Skip to main content

Understanding Hydrocarbon in Subsurface: Biomonitoring and Bioremediation

  • Chapter
  • First Online:
Fate and Transport of Subsurface Pollutants

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 24))

  • 558 Accesses

Abstract

The high demand for fuel derived from oil increases the risk of environmental hazard as a consequence of overturning of trains, tractors, and trucks during transport and spotting of fuel on the ground. In vehicle or train cart overturning accidents, a part of the spilled fuel infiltrates and redistributes in the soil according to fuel and its own physical properties. These fuel products contain compounds of BTEX (Benzene, Toluene, Ethylbenzene, and Xylene) that are toxic causing damage to the soil and to human health. The knowledge on transport behavior of fuels in soils has been extensively studied. However, enhanced understanding on the transport behavior of these liquids in specific soils especially in Indian soil-water system is lacking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdou HM, Flury M (2004) Simulation of water flow and solute transport in free-drainage Lysimeters and field soils with heterogeneous structures. Eur J Soil Sci 55(2):229–241

    Article  CAS  Google Scholar 

  • Abreu LDV, Ettinger R, McAlary T (2009) Simulated soil vapor intrusion attenuation factors including biodegradation for petroleum hydrocarbons. Ground Water Monitoring and Remediation 29(1):105–117

    Article  CAS  Google Scholar 

  • Abriola LM, Bradford SA, Lang JR, Gaither CL (2004) Volatilization of binary nonaqueous phase liquid mixtures in unsaturated porous media. Vadose Zone J 3(2):645

    Article  CAS  Google Scholar 

  • Alfnes E et al (2002) Transport and degradation of toluene and O-xylene in an unsaturated soil with dipping sedimentary layers. J Environ Qual 31:1809–1823

    Article  PubMed  Google Scholar 

  • Anderson MR, Johnson RL, Pankow JF (1992) Dissolution of dense chlorinated solvents into ground water: dissolution from a well-defined residual source. Groundwater 30(2):250–256

    Article  CAS  Google Scholar 

  • Azubuike CC, Chikere CB, Okpokwasili GC (2016) Bioremediation techniques–classification based on site of application: principles, advantages, limitations and prospects. World J Microb Biotechnol 32:180. https://doi.org/10.1007/s11274-016-2137-x

    Article  CAS  Google Scholar 

  • Basu S, Yadav BK, Mathur S (2015) Enhanced bioremediation of BTEX contaminated groundwater in pot-scale wetlands. Environ Sci Pollut Res 22(24):20041–20049. http://link.springer.com/10.1007/s11356-015-5240-x

    Article  CAS  Google Scholar 

  • Bozkurt O, Pennell KG, Suuberg EM (2009) Simulation of the vapor intrusion process for nonhomogeneous soils using a three-dimensional numerical model. Ground Water Monit Remediat 29(1):92–104

    Google Scholar 

  • Brusseau ML (1991) Transport of organic chemicals by gas advection in structured or heterogeneous porous media: development of a model and application to column experiments. Water Resour Res 27(12):3189–3199. http://onlinelibrary.wiley.com/doi/10.1029/91WR02195/full

    Article  CAS  Google Scholar 

  • Chatzis I, Morrow NR, Lim HT (1983) Magnitude and detailed structure of residual oil saturation. Soc Petrol Eng J 23:311–325

    Article  Google Scholar 

  • Daifullah AAM, Girgis BS (2003) Impact of surface characteristics of activated carbon on adsorption of BTEX. Colloids and Surfaces A 214:181–193

    Article  CAS  Google Scholar 

  • Dobson R, Schroth MH, Zeyer J (2007) Effect of water-table fluctuation on dissolution and biodegradation of a multi-component, light nonaqueous-phase liquid. J Contam Hydrol 94(3–4):235–248. http://www.ncbi.nlm.nih.gov/pubmed/17698242

