Skip to main content

Herbal Medicines as a Rational Alternative for Treatment of Human Diseases

  • Chapter
  • First Online:
Botanical Leads for Drug Discovery

Abstract

Herbal medicines (HMs) are receiving considerable attention as the complementary drugs throughout the world due to their cost effectiveness, low toxicity, and therapeutic potential against wide range of human illness. These plants possess a wide range of bioactive principles which alone or synergistically act on different targets. Even in the modern era of medicine and technology, more than 80% of the modern medicines currently available and one-third population of the developing countries largely depend on plant products either directly or indirectly for their primary health care. Several plants such as Aegle marmelos, Atropa belladonna, Azadirachta indica, Catharanthus roseus, Camptotheca acuminata, Colchicum autumnale, Curcuma longa, Digitalis lanata, Eclipta alba, Ocimum sanctum, Papaver somniferum, Phyllanthus emblica, Rauvolfia serpentina, Taxus brevifolia, and several other high value plants have been well acknowledged for its pharmacological importance to treat important human diseases like diabetes, cancer, dementia, epilepsy, hepatitis, fever, kidney stone, malaria, mouth ulcer, and other important disorders in indigenous system of medicine. In spite of their great potential against different human diseases, the HMs have faced several acceptance issues for the practical application due to lack of scientific and clinical evidence regarding their biochemical mode of action on particular cells, tissues, or organs. Therefore, a mass-scale clinical trials and specific documentation on its molecular mode of action is needed. Based on the aforementioned background, the present chapter describes the documentation of important medicinal plants and their derived bioactive principles, potential to combat important human diseases with underlying mode of action to facilitate direction for reproducible drug discovery, which are safe, cost effective, and rational alternatives to the modern remedies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CVDs:

Cardiovascular diseases

HMs:

Herbal medicines

TCMs:

Traditional Chinese medicines

SCM:

Sasang constitutional medicines

ROS:

Reactive oxygen species

HIV:

Human immunodeficiency virus

AIDS:

Acquired immune deficiency syndrome

EOs:

Essential oils

CAM:

Complementary and alternative medicine

IPR:

Intellectual property right

References

  • Achan J, Talisuna AO, Erhart A, Yeka A, Tibenderana JK, Baliraine FN, D’Alessandro U (2011) Quinine, an old anti-malarial drug in a modern world: role in the treatment of malaria. Malar J 10(1):144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmed M, Smith DM, Hamouda T, Rangel-Moreno J, Fattom A, Khader SA (2017) A novel nanoemulsion vaccine induces mucosal Interleukin-17 responses and confers protection upon Mycobacterium tuberculosis challenge in mice. Vaccine 35(37):4983–4989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alzohairy MA (2016) Therapeutics role of Azadirachta indica (Neem) and their active constituents in diseases prevention and treatment. Evid Based Complement Alternat Med. https://doi.org/10.1155/2016/7382506

  • Annie S, Rajagopal PL, Malini S (2005) Effect of Cassia auriculata Linn. root extract on cisplatin and gentamicin-induced renal injury. Phytomedicine 12(8):555–560

    Article  CAS  PubMed  Google Scholar 

  • Asres K, Bucar F (2005) Anti-HIV activity against immunodeficiency virus type 1 (HIV-I) and type II (HIV-II) of compounds isolated from the stem bark of Combretum molle. Ethiop Med J 43(1):15–20

    PubMed  Google Scholar 

  • Ayyanar M, Subash-Babu P (2012) Syzygium cumini (L.) Skeels: a review of its phytochemical constituents and traditional uses. Asian Pac J Trop Biomed 2(3):240–246

    Article  PubMed  PubMed Central  Google Scholar 

  • Barbosa Filho JM, Medeiros KCP, Diniz MDF, Batista LM, Athayde-Filho PF, Silva MS, Quintans-Júnior LJ (2006) Natural products inhibitors of the enzyme acetylcholinesterase. Rev Bras 16(2):258–285

