Skip to main content

Role of C-Reactive Protein in Tropical Infectious Diseases

  • Chapter
  • First Online:
Clinical Significance of C-reactive Protein
  • 366 Accesses

Abstract

Tropical diseases are the deadly infectious diseases which are caused by protozoan parasites, and some pathogenic species of bacteria mostly prevalent in tropical and subtropical regions of the world. These diseases mostly affect the population having weaker socioeconomic condition, poor hygiene, and health condition and are highly fatal if left untreated. Visceral leishmaniasis (VL), malaria, and tuberculosis are among the notable contributor of highest mortality due to infections globally. The occurrence of HIV with any of the former infections leads to more serious consequences in the developing countries. Therefore, it is necessary to understand the possible mechanism of their eradication and understanding the prognosis of the disease. In most of these infections, the common event is the increased expression of serum acute phase protein (s) which indicates the onset of infection. Increased expression of acute phase proteins is employed as a possible diagnostic solutions, among which the C-reactive protein (CRP) is the important one. CRP is the first pattern recognition receptors identified till date and it is expressed by the liver cells in response to the various factors secreted by macrophages. In case of VL, during infection macrophages induce high serum CRP to initiate complement cascade and phagocytosis, but L. donovani utilizes CRP and its receptor to facilitate its entry into macrophage. While in tuberculosis and malaria, the increased serum level of CRP correlates the severity of the disease. Taken together, this chapter highlights the importance of CRP as an important acute phase protein in the most fatal tropical infectious diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CD 4:

Cluster of differentiation 4

CM:

Cerebral malaria

CRP:

C-reactive protein

Fcγ R:

Fc gamma receptors

GIPL:

Glycosylinositol phospholipid

gp63:

Surface glycoprotein 63

GSPL:

Glycosphingophospholipid

HIV:

Human immunodeficiency viruses

IFN γ:

Interferon gamma

IL10:

Interleukin 10

IL-1β:

Interleukin 1 beta

IL-6:

Interleukin 6

LPG:

Lipophosphoglycan

MDR:

Multidrug resistant

MHC:

Major histocompatibility complex

NTD:

Neglected tropical diseases

RBC:

Red blood cells

SSG:

Sodium stibogluconate

TB:

Tuberculosis

TGF:

Tumor growth factor

TGF-β:

Transforming growth factor beta

TNF-α:

Tumor necrosis factor alpha

VL:

Visceral leishmaniasis

WHO:

World Health Organization

References

  • Addai-Mensah O, Annani-Akollor ME, Fondjo LA, Anto EO, Gyamfi D, Sallah L, Agama D, Djabatey R, Owiredu EW (2019) High-sensitivity C-reactive protein: a potential ancillary biomarker for malaria diagnosis and morbidity. Dis Markers 2019:1408031. https://doi.org/10.1155/2019/1408031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aly AS, Vaughan AM, Kappe SH (2009) Malaria parasite development in the mosquito and infection of the mammalian host. Annu Rev Microbiol 63:195–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ansari NA, Sharma P, Salotra P (2007) Circulating nitric oxide and C-reactive protein levels in Indian kala azar patients: correlation with clinical outcome. Clin Immunol 122(3):343–348. Epub 2007 Jan 9

    Article  CAS  PubMed  Google Scholar 

  • Ansar W, Habib SK, Roy S, Mandal CN, Mandal C (2009a) Unraveling the C-reactive protein complement-cascade in destruction of red blood cells: potential pathological implications in Plasmodium falciparum malaria. Cell Physiol Biochem 23(1–3):175–190. https://doi.org/10.1159/000204106. https://www.who.int/news-room/fact-sheets/detail/tuberculosis

    Article  CAS  PubMed  Google Scholar 

  • Ansar W, Mukhopadhyay S, Habib SK, Basu S, Saha B, Sen AK, Mandal CN, Mandal C (2009b) Disease-associated glycosylated molecular variants of human C-reactive protein activate complement-mediated hemolysis of erythrocytes in tuberculosis and Indian visceral leishmaniasis. Gycoconj J 26(9):1151–1169. https://doi.org/10.1007/s10719-009-9236-y

    Article  CAS  Google Scholar 

  • Bhardwaj N, Ahmed MZ, Sharma S, Nayak A, Anvikar AR, Pande V (2019) C-reactive protein as a prognostic marker of Plasmodiumfalciparum malaria severity. J Vector Borne Dis 56(2):122–126. https://doi.org/10.4103/0972-9062.263727

    Article  CAS  PubMed  Google Scholar 

  • Bodman-Smith KB, Mbuchi M, Culley FJ, Bates PA, Raynes JG (2002) C-reactive protein-mediated phagocytosis of Leishmania donovani promastigotes does not alter parasite survival or macrophage responses. Parasite Immunol 24(9–10):447–454