    Article  CAS  PubMed  Google Scholar 

  • Doughty C, Pruess K (2004) Modeling supercritical carbon dioxide injection in heterogeneous porous media. Vadose Zone J 3:837–847. https://doi.org/10.2136/vzj2004.0837

    Article  CAS  Google Scholar 

  • Dzantor EK (2007) Phytoremediation: the state of rhizosphere ‘engineering’ for accelerated rhizodegradation of xenobiotic contaminants. J Chem Technol Biotechnol 82:228–232. https://doi.org/10.1002/jctb.1662

    Article  CAS  Google Scholar 

  • Fried JJ, Munter P, Zilliox L (1979) Ground-water pollution by transfer of oil hydrocarbons. Groundwater 17(6):586–594

    Article  CAS  Google Scholar 

  • Fry VA, Selker JS, Gorelick SM (1997) Experimental investigations for trapping oxygen gas in saturated porous media for in situ bioremediation. Water Resour Res 33(12):2687–2696

    Article  CAS  Google Scholar 

  • Gupta PK (2020a) Pollution load on indian soil-water systems and associated health hazards: a review. J Environ Eng 146(5):03120004

    Article  Google Scholar 

  • Gupta PK (2020b) Fate, transport, and bioremediation of biodiesel and blended biodiesel in subsurface environment: a review. J Environ Eng 146(1):03119001

    Article  CAS  Google Scholar 

  • Gupta PK, Sharma D (2019) Assessment of hydrological and hydrochemical vulnerability of groundwater in semi-arid region of Rajasthan, India. Sustain Water Resour Manag 5(2):847–861

    Article  Google Scholar 

  • Gupta PK, Yadav B (2020a) Leakage of CO 2 from geological storage and its impacts on fresh soil–water systems: a review. Environ Sci Pollut Res:1–24

    Google Scholar 

  • Gupta PK, Yadav BK (2020b) Three-dimensional laboratory experiments on fate and transport of LNAPL under varying groundwater flow conditions. J Environ Eng 146(4):04020010

    Article  CAS  Google Scholar 

  • Gupta PK, Yadav B, Yadav BK (2019) Assessment of LNAPL in subsurface under fluctuating groundwater table using 2D sand tank experiments. J Environ Eng 145(9):04019048

    Article  CAS  Google Scholar 

  • Hamlen CJ, Kachanoski RJ (2004) Influence of initial and boundary conditions on solute transport through undisturbed soil columns. Soil Sci Soc Am J 68(2):404–416

    Article  CAS  Google Scholar 

  • Henry EJ, Smith JE, Warrick WA (2002) Two-dimensional modeling of flow and transport in the Vadose zone with surfactant-induced flow. Water Resour Res 38(11):33–1–33–16. http://doi.wiley.com/10.1029/2001WR000674

    Article  Google Scholar 

  • https://stomp.pnnl.gov/

  • Horel A, Schiewer S, Misra D (2015) Effect of concentration gradients on biodegradation in bench-scale sand columns with HYDRUS modeling of hydrocarbon transport and degradation. Environ Sci Pollut Res 22(17):13251–13262. http://link.springer.com/10.1007/s11356-015-4576-6

    Article  CAS  Google Scholar 

  • Imhoff PT, Miller CT (1996) Dissolution fingering during the solubilization of nonaqueous phase liquids in saturated porous media: 1. Model predictions. Water Resour Res 32(7):1919–1928

    Article  CAS  Google Scholar 

  • Kaluarachchi JJ, Parker JC (1992) Multiphase flow with a simplified model for oil entrapment. Transp Porous Media 7:1. https://doi.org/10.1007/BF00617314

    Article  CAS  Google Scholar 

  • Kamath R et al (2004) Phytoremediation of hydrocarbon-contaminated soils: principles and applications. In: Vazquez-Duhalt R, Quintero-Ramirez R (eds) Petroleum biotechnology: developments and perspectives studies in surface science and catalysis. Elsevier Science, Oxford, pp 447–478

