Skip to main content

The Art and Signs of a Few Good Mechanical Designs in MEMS

  • Chapter
  • First Online:
Book cover Mechanical Sciences

Abstract

Widely spread across and deeply entrenched in many engineering and some science disciplines, Microelectromechanical Systems (MEMS) is a mature field today. Moving mechanical elements are the distinguishing features of MEMS, which have earned their own place among the ubiquitous microelectronic devices. This is in part due to clever mechanical designs that defined this field. A few good MEMS designs are reviewed in this chapter, and this opportunity is used to highlight the traits (the signs) that make a design good, and also to examine the roles of intuition (the art) and systematic synthesis (the science) in obtaining good designs. Attention is paid to how MEMS designs have overcome the constraints of essentially planar microfabrication and unlikely mechanical materials such as silicon. It is noted that some MEMS designs are borrowed from other disciplines but many have been developed anew to meet the stringent demands on functionality, performance, and microfabrication. Also included here is a perspective on future mechanical designs that the MEMS field needs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Muller, R.S. (ed.): Microelectromechanical Systems: Advanced Materials and Fabrication Methods. NMAB-483, National Academy Press (1997)

    Google Scholar 

  2. Ananthasuresh, G.K. (ed.): Optimal Synthesis Methods for MEMS. Kluwer Academic Publishers (2003)

    Google Scholar 

  3. Tang, W.C., Nguyen, T.-C., Howe, R.T.: Laterally driven polysilicon resonant microstructures. Sens. Actuators 20(1–2), 25–32 (1989)

    Article  Google Scholar 

  4. Aksyuk, V.A., Pardo, F., Bolle, C.A., Arney, S., Giles, C.R., Bishop, D.J.: Lucent Microstar micromirror array technology for large optical crossconnects. In: Proceedings of the SPIE, MOEMS and Miniaturized Systems, vol. 4178 (2000). https://doi.org/10.1117/12.396503

  5. Krishnan, G., Ananthasuresh, G.K.: Evaluation and design of compliant displacement amplifying mechanisms for sensor applications. J. Mech. Des. 130(10), 102304, 1–9 (2008)

    Google Scholar 

  6. Khan, S., Ananthasuresh, G.K.: Improving the sensitivity and bandwidth of in-plane capacitive micro-accelerometers using compliant mechanical amplifiers. IEEE J. Microelectromech. Syst. 23(4), 871–887 (2014)

    Article  Google Scholar 

  7. Challoner, A.D., Ge, H.H., Liu, J.Y.: Boeing disc resonator gyroscope. In: IEEE/ION Position, Location, and Navigation Symposium—PLANS 2014 (2014)

    Google Scholar 

  8. Hung, E.S., Senturia, S.D.: Extending the travel range of analog-tuned electrostatic actuators. J. Microelectromech. Syst. 8(4), 497–505 (1999)

    Article  Google Scholar 

  9. Que, L., Park, J.-S., Gianchandani, Y.B.: Bent-beam electrothermal actuators-part i: single beam and cascaded devices. J. Microelectromech. Syst. 10(2), 247–254 (2001)

    Article  Google Scholar 

  10. Yang, Y.-J., Liao, H.-H., Huang, K.-H., Huang, Y.-Y., Lin, C.-W., Yang, L.-J., Jaw, F.-S.: Novel designs of herringbone chaotic mixers. In: Proceedings of the 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems (2006)

    Google Scholar 

  11. Kollimada, S., Balakrishnan, S., Malhi, C., Raju, S.R., Suma, M.S., Das, S., Ananthasuresh, G.K.: A micromechanical device for in situ stretching single cells cultured on it. J. Micro-Bio Robot. 13, 27–37 (2018)

    Article  Google Scholar 

  12. Moulton, T., Ananthasuresh, G.K.: Design and manufacture of electro-thermal-compliant micro devices. Sens. Actuators Phys. 90, 38–48 (2001)

    Google Scholar 

  13. Fan, L.-S., Tai, Y.-C., Muller, R.S.: Intergrated movable micromechanical structures for sensors and actuators. IEEE Trans. Electron Devices 35(6), 724–730 (1988)

