Skip to main content

Part of the book series: Ocean Engineering & Oceanography ((OEO,volume 13))

  • 323 Accesses

Abstract

The ability of an engineering system or products completing the prescribed functions under the prescribed condition and within the prescribed time is called reliability. In the design stage, prescribed functions of an engineering system usually can be expressed as the function of input variable x, which usually can be called the state function g(X). The value of the state function can judge whether functions of an engineering system can meet the design requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Cong D (1996) Important sampling based reliability analysis for non-linear system. Strength Environ 2:60–64. (董聪. 非线性系统可靠性分析的重要抽样法. 强度与环境, 1996, 2, pp. 60–64.)

    Google Scholar 

  • Cruse TA (2001) Issues and strategies in probabilistic structural modeling. In: Proceedings 6th national turbine engine high cycle fatigue conference

    Google Scholar 

  • Cui WC (1990) Uncertainty analysis in structural safety assessment. PhD thesis, Department of Civil Engineering, University of Bristol

    Google Scholar 

  • Du L (2006) Reliability-based and possibility-based design optimization using inverse analysis methods. PhD thesis of graduate college of the university of Iowa

    Google Scholar 

  • Faravelli L (1989) Response surface approach for reliability analysis. J Eng Mech 115(12)

    Google Scholar 

  • Gaofeng R, Shengying Z (2012) Rapid analysis method of landing point error of Mars landing mission. J Harbin Inst Technol 44(7):14–20. (任高峰, 朱圣英. 火星着陆任务落点误差快速分析方法. 哈尔滨工业大学学报, Vol.44, No.7, 2012, pp. 14–20.)

    Google Scholar 

  • Ghisu T, Parks GT, Jarrett JP, Clarkson PJ (2008) Robust design optimisation of gas turbine compression systems. In: 12th AIAA/ISSMO multidisciplinary analysis and optimization conference. Victoria, British Columbia Canada

    Google Scholar 

  • Ghisu T, Parks GT, Jarrett JP, Clarkson PJ (2010) Adaptive polynomial chaos for gas turbine compression systems performance analysis. AIAA J 48(6):1156–1170

    Article  Google Scholar 

  • Hammersley JM, Handscomb DC (1964) Monte Carlo methods. Methuen, London

    Book  Google Scholar 

  • Harbitz A (1986) An efficient sampling method for probability of failure calculation. Struct Saf 3(1):109–115

    Article  Google Scholar 

  • Hasofer AM, Lind NC (1974) Exact and invariant second-moment code format. J Eng Mech Div 100(EMI):111–121

    Google Scholar 

  • Liu BD, Iwamura K (1998) Chance constrained programming with fuzzy parameters[J]. Fuzzy Sets Syst 94(2):227–237

    Google Scholar 

  • Liu BD (1999) Uncertain Programming[M]. New York, Wiley

    Google Scholar 

  • Liu B (2000) Dependent-chance programming in fuzzy environments. Fuzzy Sets Syst 109:97–106

    Article  MathSciNet  Google Scholar 

  • Liu B, Haftka RT, Akgun MA (2000) Two-level composite wing structural optimization using response surfaces. Struct Multi Optim 20(2):87–96

    Google Scholar 

  • Liu D, Choi KK, Youn BD, Gorsich D (2006) Possibility-based design optimization method for design problems with both statistical and fuzzy input data. Trans ASME 128:928–935

    Article  Google Scholar 

  • Lurati LB (2008) Robust airfoil design under uncertain operation conditions using stochastic collocation. In: 46th AIAA aerospace sciences meeting and exhibit. Reno, Nevada

    Google Scholar 

  • Madsen HO, Krenk S, Lind NC (1986) Methods of structural safety. NJ, Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Manan A, Cooper JE (2008) Uncertainty of composite wing aeroelastic behaviour. In: 12th AIAA/ISSMO multidisciplinary analysis and optimization conference. Victoria, British Columbia Canada

    Google Scholar 

  • Manan A, Cooper JE (2009) Robust design of composite wings for gust response. In: 50th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference < br > 17th. Palm Springs, California

    Google Scholar 

  • Manan A, Cooper J (2009) Design of composite wings including uncertainties:a probabilistic approach. J Aircraft 46(2):601–607

    Google Scholar 

  • Melchers RE (1989) Importance sampling in structural system. Safety 6(1):3–10

    Google Scholar 

  • Moffitt BA (2010) A methodology for the validated design space exploration of fuel cell powered unmanned aerial vehicles. PhD thesis of Georgia Institute of Technology

    Google Scholar 

  • Myers RH, Montgomery DC (1995) Response surface methodology. Wiley, New York

    MATH  Google Scholar 

  • Oladyshkin S, Nowak W (2012) Data-driven uncertainty quantification using the arbitrary polynomial chaos expansion. Reliab Eng Syst Saf Elsevier 106:179–190. https://doi.org/10.1016/j.ress.2012.05.002

    Article  Google Scholar 

  • Palle TC, Michael JB (1982) Structural reliability theory and its applications. Springer, Berlin, Heidelberg