    CAS  Google Scholar 

  • Boakye MK, Pietersen DW, Kotzé A, Dalton DL, Jansen R (2015) Knowledge and uses of African pangolins as a source of traditional medicine in Ghana. PLoS One 10(1):e0117199

    Article  PubMed  PubMed Central  Google Scholar 

  • Booker A, Heinrich M (2016) Value chains of botanical and herbal medicinal products: a European perspective. HerbalGram 112:40–45

    Google Scholar 

  • Boyle A, Ondo W (2015) Role of apomorphine in the treatment of Parkinson’s disease. CNS Drugs 29(2):83–89

    Article  CAS  PubMed  Google Scholar 

  • Brandstadter R, Sand IK (2017) The use of natalizumab for multiple sclerosis. Neuropsychiatr Dis Treat 13:1691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424

    Article  PubMed  Google Scholar 

  • Burt S (2004) Essential oils: their antibacterial properties and potential applications in foods—a review. Int J Food Microbiol 94(3):223–253

    Article  CAS  PubMed  Google Scholar 

  • Cavalli A, Bolognesi ML, Minarini A, Rosini M, Tumiatti V, Recanatini M, Melchiorre C (2008) Multi-target-directed ligands to combat neurodegenerative diseases. J Med Chem 51(3):347–372

    Article  CAS  PubMed  Google Scholar 

  • Chao SC, Young DG, Oberg CJ (2000) Screening for inhibitory activity of essential oils on selected bacteria, fungi and viruses. J Essent Oil Res 12(5):639–649

    Article  CAS  Google Scholar 

  • Chaudhari AK, Singh VK, Dwivedy AK, Das S, Upadhyay N, Singh A, Dubey NK (2018) Chemically characterised Pimenta dioica (L.) Merr. essential oil as a novel plant-based antimicrobial against fungal and aflatoxin B1 contamination of stored maize and its possible mode of action. Nat Prod Res 34:1–5

    Google Scholar 

  • Chaudhari AK, Dwivedy AK, Singh VK, Das S, Singh A, Dubey NK (2019) Essential oils and their bioactive compounds as green preservatives against fungal and mycotoxin contamination of food commodities with special reference to their nanoencapsulation. Environ Sci Pollut Res 25:1–18

    Google Scholar 

  • Cowman AF, Healer J, Marapana D, Marsh K (2016) Malaria: biology and disease. Cell 167(3):610–624

    Article  CAS  PubMed  Google Scholar 

  • Cragg GM, Newman DJ (2005) Plants as a source of anti-cancer agents. J Ethnopharmacol 100(1–2):72–79

    Article  CAS  PubMed  Google Scholar 

  • Dahanukar S, Thatte U (1988) Rasayana concept of Ayurveda myth or reality; an experimental study. Indian Pract 41:245–252

    Google Scholar 

  • Damanhouri ZA, Ahmad A (2014) A review on therapeutic potential of Piper nigrum L. (Black Pepper): the king of spices. Med Aromat Plants 3:161

    Article  CAS  Google Scholar 

  • Davis L, Kuttan G (1998) Suppressive effect of cyclophosphamide-induced toxicity by Withania somnifera extract in mice. J Ethnopharmacol 62(3):209–214

    Article  CAS  PubMed  Google Scholar 

  • Del Rio D, Rodriguez-Mateos A, Spencer JP, Tognolini M, Borges G, Crozier A (2013) Dietary (poly) phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid Redox Signal 18(14):1818–1892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dobos GJ, Tan L, Cohen MH, McIntyre M, Bauer R, Li X, Bensoussan A (2005) Are national quality standards for traditional Chinese herbal medicine sufficient? Current governmental regulations for traditional Chinese herbal medicine in certain Western countries and China as the Eastern origin country. Complement Ther Med 13(3):183–190

    Article  CAS  PubMed  Google Scholar 

  • Dobson R, Giovannoni G (2019) Multiple sclerosis–a review. Eur J Neurol 26(1):27–40