    Chapter  Google Scholar 

  • Kamon M, Li Y, Flores G, Inui T, Katsumi T (2006) Experimental and numerical study on migration of LNAPL under the influence of fluctuating water table in subsurface. Ann of Disas Prev Res Inst 49:383–392

    Google Scholar 

  • Kechavarzi C, Soga K, Illangasekare TH (2005) Two- dimensional laboratory simulation of LNAPL infiltration and redistribution in the Vadose zone. J Contam Hydrol 76(3–4):211–233

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Corapcioglu MY (2003) Modeling dissolution and volatilization of LNAPL sources migrating on the groundwater table. J Contam Hydrol 65(1–2):137–158

    Article  CAS  PubMed  Google Scholar 

  • Knauss KG, Johnson JW, Steefel CI (2005) Evaluation of the impact of CO2, CO-contaminant gas, aqueous fluid and reservoir rock interactions on the geologic sequestration of CO2. Chem Geol 217(3–4):339–350

    Article  CAS  Google Scholar 

  • Lakshmi NR, Han W, Banks MK (1998) Mass loss from LAPL pools under fluctuating water table conditions. J Environ Eng 124(12):1171–1177

    Article  Google Scholar 

  • Law DHS, Bachu S (1996) Hydrogeological and numerical analysis of CO2 disposal in deep aquifers in the Alberta sedimentary basin. Energy Convers Manag 37(6–8):1167–1174

    Article  CAS  Google Scholar 

  • Lee CH, Lee JY, Cheon JY, Lee KK (2001) Attenuation of petroleum hydrocarbons in smear zones: a case study. J Environ Eng 127(7):639–647

    Article  CAS  Google Scholar 

  • Lee KY, Chrysikopoulos CV (1995) Numerical modeling of three-dimensional contaminant migration from dissolution of multicomponent NAPL pools in saturated porous media. Environ Geol 26(3):157–165. https://doi.org/10.1007/BF00768737

    Article  CAS  Google Scholar 

  • Legout CJM, Hamon Y (2009) Experimental and modeling investigation of unsaturated solute transport with water-table fluctuation. Vadose Zone J 8(1):21

    Article  Google Scholar 

  • Lenhard RJ, Oostrom M, Simmon CS, White MD (1995) Investigation of density-dependent gas advection of trichloroethylene: experiment and a model validation exercise. J Contam Hydrol 19:47–67

    Article  CAS  Google Scholar 

  • LeNeveu DM (2008) CQUESTRA, a risk and performance assessment code for geological sequestration of carbon dioxide. Energy Convers Manag 49(1):32–46

    Article  Google Scholar 

  • Luo X et al (2015) Effects of carrier bed heterogeneity on hydrocarbon migration. Mar Pet Geol 68:120–131

    Article  Google Scholar 

  • Diaz-Viera MA et al (2008) COMSOL implementation of a multiphase fluid flow model in porous media. In: Proceedings of the COMSOL Conference

    Google Scholar 

  • MacQuarrie KTB, Sudicky EA, Frind EO (1990) Simulation of biodegradable organic contaminants in groundwater: 1. Numerical formulation in principal directions. Water Resource Research 26(2):207–222. https://doi.org/10.1029/WR026i002p00207

    Article  CAS  Google Scholar 

  • Margesin R, Zimmerbauer A, Schinner F (2000) Monitoring of bioremediation by soil biological activities. Chemosphere 40(4):339–346

    Article  CAS  PubMed  Google Scholar 

  • Mascolo G, Ciannarella R, Balest L, Lopez A (2007) Effectiveness of UV-based advanced oxidation processes for the remediation of hydrocarbon pollution in the groundwater: a laboratory investigation. J Hazardous Mater 152(3):1138–1145

    Article  CAS  Google Scholar 

  • Mercer JW, Cohen RM (1990) A review of immiscible fluids in the subsurface: properties, models, characterization, and remediation. J Contam Hydrol 6:107–163

