Skip to main content

Field-Effect Transistor-based Biosensor Optimization: Single Versus Array Silicon Nanowires Configuration

  • Conference paper
  • First Online:
Embracing Industry 4.0

Abstract

This paper demonstrated the effect of different number of silicon nanowire transducer channels, in other word single, double, and triple channels towards the performance of field-effect transistor-based biosensor through simulation tool. These silicon nanowire field-effect transistor biosensors were designed and simulated in device simulation modelling tool, Silvaco ATLAS with fixed length, width, and height of the silicon nanowire. Different negatively interface charge density values were applied on the transducer channels’ surface of the biosensors to represent as detected target biomolecules that will bind onto the surface of the transducer regions. Based on the results, more negatively interface charges density values presented on the sensing channels had reduced the electron carrier accumulation at the channel’s interface, therefore, reduced drain current flow between the source and drain terminal. With the increase number of the transducer channels, significant change in drain current for every applied negatively interface charges became more apparent and increased the sensitivity of the biosensor. The triple transducer channels silicon nanowire field-effect transistor biosensor had demonstrated highest sensitivity, that is 2.83 µA/e∙cm2, which indicates it has better response for the detection of interface charges, thus increases chances for transducer channels reaction to the target biomolecules during testing or diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kötz B, Schaepman M, Morsdorf F, Bowyer P, Itten K, Allgöwer B (2003) A semiconductor nanobridge biosensor for electrical detection of DNA hybridization. In: Geosci Remote Sens Symp 2003. IGARSS’03. Proceedings. 2003 IEEE Int, vol 4, pp 2869–2871

    Google Scholar 

  2. Kim JY, Choi K, Moon DI, Ahn JH, Park TJ, Lee SY, Choi YK (2013) Surface engineering for enhancement of sensitivity in an underlap-FET biosensor by control of wettability. Biosens Bioelectron 41:867–870

    Google Scholar 

  3. Kim JY, Ahn JH, Choi SJ, Im M, Kim S, Duarte JP, Kim CH, Park TJ, Lee SY, Choi YK (2012) An underlap channel-embedded field-effect transistor for biosensor application in watery and dry environment. IEEE Trans Nanotechnol 11:390–394

    Article  Google Scholar 

  4. Park J, Hiep H, Woubit A, Kim M (2014) Applications of Field-Effect Transistor (FET)-type. Biosensors 23:61–71

    Google Scholar 

  5. Zhang G, Zhang L, Huang MJ, Hong Z, Luo H, Kai G, Tay I, Lim EA, Kang TG, Chen Y (2010) Sensors and actuators B: chemical silicon nanowire biosensor for highly sensitive and rapid detection of dengue virus. Sens Actuators B Chem 146:138–144

    Article  Google Scholar 

  6. Ambhorkar P, Wang Z, Ko H, Lee S, Koo K, Kim K, Cho D (2018) Nanowire-based biosensors: from growth to applications. Micromachines 9:679

    Article  Google Scholar 

  7. Tran D, Pham T, Wolfrum B, Offenhäusser A, Thierry B (2018) CMOS-compatible silicon nanowire field-effect transistor biosensor: technology development toward commercialization. Materials (Basel) 11:785

    Google Scholar 

  8. Gao A, Dai P, Lu N, Li T, Wang Y (2013) Optimization of silicon nanowire based field-effect pH sensor with back gate control. In: 8th annual IEEE international conference on nano/micro engineered and molecular systems, IEEE NEMS 2013, pp 116–119

    Google Scholar 

  9. Gong X, Zhao R, Yu X (2015) High sensitive detections of Norovirus DNA and IgG by using multi-SiNW-FET biosensors. In: 2015 Transducers—2015 18th international conference on solid-state sensors, actuators and microsystems (Transducers), pp 1537–1540

    Google Scholar 

  10. Asthana PK, Ghosh B, Mukund Rahi SB, Goswami Y (2014) Optimal design for a high performance H-JLTFET using HfO 2 as a gate dielectric for ultra low power applications. RSC Adv 4:22803–22807

    Article  Google Scholar 

  11. Schenk A (1998) Finite-temperature full random-phase approximation model of band gap narrowing for silicon device simulation. J Appl Phys 84:3684–3695

    Article  Google Scholar 

  12. Boucart K (2010) Simulation of double-gate silicon tunnel FETs with a high-k gate dielectric, 136

    Google Scholar 

  13. Fathil MFM, Ghazali MHM, Arshad MKM, Nadzirah S, Ayub RM, Ruslinda AR, Hashim U, Abdullah RF, Ong CC, Tamjis N (2018) Numerical simulation of different silicon nanowire field-effect transistor channel lengths for biosensing application. In: AIP conference proceedings, p 020007

    Google Scholar 

  14. Fathil MFM, Tamjis N, Arshad MKM, Rahman SFA, Ayub RM, Ruslinda AR, Hashim U, Ong CC, Abdullah RF, Ghazali MHM (2018) The impact of different channel doping concentrations on the performance of polycrystalline silicon nanowire field-effect transistor biosensor. In: AIP conference proceedings, p 020006

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge all the team members in Institute of Nano Electronic Engineering (INEE) and School of Microelectronic Engineering, Universiti Malaysia Perlis (UniMAP) for their guidance and help related to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamad Faris Mohamad Fathil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ong, C.C. et al. (2020). Field-Effect Transistor-based Biosensor Optimization: Single Versus Array Silicon Nanowires Configuration. In: Mohd Razman, M., Mat Jizat, J., Mat Yahya, N., Myung, H., Zainal Abidin, A., Abdul Karim, M. (eds) Embracing Industry 4.0. Lecture Notes in Electrical Engineering, vol 678. Springer, Singapore. https://doi.org/10.1007/978-981-15-6025-5_3

Download citation

Publish with us

Policies and ethics