    Article  CAS  PubMed  Google Scholar 

  • Boras E, Slevin M, Alexander MY, Aljohi A, Gilmore W, Ashworth J, Krupinski J, Potempa LA, Al Abdulkareem I, Elobeid A, Matou-Nasri S (2014) Monomeric C-reactive protein and Notch-3 co-operatively increase angiogenesis through PI3K signalling pathway. Cytokine 69(2):165–179

    Article  CAS  PubMed  Google Scholar 

  • Cao G, Rao J, Cai Y, Wang C, Liao W, Chen T, Qin J, Yuan H, Wang P (2018) Analysis of treatment and prognosis of 863 patients with spinal tuberculosis in Guizhou Province. Biomed Res Int 2018:3265735

    PubMed  PubMed Central  Google Scholar 

  • Culley FJ, Harris RA, Kaye PM, McAdam KP, Raynes JG (1996) C-reactive protein binds to a novel ligand on Leishmania donovani and increases uptake into human macrophages. J Immunol 156(12):4691–4696

    CAS  PubMed  Google Scholar 

  • Delogu G, Sali M, Fadda G (2013) The biology of mycobacterium tuberculosis infection. Mediterr J Hematol Infect Dis 5(1):e2013070

    Article  PubMed  PubMed Central  Google Scholar 

  • Desjeux P (2004) Leishmaniasis: current situation and new perspectives. Comp Immunol Microbiol Infect Dis 27:305–318

    Article  CAS  PubMed  Google Scholar 

  • Díaz CM, Bullon B, Ruiz-Salmerón RJ, Fernández-Riejos P, Fernández-Palacín A, Battino M, Cordero MD, Quiles JL, Varela-López A, Bullón P (2020) Molecular inflammation and oxidative stress are shared mechanisms involved in both myocardial infarction and periodontitis. J Periodontal Res. https://doi.org/10.1111/jre.12739

  • Fogel N (2015) Tuberculosis: a disease without boundaries. Tuberculosis (Edinb) 95(5):527–531

    Article  Google Scholar 

  • Gershov D, Kim S, Brot N, Elkon KB (2000) C-Reactive protein binds to apoptotic cells, protects the cells from assembly of the terminal complement components, and sustains an anti-inflammatory innate immune response: implications for systemic autoimmunity. J Exp Med 192(9):1353–1364. Erratum in: J Exp Med 2001 Jun 18;193(12):1439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorse GJ, Pais MJ, Kusske JA, Cesario TC (1983) Tuberculous spondylitis. A report of six cases and a review of the literature. Medicine (Baltimore) 62(3):178–193

    Article  CAS  Google Scholar 

  • Haghighi L (1969) C-reactive protein in malaria. J Clin Pathol 22(4):430–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heinzel FP, Sadick MD, Holaday BJ et al (1989) Reciprocal expression of interferon gamma or interleukin 4 during the resolution or progression of murine leishmaniasis. Evidence for expansion of distinct helper T cell subsets. J Exp Med 169:59–72

    Article  CAS  PubMed  Google Scholar 

  • Hurt N, Smith T, Teuscher T, Tanner M (1994) Do high levels of C-reactive protein in Tanzanian children indicate malaria morbidity. Clin Diagn Lab Immunol 1(4):437–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Chen L, Fang W, Chen H (2019) Application value of procalcitonin, C-reactive protein and interleukin-6 in the evaluation of traumatic shock. Exp Ther Med 17(6):4586–4592. https://doi.org/10.3892/etm.2019.7492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janmohammadi A, Sheikhi N, Nazarpak HH, Nikbakht BG (2020) Effects of vaccination on acute-phase protein response in broiler chicken. PLoS One 15(2):e0229009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jawed JJ, Majumder S, Bandyopadhyay S, Biswas S, Parveen S, Majumdar S (2016) SLA-PGN-primed dendritic cell-based vaccination induces Th17-mediated protective immunity against experimental visceral leishmaniasis: a crucial role of PKCβ. Pathog Dis 74(5). https://doi.org/10.1093/femspd/ftw041. pii: ftw041; Epub 2016 May 4

  • Jawed JJ, Banerjee S, Bandyopadhyay S, Parveen S, Chowdhury BP, Saini P, Majumdar S (2018) Immunomodulatory effect of Arabinosylated lipoarabinomannan restrict the progression of visceral leishmaniasis through NOD2 inflammatory pathway: functional regulation of T cell subsets. Biomed Pharmacother 106:724–732

    Article  CAS  PubMed  Google Scholar 

  • Jawed JJ, Dutta S, Majumdar S (2019) Functional aspects of T cell diversity in visceral leishmaniasis. Biomed Pharmacother 117:109098