    Article  CAS  Google Scholar 

  • Miller CT, Poirier-McNeil MM, Mayer AS (1990) Dissolution of trapped nonaqueous phase liquids: mass transfer characteristics. Water Resour Res 26(11):2783–2796

    Article  Google Scholar 

  • Mobile MA, Widdowson MA, Gallagher DL (2012) Multicomponent NAPL source dissolution: evaluation of mass-transfer coefficients. Environ Sci Technol 46(18):10047–10054

    Article  CAS  PubMed  Google Scholar 

  • Mustapha HI, Gupta PK, Yadav BK, van Bruggen JJA, Lens PNL (2018) Performance evaluation of duplex constructed wetlands for the treatment of diesel contaminated wastewater. Chemosphere 205:166–177

    Article  CAS  PubMed  Google Scholar 

  • Oostrom M, Hofstee C, Wietsma TW (2006) Behavior of a viscous LNAPL under fluctuating water table conditions. Soil Sediment Contam 15:543–564

    Article  CAS  Google Scholar 

  • Powers SE, Nambi IM, Curry GW (1998) Non–aqueous phase liquid dissolution in heterogeneous systems: mechanisms and a local equilibrium modeling approach. Water Resour Res 34(12):3293

    Article  Google Scholar 

  • Powers SE, Loureiro CO, Abriola LM, Weber WJ (1991) Theoretical study of the significance of non- equilibrium dissolution of nonaqueous-phase liquids in subsurface systems. Water Resour Res 27(4):463–477

    Article  CAS  Google Scholar 

  • Ranck JM, Bowman RS, Weeber JL, Katz LE, Sullivan EJ (2005) BTEX removal from produced water using surfactant-modified zeolite. J Environ Eng 131:434–442

    Article  CAS  Google Scholar 

  • Rivett MO, Wealthall GP, Dearden R, McAlary T (2011) Review of unsaturated-zone transport and attenuation of volatile organic compound (VOC) plumes leached from shallow source zones. J Contam Hydrol 123(3–4):130–156. http://www.ncbi.nlm.nih.gov/pubmed/21316792

    Article  CAS  PubMed  Google Scholar 

  • Robinson C, Brovelli A, Barry DA, Li L (2009) Tidal influence on BTEX biodegradation in sandy coastal aquifers. Adv Water Resour 32:16–28

    Article  Google Scholar 

  • Rühle F, Netzer FV, Lueders T, Stumpp C (2015) Response of transport parameters and sediment microbiota to water table fluctuations in laboratory columns. Vadose Zone J 14(5) https://dl.sciencesocieties.org/publications/vzj/abstracts/14/5/vzj2014.09.0116

  • Salleh AB et al (2003) Bioremediation of petroleum hydrocarbon pollution. Indian J Biotechnol 2(3):411–425

    CAS  Google Scholar 

  • Scow KM, Hicks KA (2005) Natural attenuation and enhanced bioremediation of organic contaminants in groundwater. Curr Opin Biotechnol 16:246–253

    Article  CAS  PubMed  Google Scholar 

  • Shimp JF, Tracy JC, Davis LC, Lee E, Huang W, Erickson LE, Schnoor JL (1993) Beneficial effects of plants in the remediation of soil and groundwater contaminated with organic materials. Crit Rev Environ Sci Technol 23(1):41–77. https://doi.org/10.1080/10643389309388441

    Article  CAS  Google Scholar 

  • Simmons CT et al (2001) Variable-density groundwater flow and solute transport in heterogeneous porous media: approaches, resolutions and future challenges. J Contam Hydrol 52(1):245–275

    Article  CAS  PubMed  Google Scholar 

  • Å imůnek J, van Genuchten MT, Å ejna M (2008) Development and applications of the HYDRUS and STANMOD software packages and related codes. Vadose Zone J 7(2):587–600

    Article  CAS  Google Scholar 

  • Sinke AJC, Dury O, Zobrist J (1998) Effects of a fluctuating water table: column study on redox dynamics and fate of some organic pollutants. J Contam Hydrol 33:231–246