    Article  Google Scholar 

  14. Mehregany, M., Bart, S.F., Tavrow, L.S., Lang, J.H., Senturia, S.D., Schlecht, M.F.: A study of three microfabricated variable-capacitance motors. Sens. Actuators A21(22/23), 173–179 (1990)

    Article  Google Scholar 

  15. Sandia Ultra-planar Multi-level MEMS Technology (2020). https://www.sandia.gov/mesa/_assets/documents/design_documents/SUMMiT_V_Dmanual.pdf

  16. Kota, S., Ananthasuresh, G.K., Crary, S.B., Wise, K.D.: Design and fabrication of microelectromechanical systems. J. Mech. Des. 116(4), 1081–1088 (1994)

    Article  Google Scholar 

  17. Smith, S.T., Chetwynd, D.G.: Ultraprecision Mechanism Design. Gordon and Breach (1992)

    Google Scholar 

  18. Yin, L., Ananthasuresh, G.K.: Design of distributed compliant mechanisms. Mech. Based Des. Struct. Mach. 31(2), 151–179 (2003)

    Article  Google Scholar 

  19. Miller, S.L., Sniegowski, J.J., LaVigne, G., McWhorter, P.J.: Performance trade-offs for a surface micromachined microengine. In: Proceedings of the SPIE, Micromachined Devices and Components II, vol. 2882. (1996). https://doi.org/10.1117/12.250702

  20. Ye, W., Mukherjee, S.: Design and fabrication of an electrostatic variable gap drive in micro-electro-mechanical systems. Comput. Model. Eng. Sci. 1, 111–120 (2000)

    Google Scholar 

  21. Silicon-on-insulator Multi-user MEMS Processes (SOIMUMPs) (2020). http://www.memscap.com/products/mumps/soimumps

  22. Howard, J.: Mechanics of Motor Proteins and the Cytoskeleton. Oxford University Press (2005)

    Google Scholar 

  23. McAllister, A., Smith, M., Zafirou, K., Day, D., Butler, M.: Apparatus and Method Providing a Hand-held Sprectrometer. US Patent US20070194239A1 (2007)

    Google Scholar 

  24. Saxena, A., Ananthasuresh, G.K.: On an optimal property of compliant topologies. Struct. Multidiscip. Optim. 19(1), 36–49 (2000)

    Google Scholar 

  25. Kota, S., Rodgers, S.M., Hetrick, J.A.: Compliant Displacement-multiplying Apparatus for Microelectromechanical Systems. US Patent US6175170B1 (2001)

    Google Scholar 

  26. Baichapur, G.S., Gugale, H., Maheshwari, A., Bhargav, S.D.B., Ananthasuresh, G.K.: A Vision-based micro-Newton static force sensor using a displacement-amplifying compliant mechanism. Mech. Based Des. Struct. Mach. 42(2), 193–210 (2014)

    Article  Google Scholar 

  27. Kollimada, S., Khan, S., Balakrishnan, S., Raju. S.R., Suma, M.S., Ananthasuresh, G.K.: A micro-mechanical compliant device for individual cell-stretching, compression, and in-situ force-measurement. In: Proceedings of the International Conference on Manipulation, Automation, and Robotics at Small Scales. Montreal, Canada (2017)

    Google Scholar 

  28. Putty, M., Najafi, K.: A Micromachined vibratory ring gyroscope. In: Proceedings of the Hilton Head Workshop on Solid State Sensors and Actuators (1995)

    Google Scholar 

  29. Guckel, H., Klein, J., Christenson, T., Skrobis, K., Laudon, M., Lovell, E.G.: Thermomagnetic metal flexure actuators. In: Technical Digest of Solid-State Sensors and Actuators Workshop, Hilton Head Island, SC, 1992, p. 73 (1992)

    Google Scholar 

  30. Timoshenko, S.: Analysis of bimetal thermostats. J. Opt. Soc. Am. 11, 233–255 (1925)

    Article  Google Scholar 

  31. Yin, L., Ananthasuresh, G.K.: A novel topology design scheme for the multi-physics problems of electro-thermally actuated compliant micromechanisms. Sens. Actuators A 97–98, 599–609 (2002)