    Article  CAS  PubMed  Google Scholar 

  • Duncan JS, Sander JW, Sisodiya SM, Walker MC (2006) Adult epilepsy. Lancet 367(9516):1087–1100

    Article  PubMed  Google Scholar 

  • Dwivedy AK, Prakash B, Chanotiya CS, Bisht D, Dubey NK (2017) Chemically characterized Mentha cardiaca L. essential oil as plant based preservative in view ofefficacy against biodeteriorating fungi of dry fruits, aflatoxin secretion, lipid peroxidation and safety profile assessment. Food Chem Toxicol 106:175–184

    Article  CAS  PubMed  Google Scholar 

  • Ekor M (2014) The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Front Pharmacol 4:177

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fabricant DS, Farnsworth NR (2001) The value of plants used in traditional medicine for drug discovery. Environ Health Perspect 109(suppl 1):69–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh D (2018) Quality issues of herbal medicines: internal and external factors. Int J Complement Alternat Med 11(2):00350

    Article  Google Scholar 

  • Govindasamy C, Kannan R (2012) Pharmacognosy of mangrove plants in the system of unani medicine. Asia Pac J Trop Dis 2:S38–S41

    Article  CAS  Google Scholar 

  • Guarnera C, Bramanti P, Mazzon E (2017) Comparison of efficacy and safety of oral agents for the treatment of relapsing–remitting multiple sclerosis. Drug Des Devel Ther 11:2193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Günthard HF, Saag MS, Benson CA, Del Rio C, Eron JJ, Gallant JE, Gandhi RT (2016) Antiretroviral drugs for treatment and prevention of HIV infection in adults: 2016 recommendations of the International Antiviral Society–USA panel. JAMA 316(2):191–210

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gupta LM, Raina R (1998) Side effects of some medicinal plants. Curr Sci 75(9):897–900

    Google Scholar 

  • Hasan SZ, Misra V, Singh S, Arora G, Sharma S, Sharma S (2009) Current status of herbal drugs and their future perspectives. Biol Forum – Int J 1(1):12–17

    Google Scholar 

  • Hashempour-Baltork F, Hosseini H, Shojaee-Aliabadi S, Torbati M, Alizadeh AM, Alizadeh M (2019) Drug resistance and the prevention strategies in food borne bacteria: an update review. Adv Pharm Bull 9(3):335–347. https://doi.org/10.15171/apb.2019.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hennia A, Nemmiche S, Dandlen S, Miguel MG (2019) Myrtus communis essential oils: insecticidal, antioxidant and antimicrobial activities: a review. J Essent Oil Res 31:1–59

    Article  CAS  Google Scholar 

  • Henry SH, Bosch FX, Bowers JC (2002) Aflatoxin, hepatitis and worldwide liver cancer risks. In: Mycotoxins and food safety. Springer, Boston, pp 229–233

    Chapter  Google Scholar 

  • Hoehn MM, Yahr MD (1967) Parkinsonism: onset, progression, and mortality. Neurology 17(5):427–427

    Article  CAS  PubMed  Google Scholar 

  • Ibekwe NN, Ameh SJ (2014) Plant natural products research in tuberculosis drug discovery and development: a situation report with focus on Nigerian biodiversity. Afr J Biotechnol 13(23):2307–2320

    Article  Google Scholar 

  • Ingram G, Pearson OR (2019) Cannabis and multiple sclerosis. Pract Neurol 19(4):310–315

    Article  PubMed  Google Scholar 

  • Jabin F (2011) Guiding tool in UnaniTibb for maintenance and preservation of health: a review study. Afr J Tradit Complement Altern Med 8(5S). https://doi.org/10.4314/ajtcam.v8i5S.7

  • Jain S, Jain R (2018) Design and evaluation of chitosan nanoparticles as novel drug carrier for the delivery of Galantamine to treat Alzheimer’s disease. Parkinsonism Relat Disord 46:e51

    Article  Google Scholar 

  • Kamboj VP (2000) Herbal medicine. Curr Sci 78(1):35–39

    Google Scholar 

  • Kannel WB, McGee DL (1979) Diabetes and cardiovascular disease: the Framingham study. JAMA 241(19):2035–2038