    MATH  Google Scholar 

  • Qu XY, Venkataraman S, Haftka R et al. (2001) Reliability, weight, and cost tradeoffs in the design of composite laminates for cryogenic environments[C]. In: Proceedings of the AIAA/ASME/ASCE/AHS/ASC 42nd structures, structural dynamics and materials conference. Seattle, Washington

    Google Scholar 

  • Rubinsrein RY (1981) Simulation and Monte Carlo methods. Wiley, New York

    Book  Google Scholar 

  • Saliby E (1990) Descriptive sampling: a better approach to monte carlo simulation. J Opl Res Soc 41(12):1133–1142

    Article  Google Scholar 

  • Schueller GL, Bucher CG, Bourgund U, Ouypornprasert W (1987) On efficient computational schemes to calculate failure probabilities. In: Lin YK, Schueller (eds) Stochastic structural mechanics, lecture notes in engineering, vol 31. Springer, New York, pp 388–410

    Google Scholar 

  • Shaojuan S (2007) Research and application of uncertainty analysis method for coastal dry bulk shipping. PhD thesis of Wuhan technology university. (苏绍娟. 沿海干散货船舶运输的不确定性分析方法研究及应用. 武汉理工大学博士论文. 2007.)

    Google Scholar 

  • Shisong M, Jinglong W, Xiaolong P (1998) Advanced mathematical statistic. Higher education press and Springer. (茆诗松,王静龙,濮晓龙. 高等数理统计. 高等教育出版社&斯普林格出版社, 1998.)

    Google Scholar 

  • Ting P, Yunqing Z, Jinglai W (2011) Uncertainty analysis of flexible multi-body system based on polynomial chaos method. China Mech Eng 22(19):2341–2348. (皮霆, 张云清, 吴景铼. 基于多项式混沌方法的柔性多体系统不确定性分析. 中国机械工程,第22卷第19期, 2011, pp. 2341–2348.)

    Google Scholar 

  • Wei Z, Weicheng C (1997) Direct integral method for structural reliability calculation. J. Shanghai Jiao Tong Univer 31(2):114–116. (张伟,崔维成. 结构可靠性计算的直接积分法. 上海交通大学学报, 第31卷, 第2期, 1997, pp. 114–116.)

    Google Scholar 

  • Wiener N (1938) The homogeneous chaos. Am J Math 60(4):897–936. https://doi.org/10.2307/2371268

  • Xiaoyu J (2006) Network optimization under uncertain environment. PhD thesis of Tsinghua University. (计小宇. 不确定环境下的网络优化. 清华大学博士论文, 2006.)

    Google Scholar 

  • Xiu D (2010) Numerical methods for stochastic computations: a spectral method approach. Princeton University Press. ISBN 978-0-691-14212-8

    Google Scholar 

  • Xiu D, Karniadakis GE (2002) The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J Sci Comput 24(2):619–644. https://doi.org/10.1137/S1064827501387826

    Article  MathSciNet  MATH  Google Scholar 

  • Youn BD, Choi KK (2006) Selecting probabilistic approaches for reliability-based design optimization. AIAA J 42(1)

    Google Scholar 

  • Youn BD, Choi KK, Gu L, Yang R (2004) Reliability-based design optimization for crashworthiness of side impact. J Struct Multi Optim 27(3):272–283

    Article  Google Scholar 

  • Youn BD, Choi KK, Du L (2005a) Adaptive probability analysis using a enhanced hybrid mean valued method. Struct Multi Optim 29(2):134–148

    Article  Google Scholar 

  • Youn BD, Choi KK, Du L (2005b) Enriched performance measure approach for reliability-based design optimization. AIAA J 43(4):874–884

    Article  Google Scholar 

  • Youn BD, Wang P, Xi Z (2007) Complementary interaction method (CIM) for system reliability analysis. In: 48th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference.

    Google Scholar 

  • Yufu N (2006) Intelligent algorithm based on simulation and its application. PhD thesis of Tianjin University. (宁玉富. 基于模拟的智能算法及其应用. 天津大学博士论文, 2006.)

    Google Scholar 

  • Zhao LY, Dawes WN, Parks G, Jarrett JP (2009) Robust airfoil design with respect to boundary layer transition. In: 50th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference—17th. Palm Springs, California

    Google Scholar 

  • Zhu P, Zhang Y, Chen GL (2011) Metamodeling development for reliability-based design optimization of automotive body structure. Comput Ind 62:729–741

    Article  Google Scholar 

  • Ziha K (1995) Descriptive sampling in structural safety. Struct Saf 17:33–41

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binbin Pan .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Zhejiang Science and Technology Publishing House Co., Ltd. and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pan, B., Cui, W. (2020). The Analysis of System Reliability. In: Multidisciplinary Design Optimization and Its Application in Deep Manned Submersible Design. Ocean Engineering & Oceanography, vol 13. Springer, Singapore. https://doi.org/10.1007/978-981-15-6455-0_4

Download citation

Publish with us

Policies and ethics