    Article  Google Scholar 

  32. Mankame, N., Ananthasuresh, G.K.: Topology synthesis of electro-thermal-compliant mechanisms using line elements. Struct. Multidiscip. Optim. 26, 209–218 (2004)

    Article  Google Scholar 

  33. Sardan, O., Petersen, D.H., Molhave, K., Sigmund, O., Boggild, P.: Topology optimized electrothermal polysilicon microgrippers. Microelectron. Eng. 85(5–6), 1096–1099 (2008)

    Article  Google Scholar 

  34. Mankame, N., Ananthasuresh, G.K.: Comprehensive thermal modeling and characterization of an electro-thermal-compliant microactuator. J. Micromech. Microeng. 11(5), 452–462 (2001)

    Article  Google Scholar 

  35. Awtar, S., Slocum, A.H.: Constraint-based design of parallel kinematic XY flexure mechanisms. J. Mech. Des. 129(8), 816–830 (2006)

    Article  Google Scholar 

  36. Dinesh, M., Ananthasuresh, G.K.: Micromechaical Stages with enhanced range. Int. J. Adv. Eng. Sci. Appl. Math. 2(1), 35–43 (2010)

    Article  Google Scholar 

  37. Baglio, S., Castorina, S., Fortuna, L., Savalli, N.: Scaling Issues and Design of MEMS. Wiley-Interscience (2008)

    Google Scholar 

  38. Ananthasuresh, G.K., Vinoy, K.J., Gopalakrishnan, S., Bhat, K.N., Aatre, V.K.: Chapter 9 in Micro and Smart Systems: Technology and Modeling. Wiley, New York (2012)

    Google Scholar 

  39. Bejan, A., Zane, J.P.: Design in Nature: How the Constructal Law Governs Evolution in Biology, Physics, Technology, and Social Organization. Anchor Reprint Edition (2013)

    Google Scholar 

  40. Yan, S., Wang, F., Sigmund, O.: On the non-optimality of tree structures for heat conduction. Int. J. Heat Mass Transf. 122, 660–680 (2018)

    Article  Google Scholar 

  41. Lakes, R.: Materials with structural hierarchy. Nature 361, 511–515 (1993)

    Article  Google Scholar 

  42. Sundaram, M., Ananthasuresh, G.K.: Gustave Eiffel and his optimal structures. Reson. Sci. Educ. J. 14(8), 849–865 (2009)

    Google Scholar 

  43. Senturia, S.D.: (2001) Microsystem Design. Springer

    Google Scholar 

  44. Pratap, R., Mohite, S., Pandey, A.K.: Squeze film effects in MEMS devices. J. Indian Inst. Sci. 87(1), 75–94 (2007)

    Google Scholar 

  45. Candler, R.N., Duwel, A., Varghese, M., Chandorkar, S.A., Hopcroft, M.A., Park, W.-T., Kim, B., Yama, G., Partridge, A., Lutz, M., Kenny, T.W.: J. Micromech. Syst. 15(4), 927–934 (2006)

    Article  Google Scholar 

  46. Bifano, T.G., Mali, R.K., Dorton, J.K., Perreault, J., Vandelli, N., Horenstein, M.N., Castanon, D.A.: Contunuous-membrane surface-micromachined silicon deformable mirror. Opt. Eng. 36(5), 1354–1360 (1997)

    Article  Google Scholar 

Download references

Acknowledgements

The author is indebted to his students in the Multidisciplinary and Multiscale Design and Device (M2D2) laboratory in Mechanical Engineering at the Indian Institute of Science, Bengaluru. The synergy that exists among the group members plays a pivotal role in pursuing varied problems in the realms of compliant mechanisms, MEMS, topology optimization, and biomechanics of cells. Special thanks to Shamanth Hampali, R. Harisankar, Anoosha Pai, and Nitish Sathyamurthy who created the solid models of most of the designs presented in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. K. Ananthasuresh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ananthasuresh, G.K. (2021). The Art and Signs of a Few Good Mechanical Designs in MEMS. In: Dixit, U., Dwivedy, S. (eds) Mechanical Sciences. Springer, Singapore. https://doi.org/10.1007/978-981-15-5712-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-5712-5_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-5711-8

  • Online ISBN: 978-981-15-5712-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics