Skip to main content

Weighted Network Analysis for Computer-Aided Drug Discovery

  • Conference paper
  • First Online:
  • 436 Accesses

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 193))

Abstract

Biologically relevant chemical space is a set of bioactive compounds that can be candidates for drugs. In data-driven drug discovery, databases of bioactive compounds are explored. However, the biologically relevant chemical space is quite huge. Understanding the relationship between the structural similarity and the bioactivity closeness of compounds helps the efficient exploration of drug candidates.  In these circumstances, network representations of the space of bioactive compounds have been suggested extensively. We define the weighted network where each node represents a bioactive compound, and the weight of each link equals the structural similarity between the compounds (nodes). We investigated the weighted network structure and how the bioactivity of compounds distributes on the network. We found that compounds with significantly high or low bioactivity have a stronger connection than those in the overall network.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Modern Phys. 74(1), 47 (2002)

    Article  MathSciNet  Google Scholar 

  2. Barrat, A., Barthelemy, M., Pastor-Satorras, R., Vespignani, A.: The architecture of complex weighted networks. Proc. Natl Acad. Sci. 101(11), 3747–3752 (2004)

    Article  Google Scholar 

  3. Bazzi, M., Porter, M.A., Williams, S., McDonald, M., Fenn, D.J., Howison, S.D.: Community detection in temporal multilayer networks, with an application to correlation networks. Multiscale Model. Simul. 14(1), 1–41 (2016)

    Article  MathSciNet  Google Scholar 

  4. Bento, A.P., Gaulton, A., Hersey, A., Bellis, L.J., Chambers, J., Davies, M., Krüger, F.A., Light, Y., Mak, L., McGlinchey, S., et al.: The chembl bioactivity database: an update. Nucleic Acids Res. 42(D1), D1083–D1090 (2014)

    Article  Google Scholar 

  5. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech.: Theory Exp. 2008(10), P10008 (2008)

    Article  Google Scholar 

  6. Fortunato, S.: Community detection in graphs. Phys. Reports 486(3–5), 75–174 (2010)

    Article  MathSciNet  Google Scholar 

  7. Ito, M.I., Ohtsuki, H., Sasaki, A.: Emergence of opinion leaders in reference networks. PloS One 13(3), e0193983 (2018)

    Article  Google Scholar 

  8. Kunimoto, R., Bajorath, J.: Combining similarity searching and network analysis for the identification of active compounds. ACS Omega 3(4), 3768–3777 (2018)

    Article  Google Scholar 

  9. Kunimoto, R., Vogt, M., Bajorath, J.: Tracing compound pathways using chemical space networks. Med. Chem. Comm. 8(2), 376–384 (2017)

    Article  Google Scholar 

  10. Lipkus, A.H.: A proof of the triangle inequality for the tanimoto distance. J. Math. Chem. 26(1–3), 263–265 (1999)

    Article  Google Scholar 

  11. Lü, L., Chen, D., Ren, X.L., Zhang, Q.M., Zhang, Y.C., Zhou, T.: Vital nodes identification in complex networks. Phys. Reports 650, 1–63 (2016)

    Article  MathSciNet  Google Scholar 

  12. Mizokami, C., Ohnishi, T.: Revealing persistent structure of international trade by nonnegative matrix factorization. In: International Conference on Complex Networks and their Applications, pp. 1088–1099. Springer (2017)

    Google Scholar 

  13. Newman, M.E.: The structure and function of complex networks. SIAM Rev. 45(2), 167–256 (2003)

    Article  MathSciNet  Google Scholar 

  14. Ohnishi, T., Takayasu, H., Takayasu, M.: Network motifs in an inter-firm network. J. Econ. Int. Coord. 5(2), 171–180 (2010)

    Article  Google Scholar 

  15. Opassi, G., Gesù, A., Massarotti, A.: The hitchhiker’s guide to the chemical-biological galaxy. Drug Discov. Today 23(3), 565–574 (2018)

    Article  Google Scholar 

  16. Steinmetz, F.P., Mellor, C.L., Meinl, T., Cronin, M.T.: Screening chemicals for receptor-mediated toxicological and pharmacological endpoints: Using public data to build screening tools within a knime workflow. Molecular Inf. 34(2–3), 171–178 (2015)

    Article  Google Scholar 

  17. Tumminello, M., Aste, T., Di Matteo, T., Mantegna, R.N.: A tool for filtering information in complex systems. Proc. Natl Acad. Sci. 102(30), 10421–10426 (2005)

    Article  Google Scholar 

  18. Vogt, M.: Progress with modeling activity landscapes in drug discovery. Expert Opinion Drug Discov. 13(7), 605–615 (2018)

    Article  Google Scholar 

  19. Vogt, M., Stumpfe, D., Maggiora, G.M., Bajorath, J.: Lessons learned from the design of chemical space networks and opportunities for new applications. J. Comput. Aided Molecul. Design 30(3), 191–208 (2016)

    Article  Google Scholar 

  20. Wu, M., Vogt, M., Maggiora, G.M., Bajorath, J.: Design of chemical space networks on the basis of tversky similarity. J. Comput. Aided Molecul. Design 30(1), 1–12 (2016)

    Article  Google Scholar 

  21. Zhang, B., Vogt, M., Maggiora, G.M., Bajorath, J.: Design of chemical space networks using a tanimoto similarity variant based upon maximum common substructures. J. Comput. Aided Molecul. Design 29(10), 937–950 (2015)

    Article  Google Scholar 

  22. Zwierzyna, M., Vogt, M., Maggiora, G.M., Bajorath, J.: Design and characterization of chemical space networks for different compound data sets. J. Comput. Aided Molecul. Design 29(2), 113–125 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the JSPS Grant-in-Aid for Scientific Research on Innovative Areas: JP17H06468.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariko I. Ito .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ito, M.I., Ohnishi, T. (2020). Weighted Network Analysis for Computer-Aided Drug Discovery. In: Czarnowski, I., Howlett, R., Jain, L. (eds) Intelligent Decision Technologies. IDT 2020. Smart Innovation, Systems and Technologies, vol 193. Springer, Singapore. https://doi.org/10.1007/978-981-15-5925-9_3

Download citation

Publish with us

Policies and ethics