    Article  CAS  PubMed  Google Scholar 

  • Kaur R, Kaur H (2017) Plant derived antimalarial agents. J Med Plants Stud 5(1):346–363

    Google Scholar 

  • Kedia A, Dwivedy AK, Jha DK, Dubey NK (2016) Efficacy of Mentha spicata essential oil in suppression of Aspergillus flavus and aflatoxin contamination in chickpea with particular emphasis to mode of antifungal action. Protoplasma 253(3):647–653

    Article  CAS  PubMed  Google Scholar 

  • Keshavjee S, Becerra MC (2000) Disintegrating health services and resurgent tuberculosis in post-Soviet Tajikistan: an example of structural violence. JAMA 283(9):1201–1201

    Article  CAS  PubMed  Google Scholar 

  • Kim JU, Ku B, Kim YM, Do JH, Jang JS, Jang E, Kim JY (2013) The concept of sasang health index and constitution-based health assessment: an integrative model with computerized four diagnosis methods. Evid Based Complement Alternat Med. https://doi.org/10.1155/2013/879420

  • Kocher T, König J, Borgnakke WS, Pink C, Meisel P (2018) Periodontal complications of hyperglycemia/diabetes mellitus: epidemiologic complexity and clinical challenge. Periodontology 78(1):59–97

    Article  Google Scholar 

  • Krettli AU, Andrade-Neto VF, Brandão MDGL, Ferrari W (2001) The search for new antimalarial drugs from plants used to treat fever and malaria or plants ramdomly selected: a review. Mem Inst Oswaldo Cruz 96(8):1033–1042

    Article  CAS  PubMed  Google Scholar 

  • Kumar GPS, Arunselvan P, Kumar DS, Subramanian SP (2006) Anti-diabetic activity of fruits of Terminalia chebula on streptozotocin-induced diabetic rats. J Health Sci 52(3):283–291

    Article  Google Scholar 

  • Laura A, Moreno-Escamilla JO, Rodrigo-García J, Alvarez-Parrilla E (2019) Phenolic compounds. In: Postharvest physiology and piochemistry of fruits and vegetables. Woodhead Publishing, Cambridge, pp 253–271

    Google Scholar 

  • Lin PY, Chu CH, Chang FY, Huang YW, Tsai HJ, Yao TC (2019) Trends and prescription patterns of traditional Chinese medicine use among subjects with allergic diseases: a nationwide population-based study. World Allergy Organ J 12(2):100001

    Article  PubMed  PubMed Central  Google Scholar 

  • Linke BG, Casagrande TA, Cardoso LIA (2018) Food additives and their health effects: a review on preservative sodium benzoate. Afr J Biotechnol 17(10):306–310

    Article  CAS  Google Scholar 

  • Liu LF, Desai SD, Li TK, Mao Y, Sun MEI, Sim SP (2000) Mechanism of action of camptothecin. Ann N Y Acad Sci 922(1):1–10

    Article  CAS  PubMed  Google Scholar 

  • Loa J, Chow P, Zhang K (2009) Studies of structure–activity relationship on plant polyphenol-induced suppression of human liver cancer cells. Cancer Chemother Pharmacol 63(6):1007–1016

    Article  CAS  PubMed  Google Scholar 

  • Lone AH, Ahmad T, Anwar M, Sofi G, Imam H, Habib S (2012) Perception of health promotion in Unani herbal medicine. J Herb Med 2(1):1–5

    Article  Google Scholar 

  • Magadula JJ (2010) A bioactive isoprenylated xanthone and other constituents of Garciniaedulis. Fitoterapia 81(5):420–423

    Article  CAS  PubMed  Google Scholar 

  • McWilliams A (2006) Plant-derived drugs: products, technology, applications. BBC Research, Denver

    Google Scholar 

  • Meena AK, Bansal P, Kumar S (2009) Plants-herbal wealth as a potential source of ayurvedic drugs. Asia J Tradit Med 4(4):152–170

