scholar 

  8. Hammond C, Forde MM, Ab Rahim MH, Thetford A, He Q, Jenkins RL, Dimitratos N, Lopez-Sanchez JA, Dummer NF, Murphy DM, Carley AF, Taylor SH, Willock DJ, Stangland EE, Kang J, Hagen H, Kiely CJ, Hutchings GJ (2012) Angew Chemie Int Ed 51:5129–5133

    Article  CAS  Google Scholar 

  9. Hammond C, Dimitratos N, Lopez-Sanchez JA, Jenkins RL, Whiting G, Kondrat SA, ab Rahim MH, Forde MM, Thetford A, Hagen H, Stangland EE, Moulijn JM, Taylor SH, Willock DJ, Hutchings GJ (2013) ACS Catal 3:1835–1844

    Article  CAS  Google Scholar 

  10. Hammond C, Hermans I, Dimitratos N (2015) ChemCatChem 7:434–440

    Article  CAS  Google Scholar 

  11. Xiao P, Wang Y, Nishitoba T, Kondo JN, Yokoi T (2019) Chem Commun 55:2896–2899

    Article  CAS  Google Scholar 

  12. Groothaert MH, Smeets PJ, Sels BF, Jacobs PA, Schoonheydt RA (2005) J Am Chem Soc 127:1394–1395

    Article  CAS  PubMed  Google Scholar 

  13. Smeets PJ, Groothaert MH, Schoonheydt RA (2005) Catal Today 110:303–309

    Article  CAS  Google Scholar 

  14. Woertink JS, Smeets PJ, Groothaert MH, Vance MA, Sels BF, Schoonheydt RA, Solomon EI (2009) Proc Natl Acad Sci U S A 106:18908–18913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Vanelderen P, Snyder BER, Tsai M-L, Hadt RG, Vancauwenbergh J, Coussens O, Schoonheydt RA, Sels BF, Solomon EI (2015) J Am Chem Soc 137:6383–6392

    Article  CAS  PubMed  Google Scholar 

  16. Grundner S, Markovits MAC, Li G, Tromp M, Pidko EA, Hensen EJM, Jentys A, Sanchez-Sanchez M, Lercher JA (2015) Nat Commun 6:7546

    Article  PubMed  Google Scholar 

  17. Beznis N V., Weckhuysen BM, Bitter JH (2010) Catal Letters 136:52–56

    Article  CAS  Google Scholar 

  18. Shan J, Huang W, Nguyen L, Yu Y, Zhang S, Li Y, Frenkel AI, Tao F (2014) Langmuir 30:8558–8569

    Article  CAS  PubMed  Google Scholar 

  19. Mahyuddin MH, Yoshizawa K (2018) Catal Sci Technol 8:5875–5885

    Article  CAS  Google Scholar 

  20. Oda A, Ohkubo T, Yumura T, Kobayashi H, Kuroda Y (2019) Inorg Chem 58:327–338

    Article  CAS  PubMed  Google Scholar 

  21. Shan J, Li M, Allard LF, Lee S, Flytzani-Stephanopoulos M (2017) Nature 551:605–608

    Article  CAS  PubMed  Google Scholar 

  22. Tomkins P, Ranocchiari M, van Bokhoven JA (2017) Acc Chem Res 50:418–425

    Article  CAS  PubMed  Google Scholar 

  23. Park MB, Ahn SH, Ranocchiari M, van Bokhoven J (2017) ChemCatChem 9:3705–3713

    Article  CAS  Google Scholar 

  24. Kim Y, Kim TY, Lee H, Yi J (2017) Chem Commun 53:4116–4119

    Article  CAS  Google Scholar 

  25. Mahyuddin MH, Shiota Y, Staykov A, Yoshizawa K (2017) Inorg Chem 56:10370–10380

    Article  CAS  PubMed  Google Scholar 

  26. Mahyuddin MH, Shiota Y, Yoshizawa K (2019) Catal Sci Technol 9:1744–1768

    Article  CAS  Google Scholar 

  27. Li G, Pidko EA, Filot IAW, van Santen RA, Li C, Hensen EJM (2013) J Catal 308:386–397

    Article  CAS  Google Scholar 

  28. Kondratenko E V., Pérez-Ramírez J (2006) J Phys Chem B 110:22586–22595

    Article  CAS  PubMed  Google Scholar 

  29. Szécsényi Á, Li G, Gascon J, Pidko EA (2018) ACS Catal 8:7961–7972

    Article  PubMed  PubMed Central  Google Scholar 

  30. Tsai M-L, Hadt RG, Vanelderen P, Sels BF, Schoonheydt RA, Solomon EI (2014) J Am Chem Soc 136:3522–3529

    Article  CAS  PubMed  Google Scholar 

  31. Smeets PJ, Hadt RG, Woertink JS, Vanelderen P, Schoonheydt RA, Sels BF, Solomon EI (2010) J Am Chem Soc 132:14736–14738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mahyuddin MH, Tanaka T, Staykov A, Shiota Y, Yoshizawa K (2018) Inorg Chem 57:10146–10152

    Article  CAS  PubMed  Google Scholar 

  33. Mahyuddin MH, Tanaka T, Shiota Y, Staykov A, Yoshizawa K (2018) ACS Catal 8:1500–1509

    Article  CAS  Google Scholar 

  34. Zheng J, Lee I, Khramenkova E, Wang M, Peng B, Gutierrez O, Fulton JL, Camaioni D, Khare R, Jentys A, Haller G, Pidko E, Sanchez-Sanchez M, Lercher J (2020) Chem – A Eur J 26:7563–7567

    Google Scholar 

  35. Mahyuddin MH, Staykov A, Saputro AG, Agusta MK, Dipojono HK, Yoshizawa K (2020) J Phys Chem C 124:18112–18125

    Google Scholar 

  36. Ikuno T, Grundner S, Jentys A, Li G, Pidko E, Fulton J, Sanchez-Sanchez M, Lercher JA (2019) J Phys Chem C 123:8759–8769

    Article  CAS  Google Scholar 

  37. Sushkevich VL, Smirnov A V., van Bokhoven JA (2019) J Phys Chem C 123:9926–9934

    Article  CAS  Google Scholar 

  38. Sushkevich VL, Palagin D, Ranocchiari M, van Bokhoven JA (2017) Science 356:523–527

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The computations were performed at the Research Institute for Information Technology (Kyushu University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Haris Mahyuddin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mahyuddin, M.H. (2020). Oxidative Activation of Metal-Exchanged Zeolite Catalysts for Methane Hydroxylation. In: Yoshizawa, K. (eds) Direct Hydroxylation of Methane. Springer, Singapore. https://doi.org/10.1007/978-981-15-6986-9_5

Download citation

Publish with us

Policies and ethics