    Article  CAS  Google Scholar 

  • Soga K, Page JWE, Illangasekare TH (2004) A review of NAPL source zone remediation efficiency and the mass flux approach. J Hazard Mater 110(1–3):13–27. https://doi.org/10.1016/j.jhazmat.2004.02.034

    Article  CAS  PubMed  Google Scholar 

  • Steffy DA, Johnston C, Barry DA (1995) A field study of the vertical immiscible displacement of LNAPL associated with a fluctuating water table. IAHS Press, Wallingford. ISBN: 0-947571-29-9

    Google Scholar 

  • Sulaymon AH, Gzar HA (2011) Experimental investigation and numerical modeling of light nonaqueous phase liquid dissolution and transport in a saturated zone of the soil. J Hazard Mater 186(2–3):1601–1614. http://www.ncbi.nlm.nih.gov/pubmed/21232853

    Article  CAS  PubMed  Google Scholar 

  • Susarla S, Medina VF, McCutcheon SC (2002) Phytoremediation: an ecological solution to organic chemical contamination. Ecol Eng 18:647–658. https://doi.org/10.1016/S0925-8574(02)00026-5

    Article  Google Scholar 

  • USEPA (2006) Edition of the Drinking Water Standards and Health Advisories. EPA/822/R0, p. 18

    Google Scholar 

  • Vishal V, Leung JY (2015) Modeling impacts of subscale heterogeneities on dispersive solute transport in subsurface systems. J Contam Hydrol 182:63–77. http://linkinghub.elsevier.com/retrieve/pii/S0169772215300188

    Article  CAS  PubMed  Google Scholar 

  • Williams MD, Oostrom M (2000) Oxygenation of anoxic water in a fluctuating water table system: an experimental and numerical study. J Hydrol 230:70–85

    Article  CAS  Google Scholar 

  • Yadav BK, Hassanizadeh SM (2011) An overview of biodegradation of LNAPLs in coastal (semi)-arid environment. Water Air Soil Pollut 220(1–4):225–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav BK, Mathur S, Siebel MA (2009) Soil moisture flow modeling with water uptake by plants (wheat) under varying soil and moisture conditions. J Irrig Drain Eng 135(3):375–381

    Article  Google Scholar 

  • Yadav BK, Shrestha SR, Hassanizadeh SM (2012) Biodegradation of toluene under seasonal and diurnal fluctuations of soil-water temperature. Water Air Soil Pollut 223(7):3579–3588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang X, Beckmann D, Fiorenza S, Niedermeier C (2005) Field study of pulsed air sparging for remediation of petroleum hydrocarbon contaminated soil and groundwater. Environ Sci Technol 39:7279–7286

    Article  CAS  PubMed  Google Scholar 

  • Zeng WZ, Xu C, Wu JW, Huang JS (2014) Soil salt leaching under different irrigation regimes: HYDRUS-1D modelling and analysis. J Arid Land 6(1):44–58

    Article  Google Scholar 

  • Zhang Q, Davis LC, Erickson LE (1998) Effect of vegetation on transport of groundwater and nonaqueous-phase liquid contaminants. J Hazard Substance Res 1:1–20

    Article  CAS  Google Scholar 

  • Zhu X, Venosa AD, Suidan MT (2004) Literature review on the use of commercial bioremediation agents for cleanup of oil-contaminated estuarine environments. U.S. Environmental Protection Agency, Cincinnati

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj Kumar Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, P.K., Goel, M., Himanshu, S.K. (2021). Understanding Hydrocarbon in Subsurface: Biomonitoring and Bioremediation. In: Gupta, P.K., Bharagava, R.N. (eds) Fate and Transport of Subsurface Pollutants. Microorganisms for Sustainability, vol 24. Springer, Singapore. https://doi.org/10.1007/978-981-15-6564-9_1

Download citation

Publish with us

Policies and ethics