    CAS  Google Scholar 

  • Meshnick SR, Dobson MJ (2001) The history of antimalarial drugs. In: Antimalarial chemotherapy. Humana Press, Totowa, pp 15–25

    Chapter  Google Scholar 

  • Milhan G, Valentin A, Benoit F, Mallie M, Bastide JM, Pelissier Y, Bessiere JM (1997) In vitro antimalarial activity of eight essential oils. J Essent Oil Res 9:329–333

    Article  Google Scholar 

  • Mitchell BG, Shaban RZ, Dancer SJ, Cheng A, Gilbert L (2016) Infection, disease and health: a journal for the future. Infect Dis Health 21(1):1–2

    Article  Google Scholar 

  • Molina-Salinas GM, Pérez-López A, Becerril-Montes P, Salazar-Aranda R, Said-Fernández S, de Torres NW (2007) Evaluation of the flora of Northern Mexico for in vitro antimicrobial and antituberculosis activity. J Ethnopharmacol 109(3):435–441

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee T (1991) Antimalarial herbal drugs. A review. Fitoterapia 62(3):197–204

    CAS  Google Scholar 

  • Naveen J, Baskaran V (2018) Antidiabetic plant-derived nutraceuticals: a critical review. Eur J Nutr 57(4):1275–1299

    Article  CAS  PubMed  Google Scholar 

  • Newell DG, Koopmans M, Verhoef L, Duizer E, Aidara-Kane A, Sprong H, vander Giessen J (2010) Food-borne diseases-the challenges of 20 years ago still persist while new ones continue to emerge. Int J Food Microbiol 139:S3–S15

    Article  PubMed  PubMed Central  Google Scholar 

  • Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70(3):461–477

    Article  CAS  PubMed  Google Scholar 

  • Newton SM, Lau C, Gurcha SS, Besra GS, Wright CW (2002) The evaluation of forty-three plant species for in vitro antimycobacterial activities; isolation of active constituents from Psoralea corylifolia and Sanguinaria canadensis. J Ethnopharmacol 79(1):57–67

    Article  PubMed  Google Scholar 

  • Niture SK, Rao US, Srivenugopal KS (2006) Chemopreventative strategies targeting the MGMT repair protein: augmented expression in human lymphocytes and tumor cells by ethanolic and aqueous extracts of several Indian medicinal plants. Int J Oncol 29(5):1269–1278

    CAS  PubMed  Google Scholar 

  • Nöthlings U, Schulze MB, Weikert C, Boeing H, VanDerSchouw YT, Bamia C, Peeters PH (2008) Intake of vegetables, legumes, and fruit, and risk for all-cause, cardiovascular, and cancer mortality in a European diabetic population. J Nutr 138(4):775–781

    Article  PubMed  Google Scholar 

  • Nussbaum RL, Ellis CE (2003) Alzheimer’s disease and Parkinson’s disease. N Engl J Med 348(14):1356–1364

    Article  CAS  PubMed  Google Scholar 

  • Okamoto H, Iyo M, Ueda K, Han C, Hirasaki Y, Namiki T (2014) Yokukan-san: a review of the evidence for use of this Kampo herbal formula in dementia and psychiatric conditions. Neuropsychiatr Dis Treat 10:1727

    Article  PubMed  PubMed Central  Google Scholar 

  • Pal SK, Shukla Y (2003) Herbal medicine: current status and the future. Asian Pac J Cancer Prev 4(4):281–288

    PubMed  Google Scholar 

  • Parasuraman S, Thing GS, Dhanaraj SA (2014) Polyherbal formulation: concept of ayurveda. Pharmacogn Rev 8(16):73. https://doi.org/10.4103/0973-7847.134