    Article  CAS  PubMed  Google Scholar 

  • Lamb TJ, Brown DE, Potocnik AJ, Langhorne J (2006) Insights into the immunopathogenesis of malaria using mouse models. Expert Rev Mol Med 8(6):1–22

    Article  PubMed  Google Scholar 

  • Lawn SD, Kerkhoff AD, Vogt M, Wood R (2013) Diagnostic and prognostic value of serum C-reactive protein for screening for HIV-associated tuberculosis. Int J Tuberc Lung Dis 17(5):636–643

    Article  CAS  PubMed  Google Scholar 

  • Leonard MK, Blumberg HM (2017) Musculoskeletal tuberculosis. Microbiol Spectr 5(2). https://doi.org/10.1128/microbiolspec.TNMI7-0046-2017

  • Lüthje FL, Blirup-Plum SA, Møller NS, Heegaard PMH, Jensen HE, Kirketerp-Møller K, Gottlieb H, Skovgaard K, Jensen LK (2020) The host response to bacterial bone infection involves a local upregulation of several acute phase proteins. Immunobiology 15:151914. https://doi.org/10.1016/j.imbio.2020.151914

    Article  CAS  Google Scholar 

  • Mbuchi M, Bates PA, Ilg T, Coe JE, Raynes JG (2006) C-reactive protein initiates transformation of Leishmania donovani and L. mexicana through binding to lipophosphoglycan. Mol Biochem Parasitol 146(2):259–264

    Article  CAS  PubMed  Google Scholar 

  • Mihlan M, Blom AM, Kupreishvili K, Lauer N, Stelzner K, Bergström F, Niessen HW, Zipfel PF (2011) Monomeric C-reactive protein modulates classic complement activation on necrotic cells. FASEB J 25(12):4198–4210

    Article  CAS  PubMed  Google Scholar 

  • Miner MD, Chang JC, Pandey AK, Sassetti CM, Sherman DR (2009) Role of cholesterol in Mycobacterium tuberculosis infection. Indian J Exp Biol 47(6):407–411

    CAS  PubMed  Google Scholar 

  • Mohandas N, An X (2012) Malaria and human red blood cells. Med Microbiol Immunol 201(4):593–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mortensen RF, Zhong W (2000) Regulation of phagocytic leukocyte activities by C-reactive protein. J Leukoc Biol 67(4):495–500

    Article  CAS  PubMed  Google Scholar 

  • Murray HW (2002) Kala-azar—progress against a neglected disease. N Engl J Med 22:1793–1794

    Article  Google Scholar 

  • Naik P, Voller A (1984) Serum C-reactive protein levels and falciparum malaria. Trans R Soc Trop Med Hyg 78(6):812–813

    Article  CAS  PubMed  Google Scholar 

  • Newling M, Sritharan L, van der Ham AJ, Hoepel W, Fiechter RH, de Boer L, Zaat SAJ, Bisoendial RJ, Baeten DLP, Everts B, den Dunnen J (2019) C-Reactive protein promotes inflammation through FcγR-induced glycolytic reprogramming of human macrophages. J Immunol 203(1):225–235

    Article  CAS  PubMed  Google Scholar 

  • Olivier M, Gregory DJ, Forget G (2005) Subversion mechanisms by which Leishmania parasites can escape the host immune response: a signaling point of view. Clin Microbiol Rev 18(2):293–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Page AL, de Rekeneire N, Sayadi S, Aberrane S, Janssens AC, Dehoux M, Baron E (2014) Diagnostic and prognostic value of procalcitonin and C-reactive protein in malnourished children. Pediatrics 133(2):e363–e370. https://doi.org/10.1542/peds.2013-2112

    Article  PubMed  Google Scholar 

  • Parveen S, Chowdhury AR, Jawed JJ, Majumdar SB, Saha B, Majumdar S (2018) Immunomodulation of dual specificity phosphatase 4 during visceral leishmaniasis. Microbes Infect 20(2):111–121

    Article  CAS  PubMed  Google Scholar 

  • Paul VK, Bagga A (2019) Ghai essential pediatrics, 9th edn. CBS Publishers and Distributors, New Delhi

    Google Scholar 

  • Paul R, Sinha PK, Bhattacharya R, Banerjee AK, Raychaudhuri P, Mondal J (2012) Study of C reactive protein as a prognostic marker in malaria from Eastern India. Adv Biomed Res 1:41

    Article  PubMed  PubMed Central  Google Scholar 

  • Pezzella AT (2019) History of pulmonary tuberculosis. Thorac Surg Clin 29(1):1–17. https://doi.org/10.1016/j.thorsurg.2018.09.002

    Article  PubMed  Google Scholar 

  • Pigrau-Serrallach C, Rodríguez-Pardo D (2013) Bone and joint tuberculosis. Eur Spine J 22(Suppl 4):556–566

