Skip to main content

A Transcriptional Study of Oncogenes and Tumor Suppressors Altered by Copy Number Variations in Ovarian Cancer

  • Conference paper
  • First Online:
Innovation in Medicine and Healthcare

Abstract

The most popular approach to explain cancer is based on the discovery of oncogenes and tumor suppressor genes as a preliminary step in estimating their impact on altered pathways. The present paper proposes a pipeline which aims at detecting “weak” or “indirect” functions impacted by Copy Number Variations (CNVs) of cancer-related genes, integrating such signals over all known oncogenes/tumor suppressor genes of a cancer type. We applied the pipeline to the task of detecting the aberrant functional effects of these alterations across ovarian cancer patients from The Cancer Genome Atlas (TCGA) data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kristensen, V.N., et al.: Principles and methods of integrative genomic analyses in cancer. Nat. Rev. Cancer 14(5), 299 (2014)

    Article  Google Scholar 

  2. Thingholm, L.B., et al.: Strategies for integrated analysis of genetic, epigenetic, and gene expression variation in cancer: addressing the challenges. Front. Genet. 7, 2 (2016)

    Article  Google Scholar 

  3. Zhang, Q., et al.: Integrative network analysis of TCGA data for ovarian cancer. BMC Syst. Biol. 8(1), 1338 (2014)

    Article  Google Scholar 

  4. Tattini, L., et al.: Detection of genomic structural variants from next-generation sequencing data. Front. Bioeng. Biotechnol. 3, 92 (2015)

    Article  Google Scholar 

  5. Rodriguez-Revenga, L., et al.: Structural variation in the human genome: the impact of copy number variants on clinical diagnosis. Genet. Med. 9(9), 600 (2007)

    Article  Google Scholar 

  6. The cancer genome atlas research network: integrated genomic analyses of ovarian carcinoma. Nature 474(7353), 609 (2011)

    Google Scholar 

  7. Barbiero, P., et al.: Neural biclustering in gene expression analysis. In: 2017 Proceedings of CSCI, pp. 1238–1243. IEEE (2017)

    Google Scholar 

  8. Samur, M.K.: RTCGAToolbox: a new tool for exporting TCGA Firehose data. PloS One 9(9), e106,397 (2014)

    Google Scholar 

  9. Mermel, C.H., et al.: GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers. Genome Biol. 12(4), R41 (2011)

    Google Scholar 

  10. Robinson, M.D., et al.: edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1), 139–140 (2010)

    Article  MathSciNet  Google Scholar 

  11. Yu, G., He, Q.Y.: ReactomePA: an R/Bioconductor package for reactome pathway analysis and visualization. Mol. BioSyst. 12(2), 477–479 (2016)

    Article  Google Scholar 

  12. McCarthy, D.J., et al.: Differential expression analysis of multifactor RNA-seq experiments with respect to biological variation. Nucl. Acids Res. 40(10), 4288–4297 (2012)

    Article  Google Scholar 

  13. Gamazon, E.R., Stranger, B.E.: The impact of human copy number variation on gene expression. Brief. Funct. Genomics 14(5), 352–357 (2015)

    Article  Google Scholar 

  14. Cirrincione, G., et al.: The GH-EXIN neural network for hierarchical clustering. Neural Netw. 121, 57–73 (2020)

    Article  Google Scholar 

  15. Cheng, Y., Church, G.M.: Biclustering of expression data. In: ISMB, vol. 8, pp. 93–103 (2000)

    Google Scholar 

  16. Qi, Y., et al.: Expression signatures and roles of microRNAs in inflammatory breast cancer. Cancer Cell Int. 19(1), 23 (2019)

    Article  Google Scholar 

  17. Kudo, Y., et al.: Matrix metalloproteinase-13 (MMP-13) directly and indirectly promotes tumor angiogenesis. J. Biol. Chem. 287(46), 38716–38728 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgia Giacomini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Giacomini, G., Ciravegna, G., Pellegrini, M., D’Aurizio, R., Bianchini, M. (2020). A Transcriptional Study of Oncogenes and Tumor Suppressors Altered by Copy Number Variations in Ovarian Cancer. In: Chen, YW., Tanaka, S., Howlett, R., Jain, L. (eds) Innovation in Medicine and Healthcare. Smart Innovation, Systems and Technologies, vol 192. Springer, Singapore. https://doi.org/10.1007/978-981-15-5852-8_15

Download citation

Publish with us

Policies and ethics