    Article  PubMed  PubMed Central  Google Scholar 

  • Patel DK, Prasad SK, Kumar R, Hemalatha S (2012) An overview on antidiabetic medicinal plants having insulin mimetic property. Asian Pac J Trop Biomed 2(4):320–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pattanayak P, Behera P, Das D, Panda SK (2010) Ocimum sanctum Linn. A reservoir plant for therapeutic applications: an overview. Pharmacogn Rev 4(7):95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patwardhan B, Mashelkar RA (2009) Traditional medicine-inspired approaches to drug discovery: can Ayurveda show the way forward? Drug Discov Today 14(15–16):804–811

    Article  PubMed  Google Scholar 

  • Patwardhan B, Vaidya AD, Chorghade M, Joshi SP (2008) Reverse pharmacology and systems approach for drug discovery and development. Curr Bioact Compd 4(4):201–212

    Article  CAS  Google Scholar 

  • Prakash B, Singh P, Kedia A, Dubey NK (2012) Assessment of some essential oils as food preservatives based on antifungal, antiaflatoxin, antioxidant activities and in vivo efficacy in food system. Food Res Int 49(1):201–208

    Article  CAS  Google Scholar 

  • Qi F, Wang Z, Cai P, Zhao L, Gao J, Kokudo N, Tang W (2013) Traditional Chinese medicine and related active compounds: a review of their role on hepatitis B virus infection. Drug Discov Therap 7(6):212–224

    CAS  Google Scholar 

  • Rajapakse T, Davenport WJ (2019) Phytomedicines in the treatment of migraine. CNS Drugs 33(5):399–415

    Article  CAS  PubMed  Google Scholar 

  • Rojas Rojas T, Bourdy G, Ruiz E, Cerapio JP, Pineau P, Gardon J, Bertani S (2018) Herbal medicine practices of patients with liver cancer in Peru: a comprehensive study toward integrative cancer management. Integr Cancer Ther 17(1):52–64

    Article  PubMed  Google Scholar 

  • Sahashi Y (2005) Herbs covered by health insurance in Japan. J Kampo, Acupuncut Integr Med 1:70–84

    Google Scholar 

  • Sahoo N, Manchikanti P, Dey S (2010) Herbal drugs: standards and regulation. Fitoterapia 81(6):462–471

    Article  PubMed  Google Scholar 

  • Saklani A, Kutty SK (2008) Plant-derived compounds in clinical trials. Drug Discov Today 13(3–4):161–171

    Article  CAS  PubMed  Google Scholar 

  • Salehi B, Kumar N, Şener B, Sharifi-Rad M, Kılıç M, Mahady G, Ayatollahi S (2018) Medicinal plants used in the treatment of human immunodeficiency virus. Int J Mol Sci 19(5):1459

    Article  PubMed Central  CAS  Google Scholar 

  • Samuels N, Finkelstein Y, Singer SR, Oberbaum M (2008) Herbal medicine and epilepsy: proconvulsive effects and interactions with antiepileptic drugs. Epilepsia 49(3):373–380

    Article  PubMed  Google Scholar 

  • Sankhala LN, Saini RK, Saini BS (2012) A review on chemical and biological properties of Tinospora cordifolia. Int J Med Aromat Plants 2(2):340–344

    Google Scholar 

  • Schachter SC (2009) Botanicals and herbs: a traditional approach to treating epilepsy. Neurotherapeutics 6(2):415–420

    Article  PubMed  PubMed Central  Google Scholar 

  • Seth SD, Sharma B (2004) Medicinal plants in India. Indian J Med Res 120(1):9

    CAS  PubMed  Google Scholar 

  • Shakya AK (2016) Medicinal plants: future source of new drugs. Int J Herb Med 4(4):59–64

    Google Scholar 

  • Shi Q, Li L, Huo C, Zhang M, Wang Y (2010) Study on natural medicinal chemistry and new drug development. Zhongcaoyao= Chin Tradit Herb Drugs 41(10):1583–1589

    CAS  Google Scholar 

  • Shikov AN, Pozharitskaya ON, Makarov VG, Wagner H, Verpoorte R, Heinrich M (2014) Medicinal plants of the Russian Pharmacopoeia; their history and applications. J Ethnopharmacol 154(3):481–536

    Article  PubMed  Google Scholar 

  • Shishodia S, Harikumar KB, Dass S, Ramawat KG, Aggarwal BB (2008) The guggul for chronic diseases: ancient medicine, modern targets. Anticancer Res 28(6A):3647–3664

    CAS  PubMed  Google Scholar 

  • Shivanna N, Naika M, Khanum F, Kaul VK (2013) Antioxidant, anti-diabetic and renal protective properties of Stevia rebaudiana. J Diabetes Complicat 27(2):103–113

    Article  Google Scholar 

  • Singh RK (2005) Tinospora cordifolia as an adjuvant drug in the treatment of hyper-reactive malarious splenomegaly-case reports. J Vector Borne Dis 42(1):36

    PubMed  Google Scholar 

  • Singh M (2017) Evaluating the therapeutic efficiency and drug targeting ability of alkaloids present in Rauwolfia serpentina. Int J Green Pharm 11(03). https://doi.org/10.22377/ijgp.v11i03.1116

  • Singh S, Singh DB, Singh S, Shukla R, Ramteke PW, Misra K (2018) Exploring medicinal plant legacy for drug discovery in post-genomic era. Proc Natl Acad Sci, India Sect B: Biol Sci 74:1–11

    Google Scholar 

  • Singh M, Bashri G, Prasad SM, Singh VP (2019) Kinetin alleviates UV-B-induced damage in Solanum lycopersicum: implications of phenolics and antioxidants. J Plant Growth Regul 6:1–11

    CAS  Google Scholar 

  • Spooner JB, Harvey JG (1976) The history and usage of paracetamol. J Int Med Res 4(4_suppl):1–6

    Article  CAS  PubMed  Google Scholar 

  • Stagos D, Amoutzias GD, Matakos A, Spyrou A, Tsatsakis AM, Kouretas D (2012) Chemoprevention of liver cancer by plant polyphenols. Food Chem Toxicol 50(6):2155–2170

    Article  CAS  PubMed  Google Scholar 

  • Stanely P, Prince M, Menon VP (2000) Hypoglycemic and other related action of Tinospora cordifolia roots in alloxan induced diabetic rats. J Ethnopharmacol 70(1):9–15

    Article  CAS  PubMed  Google Scholar 

  • Surh YJ (2011) Reverse pharmacology applicable for botanical drug development–inspiration from the legacy of traditional wisdom. J Tradit Complement Med 1(1):5–7. https://doi.org/10.1016/s2225-4110(16)30051-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Takenaka T (2001) Classical vs reverse pharmacology in drug discovery. BJU Int 88:7–10

    Article  CAS  PubMed  Google Scholar 

  • Tripathi UN, Chandra D (2010) Anti-hyperglycemic and anti-oxidative effect of aqueous extract of Momordica charantia pulp and Trigonella foenum graecum seed in alloxan-induced diabetic rats. Indian J Biochem Biophys 47:227–233

    CAS  PubMed  Google Scholar 

  • Trojan-Rodrigues M, Alves TLS, Soares GLG, Ritter MR (2011) Plants used as antidiabetics in popular medicine in Rio Grande do Sul, southern Brazil. J Ethnopharmacol 139(1):155–163

    Article  PubMed  Google Scholar 

  • Udayakumar R, Kasthurirengan S, Mariashibu TS, Rajesh M, Anbazhagan VR, Kim SC, Ganapathi A, Choi CW (2009) Hypoglycaemic and Hypolipidaemic effects of Withania somnifera root and leaf extracts on alloxan-induced diabetic rats. Int J Mol Sci 10(5):2367–2382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uddin Q, Samiulla L, Singh VK, Jamil SS (2012) Phytochemical and pharmacological profile of Withania somnifera Dunal: a review. J Appl Pharm Sci 2(01):170–175

    Google Scholar 

  • Upadhyay D, Dash RP, Anandjiwala S, Nivsarkar M (2013) Comparative pharmacokinetic profiles of picrosides I and II from kutkin, Picrorhiza kurroa extract and its formulation in rats. Fitoterapia 85:76–83

    Article  CAS  PubMed  Google Scholar 

  • Upadhyay N, Singh VK, Dwivedy AK, Das S, Chaudhari AK, Dubey NK (2018) Cistus ladanifer L. essential oil as a plant-based preservative against molds infesting oil seeds, aflatoxin B1 secretion, oxidative deterioration and methylglyoxal biosynthesis. LWT 92:395–403

    Article  CAS  Google Scholar 

  • Vaidya AD (2006) Reverse pharmacological correlates of ayurvedic drug actions. Indian J Pharmacol 38(5):311

    Article  Google Scholar 

  • Veeresham C (2012) Natural products derived from plants as a source of drugs. J Adv Pharm Technol Res 3(4):200–201. https://doi.org/10.4103/2231-4040.104709

    Article  PubMed  PubMed Central  Google Scholar 

  • Visavadiya NP, Narasimhacharya AVRL (2007) Hypocholesteremic and antioxidant effects of Withania somnifera (Dunal) in hypercholesteremic rats. Phytomedicine 14(2–3):136–142

    Article  CAS  PubMed  Google Scholar 

  • WHO (2002) WHO traditional medicine strategy 2002–2005. WHO/EDM/TRM/2002, Geneva

    Google Scholar 

  • Wieland HA, Michaelis M, Kirschbaum BJ, Rudolphi KA (2005) Osteoarthritis-an untreatable disease? Nat Rev Drug Discov 4(4):331

    Article  CAS  PubMed  Google Scholar 

  • Willcox ML, Graz B, Falquet J, Diakite C, Giani S, Diallo D (2011) A “reverse pharmacology” approach for developing an anti-malarial phytomedicine. Malar J 10(1):S8. https://doi.org/10.1186/1475-2875-10-S1-S8

    Article  PubMed  PubMed Central  Google Scholar 

  • Yakubo S, Ito M, Ueda Y, Okamoto H, Kimura Y, Amano Y, Watanabe K (2014) Pattern classification in Kampo medicine. Evid Based Complement Alternat Med 2014:5. https://doi.org/10.1155/2014/535146

    Article  Google Scholar 

  • Yeung TK, Germond C, Chen X, Wang Z (1999) The mode of action of taxol: apoptosis at low concentration and necrosis at high concentration. Biochem Biophys Res Commun 263(2):398–404

    Article  CAS  PubMed  Google Scholar 

  • Yu S, Liu M, Hu K (2019) Natural products: potential therapeutic agents in multiple sclerosis. Int Immunopharmacol 67:87–97

    Article  CAS  PubMed  Google Scholar 

  • Zaidan UH, Zen NIM, Amran NA, Shamsi S, Gani SSA (2019) Biochemical evaluation of phenolic compounds and steviol glycoside from Stevia rebaudiana extracts associated with in vitro antidiabetic potential. Biocatal Agric Biotechnol 18:101049

    Article  Google Scholar 

  • Zhang J, Onakpoya IJ, Posadzki P, Eddouks M (2015) The safety of herbal medicine: from prejudice to evidence. Evid Based Complement Alternat Med. https://doi.org/10.1155/2015/316706

Download references

Acknowledgments

Anand Kumar Chaudhari, Somenath Das, and Jitendra Prasad are thankful to the Council of Scientific and Industrial Research (CSIR), New Delhi, India, and Bijendra Kumar Singh is thankful to the Department of Biotechnology (DBT), New Delhi, India, for research fellowship.

Conflict of Interest

No conflicts of interest were reported by the authors.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chaudhari, A.K., Das, S., Singh, B.K., Prasad, J., Dubey, N.K., Dwivedy, A.K. (2020). Herbal Medicines as a Rational Alternative for Treatment of Human Diseases. In: Singh, B. (eds) Botanical Leads for Drug Discovery. Springer, Singapore. https://doi.org/10.1007/978-981-15-5917-4_2

Download citation

Publish with us

Policies and ethics