    Article  PubMed  Google Scholar 

  • Piscopo TV, Mallia AC (2007) Leishmaniasis. Postgrad Med J 83(976):649–657

    Article  PubMed  PubMed Central  Google Scholar 

  • Sakai S, Mayer-Barber KD, Barber DL (2014) Defining features of protective CD4 T cell responses to Mycobacterium tuberculosis. Curr Opin Immunol 29:137–142

    Article  CAS  PubMed  Google Scholar 

  • Sarfo BO, Hahn A, Schwarz NG, Jaeger A, Sarpong N, Marks F, Adu-Sarkodie Y, Tamminga T, May J (2018) The usefulness of C-reactive protein in predicting malaria parasitemia in a sub-Saharan African region. PLoS One 13(8):e0201693. https://doi.org/10.1371/journal.pone.0201693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schleicher GK, Herbert V, Brink A, Martin S, Maraj R, Galpin JS, Feldman C (2005) Procalcitonin and C-reactive protein levels in HIV-positive subjects with tuberculosis and pneumonia. Eur Respir J 25(4):688–692

    Article  CAS  PubMed  Google Scholar 

  • Silva Miranda M, Breiman A, Allain S, Deknuydt F, Altare F (2012) The tuberculous granuloma: an unsuccessful host defence mechanism providing a safety shelter for the bacteria? Clin Dev Immunol 2012:139127

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh UK, Patwari AK, Sinha RK, Kumar R (1999) Prognostic value of serum C-reactive protein in kala-azar. J Trop Pediatr 45(4):226–228. https://doi.org/10.1093/tropej/45.4.226

    Article  CAS  PubMed  Google Scholar 

  • Song X, Sun X, Oh SF, Wu M, Zhang Y, Zheng W, Geva-Zatorsky N, Jupp R, Mathis D, Benoist C, Kasper DL (2020) Microbial bile acid metabolites modulate gut RORγ(+) regulatory T cell homeostasis. Nature 577(7790):410–415

    Article  CAS  PubMed  Google Scholar 

  • Sproston NR, Ashworth JJ (2018) Role of C-reactive protein at sites of inflammation and infection. Front Immunol 9:754

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stauga S, Hahn A, Brattig NW, Fischer-Herr J, Baldus S, Burchard GD, Cramer JP (2013) Clinical relevance of different biomarkers in imported plasmodium falciparum malaria in adults: a case control study. Malar J 12:246. https://doi.org/10.1186/1475-2875-12-246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stead WW (1997) The origin and erratic global spread of tuberculosis. How the past explains the present and is the key to the future. Clin Chest Med 18(1):65–77

    Article  CAS  PubMed  Google Scholar 

  • Szalai AJ, Barnum SR, Ramos TN (2014) Deletion of C-reactive protein ameliorates experimental cerebral malaria? Trans R Soc Trop Med Hyg 108(9):591–593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tangpukdee N, Duangdee C, Wilairatana P, Krudsood S (2009) Malaria diagnosis: a brief review. Korean J Parasitol 47(2):93–102

    Article  PubMed  PubMed Central  Google Scholar 

  • Thompson D, Pepys MB, Wood SP (1999) The physiological structure of human C-reactive protein and its complex with phosphocholine. Structure 7(2):169–177

    Article  CAS  PubMed  Google Scholar 

  • Torres-Guerrero E, Quintanilla-Cedillo MR, Ruiz-Esmenjaud J, Arenas R (2017) Leishmaniasis: a review. F1000Res 6:750

    Article  PubMed  PubMed Central  Google Scholar 

  • https://www.who.int/news-room/fact-sheets/detail/tuberculosis

  • Wright SD, Silverstein SC (1983) Receptors for C3b and C3bi promote phagocytosis but not the release of toxic oxygen from human phagocytes. J Exp Med 158(6):2016–2023

    Article  CAS  PubMed  Google Scholar 

  • Yap XZ, Lundie RJ, Feng G, Pooley J, Beeson JG, O'Keeffe M (2019) Different life cycle stages of Plasmodium falciparum induce contrasting responses in dendritic cells. Front Immunol 10:32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon C, Semitala FC, Atuhumuza E, Katende J, Mwebe S, Asege L, Armstrong DT, Andama AO, Dowdy DW, Davis JL, Huang L, Kamya M, Cattamanchi A (2017) Point-of-care C-reactive protein-based tuberculosis screening for people living with HIV: a diagnostic accuracy study. Lancet Infect Dis 17(12):1285–1292

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junaid Jibran Jawed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jawed, J.J. (2020). Role of C-Reactive Protein in Tropical Infectious Diseases. In: Ansar, W., Ghosh, S. (eds) Clinical Significance of C-reactive Protein. Springer, Singapore. https://doi.org/10.1007/978-981-15-6787-2_7

Download citation

Publish with us

Policies and ethics