Skip to main content

Hydrogen Effect on Soot Formation in Ethylene-Syngas Mixture Opposed Jet Diffusion Flame in Non-conventional Combustion Regime

  • Conference paper
  • First Online:
Advances in Renewable Hydrogen and Other Sustainable Energy Carriers

Abstract

The influence of the addition of hydrogen on the formation of soot in an ethylene-gas/air mixture of a counter-current laminar diffusion flame in the flameless regime and at atmospheric pressure has been studied. A detailed gas phase reaction mechanism, including aromatic chemistry up to four cycles and complex thermal and transport properties, was used. The soot is modeled by the moments method. The interactions between soot and gas phase chemistry have been taken into account. Losses by thermal radiation (from CO2, CO, H2O from CH4 and soot) modeled by a thin body. Adding hydrogen to the fuel eliminates the formation of soot. The calculations further suggest that the effect of the addition of hydrogen on soot formation is due to the absence of the concentration of hydrogen atoms in the surface growth regions of soot (stagnation plane) and at a higher concentration of molecular hydrogen in the flame zone. It also reduces the concentrations of C3H3, C6H6 as well as PAHs (for example, pyrene) which all suppress the process of soot formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H.C. Lee, A.A. Mohamad, L.Y. Jiang, Comprehensive comparison of chemical kinetics mechanisms for syngas/biogas mixtures. Energy Fuels 29, 6126–6145 (2015)

    Article  Google Scholar 

  2. C. Antonio, J. Mara, Mild combustion. Prog. Energy Combust. Sci. 30, 329–366 (2004)

    Article  Google Scholar 

  3. C.A. Pope III, R.T. Burnet, M.J. Thun, E.E. Calle, D. Krewski, K. Ito, G.D. Thurston, Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA-J. Am. Med. Assoc. 6, 1132–1141 (2002)

    Article  Google Scholar 

  4. J. Hansen, L. Nazarenko, Soot climate forcing via snow and ice albedos. Proc. Natl. Acad. Sci. U.S.A. 101, 423–428 (2004)

    Article  Google Scholar 

  5. N. Mac Carty, D. Ogle, D. Still, T. Bond, C. Roden, A laboratory comparison of the global warming impact of five major types of biomass cooking stoves. Energy Sustain. Dev. 12, 56–65 (2008)

    Article  Google Scholar 

  6. E.M. Fisher, B.A. Williams, J.W. Fleming, Determination of the strain in counter flow diffusion flames from flow conditions, in Proceedings of the Eastern States Section of the Combustion Institute, 191–194 (1999)

    Google Scholar 

  7. A. Cuoci, A. Frassoldati, T. Faravelli, E. Ranzi, Formation of soot and nitrogen oxides in unsteady counter flow diffusion flames. Combust. Flame 156, 2010–2022 (2009)

    Article  Google Scholar 

  8. A. Kazakov, M. Frenklach, Dynamic modeling of soot particle coagulation and aggregation: implementation with the method of moments and application to high-pressure laminar premixed flames. Combust. Flame 114, 484–501 (1998)

    Article  Google Scholar 

  9. R.S. Barlow, A.N. Karpetis, J.H. Frank, J.Y. Chen, Scalar profiles and NO formation in laminar opposed-flow partially premixed methane/air flames. Combust. Flame 127, 2102–2118 (2001)

    Article  Google Scholar 

  10. W. Grosshandler, RadCal: a narrow band model for radiation calculations in a combustion environment. NIST technical note TN 1402 (1993). https://nvlpubs.nist.gov/nistpubs/Legacy/TN/nbstechnicalnote1402.pdf. Last accessed 10 Nov 2018

  11. J. Appel, H. Bockhorn, M. Frenklach, Kinetic modeling of soot formation with detailed chemistry and physics: laminar premixed flames of C2 hydrocarbons. Combust. Flame 121, 122–136 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amar Hadef .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hadef, A., Boussetla, S., Mameri, A., Aouachria, Z. (2021). Hydrogen Effect on Soot Formation in Ethylene-Syngas Mixture Opposed Jet Diffusion Flame in Non-conventional Combustion Regime. In: Khellaf, A. (eds) Advances in Renewable Hydrogen and Other Sustainable Energy Carriers. Springer Proceedings in Energy. Springer, Singapore. https://doi.org/10.1007/978-981-15-6595-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-6595-3_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-6594-6

  • Online ISBN: 978-981-15-6595-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics